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Abstract—Multiplying two sparse matrices, denoted spmm, is
a fundamental operation in linear algebra with several applica-
tions. Hence, efficient and scalable implementation of spmm has
been a topic of immense research. Recent efforts are aimed at
implementations on GPUs, multicore architectures, FPGAs, and
such emerging computational platforms. Owing to the highly
irregular nature of spmm, it is observed that GPUs and CPUs
can offer comparable performance (Lee et al. [12]).

In this paper, we study CPU+GPU heterogeneous algorithms
for spmm where the matrices exhibit a scale-free nature. Focus-
ing on such matrices, we propose an algorithm that multiplies
two sparse matrices exhibiting scale-free nature on a CPU+GPU
heterogeneous platform. Our experiments on a wide variety of
real-world matrices from standard datasets show an average
of 25% improvement over the best possible algorithm on a
CPU+GPU heterogeneous platform. We show that our approach
is both architecture-aware, and workload-aware.

I. INTRODUCTION

Sparse matrix operations are listed as one the seven dwarfs

in parallel computing as identified in the Berkeley report [2].

Of these, multiplying two sparse matrices, usually denoted

spmm, is one of the important problems for its numerous

applications. Examples include numerical applications such

as climate modeling, molecular dynamics, CFD solvers, and

the like [8]. In fact, most current multi-, and many-core

architectures include optimized library support for spmm such

as cusparse [15] on NVidia GPUs and MKL [11] for Intel

CPUs.

Given the importance of spmm, there has been a signif-

icant number of works targeted at efficient algorithms and

their implementations on a variety of architectures. Prominent

examples include the work of Buluc [5] that studied spmm on

multicore architectures.

There are two noticeable trends that are affecting parallel

computing research in the recent years. Firstly, the current

architectural trend is towards a heterogeneous collection of

devices involving CPUs and accelerators such as GPUs and

Intel Xeon-Phi. Hence, the design and development of het-

erogeneous algorithms aimed at such commodity heteroge-

neous computing platforms are of immense research interest.

Heterogeneous algorithms for a variety of problems from

domains such as sorting [4], graph algorithms [6], sparse

matrix computations [13], are reported in recent literature.

A second trend that is being witnessed recently is to

customize algorithms and/or their implementations according

to the characteristics of the input. Such studies are gaining

research attention in recent times for problems such as finding

the strongly connected components of real-world graphs by

Hong et al. [9], mapping graph traversals to a CPU+GPU

heterogeneous platform by Gharibieh et al. [6], sparse matrix-

vector multiplication of scale-free matrices by Indarapu et al.

[10], and the like.

In the context of sparse matrices, it can be observed that

several sparse matrices arising in practical scenarios exhibit a

scale-free nature. A matrix exhibiting a scale-free nature has

several rows with very few nonzero elements and very few

rows with a large number of nonzero elements. An example

is shown in Figure 1 for the matrix webbase-1M from the

collection of sparse matrices in [18]. In Figure 1, the X-axis is

the number of nonzeros (NNZ) and the Y-axis is the number

of rows. As can be noted from Figure 1, of the 1,000,005

rows in this matrix, there are very few rows with at least 60

nonzero elements per row, and the large number of rows have

less than than 60 nonzeros. (Note that the Y-axis of Figure 1 is

on a logarithmic scale.) This distribution of nonzeros across

rows can have significant implications for algorithm design

and implementation as we will see in this work.

Indeed, the spmm computation offers a lot of data paral-

lelism that can be exploited in a heterogeneous setting too.

Different elements, or rows/columns, of the output matrix

can be computed in parallel independently on all the devices

in the computing platform. However, in the matrix product

C = A×B, the amount of computation required with respect

to an element C[i, j] in the product matrix depends on the

number of indices of the ith row of A containing nonzero

elements that overlap with the indices of the jth column of

B containing nonzero elements. In a given sparse matrix,

as the number of nonzeros per row can vary significantly

across rows, it is difficult to know the amount of computation

required for producing a row/column of the product matrix.

The above difficulty can persist even for matrices that exhibit

a scale-free nature in their row sizes. Thus, even when one

restricts to special classes of sparse matrices, it is challenging

to design efficient heterogeneous algorithms for sparse matrix

multiplication.

In this paper, we aim at efficient heterogeneous algorithms

for multiplying two scale-free sparse matrices. We propose

novel techniques that are aimed at alleviating two challenges:
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Fig. 1. Row histogram of the matrix webbase-1M from the dataset of [18].
The figure does indicate that very few rows have at least 60 nonzeros per row.
The gray bars indicate these high density rows. The black bar represents the
rows with low density.

(i) load balancing across the devices in the computing plat-

form, (ii) assigning the “right” work to the “right” proces-

sor. Addressing these twin challenges, we show significant

improvements in the performance compared to corresponding

best known implementations on a wide variety of real-world

sparse and scale-free matrices. We summarize our main tech-

nical contributions of this work as follows.

• We propose a heterogeneous algorithm, called HH-CPU,

for multiplying two scale-free sparse matrices on a

CPU+GPU heterogeneous platform.

