
Nearly Balanced Work Partitioning for
Heterogeneous Algorithms

Hardhik Mallipeddia,1, Dip Sankar Banerjee b,2

Kiran Raj Ramamoorthya,3, Kannan Srinathana,4 and, Kishore Kothapallia,5

aInternational Institute of Information Technology, Hyderabad

Gachibowli, Hyderabad, India, 500 032.
bIndian Institute of Information Technology, Guwahati

Ambari, Gopinath Bordoloi (G.N.B.) Road, Guwahati, India 781001.
1mallipeddi.hardhik@research.iiit.ac.in, 2dipsankarb@iiitg.ac.in,

3kiran.raj@research.iiit.ac.in, 4srinathan@iiit.ac.in, 5kkishore@iiit.ac.in

Abstract— The architectural trend towards heterogeneity has
pushed heterogeneous computing to the fore of parallel comput-
ing research. Heterogeneous algorithms, often carefully hand-
crafted, have been designed for several important problems from
parallel computing such as sorting, graph algorithms, matrix
computations, and the like. A majority of these algorithms follow
a work partitioning approach where the input is divided into
appropriate sized parts so that individual devices can process
the “right” parts of the input. However, arriving at a good work
partitioning is usually non-trivial and may require extensive em-
pirical search. Such an extensive empirical search can potentially
offset any gains accrued out of heterogeneous algorithms. Other
recently proposed approaches too are in general inadequate.

In this paper, we propose a simple and effective technique for
work partitioning in the context of heterogeneous algorithms.
Our technique is based on sampling and therefore can adapt to
both the algorithm used and the input instance. Our technique
is generic in its applicability as we will demonstrate in this
paper. We validate our technique on three problems: finding
the connected components of a graph (CC), multiplying two
unstructured sparse matrices (spmm), and multiplying two scale-
free sparse matrices. For these problems, we show that using our
method, we can find the required threshold that is under 10%
away from the best possible thresholds.

I. INTRODUCTION

A noticeable architectural trend affecting parallel comput-

ing research currently is the shift towards a heterogeneous

collection of devices involving CPUs and accelerators such as

GPUs and the Intel Xeon-Phi. Hence, the design and develop-

ment of heterogeneous algorithms aimed at such commodity

heterogeneous computing platforms are gaining immense re-

search interest. In recent years, several carefully handcrafted

heterogeneous algorithms on various heterogeneous platforms

are designed for a variety of fundamental and challenging

problems from parallel computing such as sorting [3], sparse

matrix operations [22], [17], dense linear algebra routines [21],

graph algorithms [9], [5], and the like. Despite their success,

a few important questions remain to be answered.

Several of the above algorithms use a work partitioning

based approach where the input is divided into possibly

unequal pieces according to the values (thresholds) of certain

parameters. The individual devices in the computing platform

process appropriate pieces of the input depending on various

factors including architectural and execution characteristics of

the device.

In general, however, it is not clear as to how to arrive at

a good work partitioning. For certain workloads, in particular

regular workloads, it may be possible to arrive at the required

work partitions by using one of the several simple strategies.

For instance, one can think of dividing the work based on

the processing capability of the devices using metrics such

as FLOPS, or can use the average obtained over a set of

benchmark instances to guide the work division process. Such

simple techniques tend to work on regular workloads such as

dense matrix multiplication as our study in Figure 1 shows.

The experiment in Figure 1 runs a heterogeneous algorithm for

dense matrix multiplication based out of the Intel MKL [18]

on a multi-core CPU and the corresponding CUDA library

routine on an NVidia K40c GPU. The matrix multiplication

work is divided across the CPU and the GPU in proportion of

the FLOPS of the CPU and the GPU. Figure 1 shows the best

possible threshold that is to be used obtained via an exhaustive

search and the threshold that is obtained using the relative ratio

of FLOPS. It can be seen that the thereshold obtained via the

ratio of FLOPS is close to the best possible threshold. This

helps us to partition the workload in a balanced manner.

The problem is accentuated when the workload is irregular

in nature, one encounters two difficulties. Firstly, given the

impact of itregularities in the workload, it is difficult to obtain

a good mechanism to partition the work. Secondly, no direct

mechanisms may exist to translate a given partition threshold

to actual partitions of the input that can correspond to the

work partition. In particular, it is often difficult to see which

portion of the input will correspond to a 20% work volume.

Computations on sparse graphs and sparse matrices fall under

this category. These twin challenges make it extremely difficult

to efficiently arrive at exact or near-exact work partitioning for

irregular workloads in a heterogeneous setting.