• We conduct experiments on a wide range of scale-free

matrices and show the efficiency of our algorithm. Our

results indicate that the HH-CPU algorithm offers a 25%

improved performance over the present best-known het-

erogeneous algorithm for multiplying two sparse matrices

from [13].

• We explain the performance improvement based on the

scalefree nature of the matrix.

• We also conduct experiments on synthetic scalefree ma-

trices to understand the impact of scalefreeness on the

performance of Algorithm HH-CPU.

A. Related Work

The multiplication of two matrices, dense and sparse alike,

is an important primitive with applications to many areas of

computing. It is therefore not surprising that a lot of research

attention is devoted in this direction. Focusing on sparse

matrices, one of the first notable works is that of Gustavson et

al. [7]. They present a Row-Row fashion spmm algorithm for

general sparse matrices. Park et al. [16] gave space efficient

data structures and algorithms based on the proposed data

structures for a class of sparse matrices which have nonzero

elements adjacent to each other.

Buluc et al. [5] conducted a detailed study of spmm on

distributed memory systems. In this direction they analyse

1D and 2D block distribution algorithms. Siegel et al. [17]

designed a run-time framework for spmm on heterogeneous

clusters. For addressing load balancing problem they present

a task based allocation model where multiplication of block

of matrices represents a task. Sulatycke et al. [19] present

cache optimized algorithms on sequential machines for sparse

matrix multiplication. They explore Row-Row and Column-

Row formulations of matrix multiplications.

More recently, in [13], heterogeneous algorithms for spmm
are designed on CPU+GPU systems. Here, the heterogeneous

algorithm does not consider the nature of the matrix and is

aimed at generic sparse matrices. In this work, we show that

more performance gains can be obtained when one takes the

nature of the input into account.

Matching workload to a computational device based on the

characteristics of the workload is an emerging line of research.

In [6], Gharaibeh et al. consider three graph algorithms and

suggest that for large, sparse graphs, it is advisable to process

vertices of low degree on the GPU and vertices of high degree

on the CPU. The authors of [6] also show that such a choice

can help improve the hit ratio of the last level cache on current

multicore architectures. In this work, we show that such effects

can be seen for spmm also.

B. Organization of the Paper

In the rest of the paper, we first describe some background

material in Section II. Section III and Section IV discuss our

algorithm and its implementation details. The results of our

algorithm are presented in Section V followed by concluding

remarks in Section VI.

II. PRELIMINARIES

In this section, we discuss some preliminary notions. Sec-

tion II-A describes the row-row matrix multiplication formu-

lation. Section II-B describes the characteristics of the GPU

and the CPU used in our experiments.

A. Matrix Multiplication Formulation

Consider the product C = A×B, where A, B, and C are

matrices of size M × P , P × N , and M × N respectively.

For a matrix A, let A(i, :), and A(:, i) denote its ith row

and ith column of respectively. The multiplication of A with

B can be achieved in four different ways: multiplying the

rows/columns of A with the rows/columns of B. As noted in

[13], multiplying the rows of A with the columns of B, called

the Row-Column Formulation, is not well suited for sparse

matrices on current parallel architectures in general. In this

work, we use the Row-Row Formulation that is summarized

below.

a) The Row-Row Formulation: In the Row-Row formu-

lation, to compute the ith row in C, C(i, :), we proceed as

follows. Let S = {j1, j2, · · · , jr} be the column indices of

nonzero elements in the ith row of A. For k = 1, 2, · · · , r, we

scale the jth
k row in B by A[i, jk]. We then add all the scaled B

rows to get the C(i, :). Thus, C(i, :) =
∑r

k=1 A(i, jk) ·B(jk, :
). For the example matrix shown in Figure 2 [a], the working

of the Row-Row formulation is shown in Figure 2 [b].

Even when using the Row-Row formulation, estimating the

work volume per row of the output matrix a-priori is still a
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(a) Example

A =

⎡
⎢⎢⎣
0 2 1 0
0 0 1 1
1 0 1 0
2 0 0 4

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣
2 3 4
8 0 0
0 0 6
0 7 0

⎤
⎥⎥⎦

(b) Row - Row Formulation

C(1, :) = 2× [
8 0 0

]
+ 1× [

0 0 6
]

=
[
16 0 6

]

C(2, :) = 1× [
0 0 6

]
+ 1× [

0 7 0
]

=
[
0 7 6

]

C(3, :) = 1× [
2 3 4

]
+ 1× [

0 0 6
]

=
[
2 3 10

]

C(4, :) = 2× [
2 3 4

]
+ 4× [

0 7 0
]

=
[
4 34 8

]

Fig. 2. Matrix multiplication via the Row-Row Formulation.

challenging task. In fact, asymptotically, it amounts to actually

performing matrix multiplication. The Row-Row formulation

however can greatly help in maximizing the usage of elements

that are read from memory.

b) GPU Algorithm for Row-Row based Matrix Multipli-
cation: Consider two sparse matrices A and B. The basic

approach of the GPU algorithm (from [13]) is as follows. The

ith row of C, C(i, :), is constructed as a row of N elements of

which only a few are nonzero. The nonzero values of C(i, :)
are copied to the output. On the GPU, a fixed number of

warps, W , are launched. Each row of A is assigned to one

warp. The M rows of A are iterated over in multiples of

W . Warp i computes the ith row of C. For this, warp i
accumulates the nonzero values and their indices in C(i, :)
using auxiliary arrays PartialOutput and NonZeroIndices.

The array PartialOutput is used to accumulate the nonzero

elements of C(i, :). The array NonZeroIndices is used to

store the indices of nonzero elements in the PartialOutput
array.

From the above, we can see that the size of the array

PartialOutput should be N . We should create this array in

the global memory of the GPU as it is not feasible to create

this in the shared memory. It can be also noted that because

of this reason, writes to PartialOutput may be uncoalesced

in nature. Even then, the size of the global memory of the

GPU may not be enough to store the PartialOutput and

the NonZeroIndices arrays for all the W warps that are all

active at the same time. Hence, we consider groups of TRb

columns of B in an iterative manner. In this case, the size of

the auxiliary arrays PartialOuput and NonzeroIndices is

TRb for each warp. We refer the reader to [13] for a detailed

pseudocode.

B. A Brief Overview of our Experimental Platform

In this section, we briefly describe our heterogeneous

computing platform. Our heterogeneous platform consists of

an Intel i7 980 CPU and an Nvidia Tesla K20c (Kepler)

GPU connected via a PCI Express version 2.0 link. This

link supports a data transfer bandwidth of 8 GB/s between

the CPU and the GPU. To program the GPU we use the

CUDA API Version 4.1 [14]. The CUDA API Version 4.1

supports asynchronous concurrent execution model so that a

GPU kernel call does not block the CPU thread that issued

this call. This also means that execution of CPU threads can

overlap a GPU kernel execution.

The Tesla K20c GPU is a current generation Kepler micro-

architecture from NVidia with 13 streaming multi-processors

(SMX) with each having 192 cores for a total of 2496 compute

cores. Each compute core is clocked at 706 MHz. Each SMX

has a hardware scheduler which schedules 32 threads at a time.

This group is called a warp and a half-warp is a group of 16

threads that execute in a SIMD fashion. Each of the cores

of the GPU now has a fully cached memory access via an

L2 cache, 1.25MB in size. In all, the K20c will provide up to

3.52 TFLOPS of single- and 1.17 TFLOPS of double-precision

floating-point performance.

The Intel i7 980 is based on the Intel Westmere micro-

architecture and has six cores with each core running at 3.4

GHz. With active SMT (hyper-threading), the i7 980 can

handle twelve logical threads. Other features of the Core i7

980 include a 32 KB instruction and a 32 KB data L1 cache

per core, a 256 KB per-core L2 cache, and an L3 cache of 12

MB that is shared by all 6 cores.

III. MULTIPLICATION OF TWO SPARSE SCALE-FREE

MATRICES (spmm)

In this section, we describe our algorithm, Algorithm HH-

CPU, that multiplies two sparse matrices which exhibit a scale-

free behavior. Given two scale-free matrices A and B, we wish

to compute their product C = A×B. (Throughout, we assume

that A and B are compatible for multiplication).

Our algorithm has four phases as shown in Algorithm 1.

A brief description of the phases is given below followed by

a detailed description in Sections III-A–III-D. In Algorithm

HH-CPU, see Algorithm 1, the labels CPU::, GPU::, refer

to the computations done in an overlapped manner on the CPU

and the GPU respectively. The label GPU → CPU, refers to

data transfer from the GPU to the CPU. The label CPU,
GPU:: refers to computations that is done on both the CPU

and the GPU in an overlapped manner, where the volume of

computation done on the CPU and the GPU is not known

a-priori.

In Algorithm HH-CPU, as part of our preprocessing, we

rearrange the rows of matrices A and B according to their

size (number of nonzero elements). We call the matrix AH

(BH ) as the submatrix consisting of the rows of A (resp. B)

that have a large number of nonzeros. The rest of the matrix,

that is the submatrix of A (B) consisting of rows that contain

fewer nonzeros are called as AL (resp. BL). With a reordering

of the rows of A and the rows of B, the matrix A (B) can be

written as [AH , AL]
T (resp. [BH , BL]

T ).

The matrix C can be obtained by multiplying the matrix

products AH with BH , AL with BL, AL with BH , and AH

with BL. These matrix products are computed in Phases II and

III of Algorithm HH-CPU, followed by consolidation of the
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Algorithm 1 Algorithm HH-CPU

1: /* Phase I */
2: CPU, GPU :: Identify thresholds tA, tB and the matri-

ces AH , AL, BH , and BL.

3: /* Phase II */
4: CPU:: Compute AH × BH using [13, Algorithm 1]

rewritten for CPU.

5: GPU:: Compute AL ×BL using [13, Algorithm 1].

6: /* Phase III */
7: CPU, GPU:: Compute AH ×BL and AL ×BH .

8: /* Phase IV */
9: CPU, GPU:: Combine the results of Phases II and III.

10: GPU → CPU:: Transfer the partial results from the

GPU to the CPU.

Fig. 3. Figure explaining Algorithm HH-CPU. The matrices A and B have
two rows containing at least two nonzeros in AH and BH and the other
two rows are in AL and BL. The figure also shows the four partial products
AH ×BH , AL ×BL, AH ×BL, and AL ×BH . The product of A and B
is shown as matrix C, which is the sum of the four partial products. Rows in
the four partial products that are not computed as part of our algorithm are
filled with 0’s for illustration.

four partial results. An example is shown in Figure 3. In the

following, we explain each phase of the algorithm in detail.

A. Phase I

Phase I essentially involves identifying the threshold for

matrices A and B and the matrices AH , AL and BH , BL. We

do this as follows. Keeping t small may mean that the work

done by the CPU in Phase II would increase, whereas keeping

t large may tilt the balance towards the GPU. Hence, we chose

to identify t empirically.

Once the threshold is identified, we prepare a Boolean array

of size equal to the number of rows of the matrix. For a matrix

A, a value of 1 at index i in this array indicates that the ith row

of A is a high dense row and hence should belong to the matrix

AH . Since, computing the Boolean array is embarrassingly

parallel operation we perform this computation on GPU. For

this computation we need only row sizes of the rows of A and

B matrices to be transferred to GPU.

B. Phase II

Since the matrices AH and BH have a large number of

nonzero elements in their rows, we envisage that good cache

blocking techniques can be used when multiplying AH with

BH . This suggests that this product be computed on the CPU.

Further, as A and B are scale-free in nature, the sizes of AH

and BH are likely to be such that the time taken by the CPU to

compute the product AH ×BH is near-equal to the time taken

by the GPU to compute the product AL × BL. In a similar

fashion, the product AL×BL consists of several subproblems

each of which has a small computational intensity. These

subproblems are also all independent of each other. Thus, these

numerous subproblems can be assigned to individual threads

of the GPU by grouping them into a reasonable number of

thread blocks.

Therefore, in Phase II, we overlap the computation of AH×
BH with that of computing AL×BL. For computing AH×BH

on the CPU, we cannot use the Intel MKL library routine as the

matrices are not compatible for multiplication. For example,

consider matrix A has k1 high density rows and B has k2
high density rows according to thresholds tA, tB respectively.

The dimensions of AH and BH matrices are k1×n and k2×
n respectively, which are not compatible for multiplication.

Hence we have rewritten [13, Algorithm 1] to run on CPU with

minor modifications to handle compatibility issue. In order to

compute AH ×BH , we have the list of rows in AH computed

during phase I. For each row in AH we multiply with the

corresponding rows of B only if that row is classified as high

dense. This effectively calculates AH×BH . Our modified CPU

matrix multiplication algorithm performs around 15% to 20%

slower than the Intel MKL library routine. More optimization

techniques could be added to improve the performance of the

same which in turn will lead to significant improvement of

HH-CPU algorithm.

For computing AL×BL, we use the row-row based matrix

multiplication as it is shown empirically in [13] that the

row-row method can outperform the other methods of matrix

multiplication on modern architectures, especially for sparse

matrices. Similar to the modified CPU routine, Algorithm 1

from [13] is modified to make suitable workarounds to address

issues around compatibility of matrices under multiplication.

C. Phase III

The computation in Phase III involves the multiplication of

AH with BL and AL with BH . In our implementation, we

make the following observations to perform these computa-

tions efficiently. Firstly, it is not clear as to which of the two

products above are best suited to be executed on the CPU and

the GPU respectively. Further, there are no additional input

behavioral characteristics that dictate the assignment of these

products to the CPU and the GPU. Secondly, the amount of

time taken by the CPU and the GPU on these products cannot

be estimated easily.

Given the above observations, we start computing the prod-

uct of AH with BL in GPU. Note that, in Phase II we have

already transferred matrices A and B. Hence GPU has AH and

no transfer is required. The CPU starts computing product of

AL with BH .

To balance the work between the CPU and the GPU, we use

a custom workqueue. In our custom workqueue, the CPU and

GPU dequeue work-units from opposite ends of the queue.
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In our case, a work-unit corresponds to the multiplication of

a contiguous set of rows of AH (AL) with a contiguous set

of rows of BL (resp. BH ). We have the CPU and the GPU

dequeue work-units from opposite ends of the queue so that

the time taken to synchronize the dequeue operations is also

minimal. Therefore, on the CPU end of the queue, we fill the

queue with work-units corresponding to the product AL×BH

and on the GPU end of the queue, we fill the queue with

work-units that correspond to product AH ×BL.
We launch separate threads on the CPU to handle the CPU

spmm operation and also launch the GPU kernel for spmm
from within a CPU thread. We maintain two global variables

cpuOffset and gpuOffset on the CPU side to track working

units of CPU and GPU. Similarly, variables cpuRows and

gpuRows denote the number of rows computed in that call

made by CPU and GPU respectively. In our implementation,

we use the modified [13, Algorithm 1] for computation on the

CPU and the GPU algorithm [13, Algorithm 1] on the GPU.

D. Phase IV
In Phase IV, the outputs of the CPU and the GPU in Phases

II and III are merged together and stored on the CPU. The

computation in Phases II and III of Algorithm 1 produces

tuples of the form 〈r, c, v〉 such that a contribution of v has to

be added to the element at index (r, c) of the output matrix. For

a given index (r, c) of the output matrix, there may be several

tuples all of which have to be added together to get the final

result. Moreover, the tuples generated in the CPU have to be

combined with the tuples generated in the GPU. We can see

that the tuples generated in CPU and the GPU during Phase II

are for different rows. Hence merging the results of the CPU

and the GPU from Phase II is straight-forward.
The steps of the algorithm we use in Phase IV are described

as follows. We first merge the tuples based on r and c values.

At the end of this step, we have essentially grouped all

tuples based on their row and column index. The rest of the

computation in this phase is to add like-tuples, that is tuples

with identical row and column index. Such tuples are now in

neighboring indices after the merging is done. Since we expect

that there will be very few tuples for any row and column

index, we process these tuples sequentially for each row and

column index. However, care has to be taken so that there is

exactly one thread for each such (r, c) tuple. For this purpose,

we use standard techniques such as marking the indices of

like-tuples, and scan the marked array to identify the first

index for each row, column index. For each row, column index,

let us call this index as the master index. We now associate

a thread to each master index. The job of this thread is to

add the values of the tuples with the same row and column

index. Once this is done, we now produce a new output array

which contains distinct row, column indices. The process is

illustrated in Figure 4 for a small example.

IV. IMPLEMENTATION DETAILS

In this section, we discuss a few implementation details of

our algorithm during Phases II and III. The implementation of

the other phases is rather straightforward from the description

of the algorithm.

1 1 2 2 3 3 3 4 5 5
8 8 4 4 4 2 6 66 9

2 1 1 2 3 2 4 35 5

Scan

Final

Mark

Merged

0 0 1 1 2 3 3 4 43

0 0 1 0 1 1 0 0 1 0

1 1 2 3 4 5
8 4 2 66 9

1 9 5 832

R

C

V

Fig. 4. Figure shows the process of merging the output of Phase II and III.
The labels R, C, and V in the figure refer to the row indices, column indices
and values of the nonzero elements respectively. The colored arrows in the
figure indicate contiguous blocks of tuples with the same row and column
index.

Matrix Rows NNZ α
scircuit 170,998 958,936 3.55

Webbase-1M 1,000,005 3,105,536 2.1

cop20kA 121,192 2,624,331 143.8

web-Google 916,428 5,105,039 3.75

p2p-Gnutella31 62,586 147,892 48.9

ca-CondMat 23,133 186,936 3.58

roadNet-CA 1,971,281 5,533,214 133.80

internet 124,651 207,214 4.63

dblp2010 326,186 1,615,400 5.79

email-Enron 36,692 367,662 2.1

wiki-Vote 8,297 103,689 3.88

cit-Patents 3,774,768 16,518,948 3.90

TABLE I
LIST OF SPARSE MATRICES USED IN OUR EXPERIMENTS. NNZ REFERS TO

THE TOTAL NUMBER OF NONZEROS IN THE MATRIX. THE NUMBER OF

COLUMNS AND ROWS ARE EQUAL FOR ALL THE MATRICES. THE COLUMN

LABELED α INDICATES THE EXPONENT OF THE POWER LAW

DISTRIBUTION THAT THE ROW SIZES OF THE MATRIX FIT TO.

A. Phase II : Computing AL ×BL on the GPU

Notice from Algorithm 1 that Phase I is performed both on

the CPU and GPU. This means that before we start Phase II,

the GPU needs to know the submatrices AL and BL of A and

B respectively. In our implementation, we transfer AL and BL

to the GPU from the CPU. Since we don’t split the matrices

physically, transferring AL and BL means transferring A and

B entirely along with the Boolean array that classifies each

row as high dense or low dense. Approximately, it takes around

25-30 milliseconds to transfer a matrix with around 5 Million

nonzero entries to the GPU.

As mentioned earlier, we have used Algorithm 1 from [13]

for this computation. Additionally, we have checked for the

possibility that some of the GPU specific parameters such

as the block size, the number of warps, can be varied for

arriving at the best possible results. We experimented with

various values for the above parameters and finally chose a

block size of 1024, with 32 warps per block. Also in parallel,
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we compute AH ×BH on CPU using Algorithm 1 from [13]

rewritten for CPU on the sub-matrices obtained in phase I of

our algorithm.

B. Phase III
Recall that in Phase III, we compute the products AL×BH

and AH × BL. As mentioned earlier, we also use a work

queue in this phase to balance the work between the CPU

and the GPU. The size of the work-unit on the CPU, variable

cpuRows, is set at 1000 rows as this yields the best possible

result. Similarly, the variable gpuRows that the GPU uses

to indicate the size of the work-unit is set to 10,000 rows

when contributing to the product AL × BH . According to

our workqueue model, the GPU (CPU) can contribute to the

product AL×BH (resp. AH ×BL) after finishing the product

AH ×BL (resp. AL ×BH ).

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets
For our experiments, we use 12 matrices from standard

datasets from a variety of sources listed in [18]. The matrices

and their properties are shown in Table I. Figure 5 shows the

row density histogram of 12 matrices from Table I. Figure 5

also shows the number of rows that are dense, that is having

nonzeros more than the threshold indicated in each plot. In all

our experiments we multiply the matrix with itself.

B. Results
In this section, we compare our results with the correspond-

ing current best known results from [13], and also analyze our

results. All these results are obtained on identical platforms

by running the programs from [13] also on the experimental

platform described in Section II-B. Each experiment is run

several times. In all the plots, the label “HiPC2012” refers

to the implementation of Algorithm 1 from [13]. The label

“HH-CPU” refers to Algorithm 1 from Section III.
a) Overall Improvement: Figure 6 shows that our al-

gorithm achieves comparable speedup over the results of [13].

As can be noticed from Figure 6, the HH-CPU method is able

to perform on average 25% faster compared to the results of

[13]. Our results also outperform the results of cusparse
and Intel MKL by 4x and 3.6x respectively.

b) Profiling: We now turn our attention to understanding

and interpreting the results of our experiments. In Figure

7, we show the breakup of the overall time taken by our

implementation over the various phases of the algorithm. In

Figure 7, the time for each phase is taken as the maximum time

spent by either device on that phase. As can be noticed from

Figure 7, Phases II and III dominate the overall time taken and

add up to more than 96% of the overall time. This indicates

that our approach has a low overhead including both Phase I

and Phase IV. Hence, even if we only use the spmm operation

for a single time on a given matrix, there are significant savings

to be had when one does a brief amount of preprocessing. We

could observe that the difference between the GPU and the

CPU runtime within each phase is on average under 2% of

the overall runtime which demonstrates a better load balancing

between CPU and GPU.

c) Analysis of the Overall Result: The column labeled

α in Table I indicates the exponent of the power law distri-

bution that the row sizes of the matrix fit to. This number is

obtained using the toolkit developed by Alstott et al. [1]. The

smaller the exponent, one can say that the underlying data

exhibits a bigger degree of scalefreeness.

The relative improvement of our Algorithm HH-CPU can be

understood in terms of the α value of the matrix. For instance,

matrices such as webbase-1M and email-Enron have α value

of 2.1. On these matrices, our algorithm has a speedup of 37%

compared to that of [13]. In the next category of matrices, we

have five matrices scircuit, web-Google, ca-Condmat, wiki-

vote, and cit-patents with their α value between 3 and 4. Of

these five, except for web-Google, the rest of the matrices

show a speedup in the range of 20% to 25% over the algorithm

of [13]. This speedup is a little lower compared to matrices

with a lower α as a lower value of α indicates a better

scalefreeness in general.

For the matrix web-Google, the speedup compared to [13]

is much higher at 45%. This can be explained by the fact that

the matrix has nearly a million rows with under 25 nonzeros

as shown in Figure 5. This suggests that there is a better load

balance in Phase II, with the CPU and the GPU getting near

identical share of work. (Notice that as we use a workqueue

in Phase III, the time spent by the CPU and the GPU in Phase

III is near identical in most cases).

Two matrices, internet, and dblp-2010 have their α value

between 4 and 5. On these two matrices, the speedup is in the

range of 30%, which is higher than what is expected. These

two matrices too have a structure similar to that of the matrix

web-Google. So, the speedup on these matrices is higher than

anticipated.

Let us now consider the matrices p2p-Gnutella31, roadNet-

CA, and cop20kA with their α values at 48.9, 133.8, and

143 respectively. The high α value can also be observed

from the fact that in these matrices the relative difference

in the NNZ between high dense and low dense rows is

small. This small difference explains their high α value. See

also the row histogram plots of these matrices in Figure 5.

The varying nature of improvement, ranging from just over

5% on p2p-Gnutella31 and roadNet-CA, to over 20% on

cop20kA indicates that on matrices that are not scalefree, the

performance benefit of our algorithm cannot be judged based

on the value of α.

Finally, we note that studies on our dataset indicate that

even on matrices that are not scale-free, Algorithm HH-CPU is

likely to offer an advantage. The additional steps in Algorithm

HH-CPU such as Phase I and Phase IV are not consuming

any significant amount of time. On matrices from Table I,

these two steps consume under 4% of the overall time. The

actual work performed in Algorithm HH-CPU is not more than

the work performed in other approaches to multiply sparse

matrices in parallel. So, it can be seen that Algorithm HH-CPU

does not have disadvantages compared to other approaches

even on matrices that are not scale-free.

d) Trade-off Between Phases II and III: Recall from

Section III-A that we identify the threshold for a row to be

called as a high density row by relying on the histogram of
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Fig. 5. Row density histogram of 12 sparse scale-free matrices listed in Table I. In the legend, the value “Threshold” indicates the threshold used to identify
the high density rows in our experiments. The black bars (to the left) indicate the low density rows. The gray bars (to the right) represent rows with high
density. The number of such high density rows is also indicated in the legend as “HD”. Note that the Y-axis on all the plots are in logarithmic scale.
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Fig. 6. Figure shows the result of applying our algorithm on the matrices
from Table I. The last instance labeled Average indicates the average speedup
over the 12 matrices in the dataset.

the row densities. This threshold t plays a crucial role in our

algorithm. Let t∗ be the best possible threshold for a given

matrix. If the chosen threshold, t, is larger than t∗, then our

algorithm assigns more work to the GPU during Phase II,

and vice-versa. Further, if t is chosen such that all rows are

characterized as being low density rows, then our algorithm

is identical to Algorithm 1 of [13]. Similarly, if t = 0, then

our algorithm assigns all of the work to the CPU. Hence, as

we increase t from 0 to the largest possible value, the overall

time taken by our algorithm should exhibit a convex behavior.

This is shown also experimentally in Figure 8 for the 12

matrices from our dataset. In Figure 8, we also show the time

taken by Phases II and III apart from the overall time. In all

cases, as the threshold increases, the time taken by Phase II

decreases initially and then starts increasing again. The overall

time taken also follows a similar trend. In fact, it is also noticed

that the time corresponding to a threshold of 0 is close to

the time taken by MKL on the instance, and the time taken
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algorithm. Notice that the Y-axis is on a logarithmic scale.

corresponding to the largest applicable threshold is close to

the time taken by [13].

It is also worthwhile to note that the time taken by Phase

III does not show any structured behavior as opposed to time

taken by Phase II. This can be explained as follows. Even

though the computation in Phase III depends on the value of

the chosen threshold t, it is not clear as to how the volume of

computation corresponding to AL×BH and AH×BL change

with varying t.

C. Comparison with Other Approaches

In this section, we show that Algorithm HH-CPU is better

suited compared to other possible approaches. We consider

two alternatives as follows. In what we call as Algorithm

Unsorted-Workqueue, we use a workqueue model for the

entire computation of A × B. In other words, in Algorithm

Unsorted-Workqueue, the CPU and the GPU multiply inde-

pendent and contiguous sets of rows of A with the rows of
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B. Each such contiguous set of rows (of A) corresponds to a

work-unit. The CPU and the GPU access the work-units from

opposite ends of the workqueue as described in Section IV-B.

This approach can provide for dynamic load balancing across

the devices and differs from that of [13] as the heterogeneous

algorithm from [13] does a static work partitioning across the

CPU and the GPU.

In a second approach, called as Algorithm Sorted-

Workqueue, we sort the rows of A according to their sizes, and

then apply a workqueue model to compute the product A×B.

In Algorithm Sorted-Workqueue, each work-unit corresponds

to a contiguous set of rows of A such that the sizes of the

rows are in sorted order. This approach also will achieve load

balancing across the devices.

The performance of these algorithms compared to Al-

gorithm HH-CPU is shown in Figure 9. For purposes of

this comparison, for both algorithm Unsorted-Workqueue and

Sorted-Workqueue, we have used empirically obtained best

possible values for the sizes of the work-units on the CPU

and the GPU. We notice that the overall time taken for

Algorithm HH-CPU is 15% smaller on average compared

to either of Algorithm Unsorted-Workqueue and Algorithm

Sorted-Workqueue on scale-free matrices.

With respect to Algorithm Unsorted-Workqueue, the im-

provement can be attributed to the load imbalance that algo-

rithms Unsorted-Workqueue and Sorted-Workqueue induce on

threads within a warp of the GPU. This load imbalance across

threads within a warp of the GPU can result in suboptimal

utilization of the GPU.

With respect to Algorithm Sorted-Workqueue, the improve-

ment can be attributed to the following reasons. Observe that

a thread on the CPU, or a group of threads on the GPU

assigned to a workunit corresponding to a sorted set of rows

of the A matrix has to finish multiplying all the rows of

the B matrix before proceeding to another workunit. Since

the sizes of the rows of the B matrix vary, although in a

sorted manner, it becomes difficult to make effective load

balancing techniques within a workunit. This also means that

the performance of Algorithm Sorted-Workqueue as compared

to that of Algorithm HH-CPU can vary across matrices without

any observable behavior.

This comparison provides evidence for the fact that mere

load balancing across devices may not be sufficient when one

considers heterogeneous systems. The algorithm should also

be architecture-aware so that the “right” work is assigned to

the “right” processor. In our case, the CPU is more appropriate

for multiplying dense matrices where it can use techniques

such as cache-blocking, and the GPU is more appropriate for

multiplying rows with small density where it can make good

use of shared memory.

D. Experiments on Synthetic Datasets

To understand the impact of scalefreeness of matrix on

Algorithm HH-CPU, we conduct experiments on synthetic

matrices where we can control the nature of the matrix. A mea-

sure of scalefreeness of a dataset is its α value that indicates

the exponent in the power law distribution to which the data
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fits to. The smaller the α, the more scalefree the underlying

data is, and as α increases, the degree of scalefreeness of the

dataset decreases. For a given dataset, the value of α can be

found as described in [1].

In this experiment, we use the GT graph generator [3] to

generate graphs whose degree sequence exhibits a scalefree

nature. The degree of scalefreeness can be controlled by

using the parameters of the generator. These graphs are then

interpreted as matrices in a natural way. Now, the row sizes

of the matrix exhibit the same scalefree behavior as the

corresponding graph does.

We consider three different sizes of matrices, 100K, 500K,

and 1M, and α values in the range of [3, 6.5] in steps of 0.5.

Unlike the earlier experiments, we now multiply two different

matrices A and B with the same α value. For each matrix

size and α value, we generate a scalefree matrix that has

the given size and an α that is close to the desired value.

(GT generator in general does not have a way to produce a

distribution with a given α. In turn, one has to specify the

number of nonzeros, equivalently the number of edges in the

graph, that result in a particular α.) For matrices generated in

this manner, we compare the speedup achieved by Algorithm

HH-CPU with respect to the algorithm from [13]. The results

of the experiment are shown in Figure 10.

As can be noticed from Figure 10, as α increases, the

645645



speedup achieved by Algorithm HH-CPU decreases as ex-

pected. For matrices of 100 K rows, the speedup is higher

than the other two matrix sizes considered in the experiment.

This difference is due to several reasons, some of which

are stated below. In Phase IV of Algorithm HH-CPU, the

tuples generated in 〈r, c, val〉 format are converted to the

CSR format. This step involves sorting based on row indices

as explained in Section III-D. We noticed that the matrices

with 500K and 1M rows have consistently more tuples in the

product matrix. This increase in the number of tuples leads to

a bigger portion of time spent in Phase IV that contributes to

the relative drop in the speedup.

VI. CONCLUSIONS

In this paper, we have proposed efficient heterogeneous

algorithms for spmm on a CPU+GPU platform targeting real-

world and scale-free graphs. We showed that our algorithms

in general outperform the corresponding best known imple-

mentations. Our techniques are directed at solving two prob-

lems: mapping the “right” workload to the “right” processor,

and achieving load balancing. Thus, our approach is both

architecture-aware, and workload-aware. In future, we would

like to study analytical techniques to identify the threshold in

Phase I of Algorithm HH-CPU.

It is easy to see that a similar algorithm can be designed

for also csrmm, which multiplies a sparse matrix A with

a dense matrix B. In this case, we imagine that, since B
is dense, the work can be divided as multiplying the high-

density submatrix AH of A with B on the CPU and the low-

density submatrix AL of A with B on the GPU. In essence,

the algorithm would be very similar to the one we used for

spmm. We therefore expect that such an algorithm for csrmm
would be also architecture- and workload-aware.

VII. ACKNOWLEDGMENT

The first author in this work was supported in part by

research grants from the Department of Biotechnology, Gov-

ernment of India project BT/65 PR-14715/PBD/16/903/2010.

REFERENCES

[1] J. Alstott, E. Bullmore, and D. Plenz. Powerlaw: a Python package for
analysis of heavy-tailed distributions. PLoS ONE 9(1): e85777, 2014.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick. The Landscape of Parallel Computing Research: A View
from Berkeley Technical Report No. UCB/EECS-2006-183, UC Berkeley.

[3] D. A. Bader and K. Madduri. GTgrpah: A suite of synthetic graph
generators. Available at https://sdm.lbl.gov/∼kamesh/software/GTgraph/

[4] Banerjee, D. S., Sakurikar, P., and Kothapalli, K. Fast, scalable parallel
comparison sort on hybrid multicore architectures. In Proc. AsHES, 2013.

[5] A. Buluc and J. R. Gilbert. Challenges and advances in parallel sparse
matrix-matrix multiplication. In Proc. ICPP, pp 503–510, 2008.

[6] A. Gharaibeh, B. Costa, E. Santos-Neto, and M. Ripeanu. On Graphs,
GPUs, and Blind Dating: A Workload to Processor Matchmaking Quest.
In in Proc. IEEE IPDPS (2013).

[7] F. Gustavson. Two fast algorithms for sparse matrices: Multiplication and
permuted transposition. ACM T. Math. Soft.,4(3):250-269, 1978.

[8] G.H. Golub, C.F. Van Loan. Matrix Computations. 2nd ed. 1989.
[9] HONG, S., RODIA, N. C., AND OLUKOTUN, K. On Fast Parallel

Detection of Strongly Connected Components (SCC) in Small-World
Graphs. In Proc. of SC’13 (2013).

[10] S. Indarapu, M. Maramreddy, and K. Kothapalli. Architecture- and
Workload-aware algorithms for Spare Matrix- Vector Multiplication, Under
submission, 2014.

[11] Intel Math Kernel Library, https://software.intel.com/en-us/intel-mkl
[12] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,

N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey. Debunking the 100X GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU. In Proc. ISCA, 2010.

[13] K. Matam, S. Indarapu, and K. Kothapalli. Sparse Matrix Matrix
Multiplication on Modern Architectures, in Proc. of HiPC, 2012.

[14] NVIDIA Corporation. CUDA: Compute unified device architecture
programming guide. Technical report, NVIDIA.

[15] NVIDIA cuSPARSE Library, https://developer.nvidia.com/cusparse
[16] S. C. Park, J. P. Draayer, and S.-Q. Zheng. Fast sparse matrix multipli-

cation. Computer Physics Communications, 70:557.568, July 1992.
[17] Siegel, J.; Villa, O.; Krishnamoorthy, S.; Tumeo, A.; Xiaoming Li;

, Efficient sparse matrix-matrix multiplication on heterogeneous high
performance systems, IEEE CLSUTER, pp.1–8, 2010.

[18] Stanford Network Analysis Platform dataset , http://www.cise.ufl.edu/
research/sparse/matrices/SNAP/

[19] Sulatycke, P.D.; Ghose, K.; , Caching-efficient multi-threaded fast mul-
tiplication of sparse matrices, in Proc. of IPDPS, pp.117-123, 1998.

646646