In such cases, often, one has to resort to an exhaustive

search over the parameter space to arrive at the best possible

work partitioning. Such an exhaustive search has several

disadvantages. Exhaustive search, given the time it takes, is

2017 46th International Conference on Parallel Processing

2332-5690/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPP.2017.14

50

2017 46th International Conference on Parallel Processing

2332-5690/17 $31.00 © 2017 IEEE

DOI 10.1109/ICPP.2017.14

50

 0

 10

 20

 30

 40

 50

m
at

_1
28

m
at

_2
56

m
at

_5
12

m
at

_1
02

4

m
at

_2
04

8

T
hr

es
ho

ld
 (

%
)

Graphs

Exhaustive
NaiveStatic

Fig. 1. This shows the threshold estimated by the sampling method in
comparison to the best possible threshold obtained by an exhaustive search
along with NaiveStatic estimate. We also show the time taken by Algorithm
1 using the threshold estimated by the sampling method in comparison to the
time taken when using the best possible threshold along with the time taken
with NaiveStatic partitioning. Elements of the matrices are chosen uniformly
at random INTEGERS/REALS RANGE. The label “mat n” on the X-axis
indicates multiplication of square matrices each of size n× n.

not an efficient technique and can potentially nullify the gains

obtained by heterogeneous execution. Further, in most cases, a

good work partition can be achieved only by taking into con-

sideration the heterogeneous algorithm used and, importantly,

the input instance. Thus, exhaustive search on one input may

not throw light on a different input.

Other techniques such as recording historical profiles [20],

[10], runtime scheduling approaches [2], static approaches

[12], [19], semi-automatic approaches [16], [30] that require

user-input for work partitioning, mitigate the problems of ex-

haustive search but come with other drawbacks. In particular,

if the computation in question is non-uniform in nature and is

sensitive to the nature of the input, then the above mentioned

techniques fail to work.

The impracticality and inadequacy of the existing ap-

proaches therefore calls for general purpose and fully auto-

matic techniques that can address the issue of work partition-

ing in the context of heterogeneous algorithms. We believe

that deterministic approaches cannot address the problem at

hand. Therefore, one has to look for randomized approaches.

In this paper, we propose a simple randomized technique

that has several advantages such as being adaptable to both the

algorithm and the input instance, fast, and near-accurate. Our

technique is based on the idea that to know the nearly correct

work partition, we can sample the input and work with the

sampled input to identify a good work partition on the sample

input. Given this knowledge on the sampled input, we can

then extrapolate the knowledge gained on the sampled input

to achieve a (nearly) good work partitioning for the original

input. Our technique is particularly useful when the work

partitioning is input dependent. The fundamental motivation

behind using this approach is that the generated samples have

the properties of the input imbibed in them. This leads to a

much smaller working set and considerable reduction in the

work complexities. Further, our technique has a low overhead

and hence can largely retain the benefits of heterogeneous

algorithms.

Our main technical contributions can be summarized as

follows. We introduce a framework (See Section II) for

Workload Threshold Time Overhead

Difference (%) Difference (%) %

CC 7.5% 4% 9%

spmm 10.6 % 19.1 % 13%

Scale-free 5.25 % 6.01 % 1%

spmm

TABLE I

TABLE SUMMARIZING THE RESULTS OF APPLYING THE SAMPLING

TECHNIQUE TO THREE DIFFERENT WORKLOADS.

obtaining nearly balanced work partitioning in the context

of heterogeneous algorithms. We then apply our technique

to problems such as graph connected components (CC) and

multiplying sparse matrices (spmm). The results of these case

studies (See Sections III–V) are summarized in Table I.

In Table I, the column ”Threshold Difference” indicates

the percentage difference in the estimation achieved by the

sampling approach compared to the best possible estimate. The

column ”Time Difference” shows the percentage difference in

the time taken by the respective algorithm using the threshold

estimated by the sampling approach in comparison to the time

taken using the best possible estimate. The column ”Overhead”

indicates the percentage of overall time spent in the arriving

at the estimation using the sampling method. The results from

Table I indicate that our method spends less than 9% of the

time in obtaining an estimate that is on average within 8% of

the best possible estimate and sacrifices on average under 9%

of the best possible runtime.

A. Related Work

We organize the related work into three sections that cover

work related to work partitioning, CC, and spmm.

1) Work Partitioning: Work partitioning in the context of

heterogeneous algorithms is a topic of immense research

interest for its potential benefits. Static work partitioning using

machine learning techniques were studied by Grewe et al. [12].

Their work does not introduce any input dependent features

and the work partitioning is largely left to the runtime system

that relies on static code features such as the number of integer

and floating point operations, branches, and the like. The

work of Grewe et al. [12] is extended by Kofler et al. [19]

by incorporating a few dynamic code features. Both of the

solutions work at the compiler level whereas our approach is

compiler agnostic and therefore can be easily adapted to all

heterogeneous platforms.

Predicting the behaviour of a workload and partitioning

it accordingly is studied by Shen et al. [25]. Their study is

however not input dependent and relies only on the general

workload characteristic. Obtaining such a characteristic may

not be straight-forward. Luk et al. [20] present an approach

where the first run of a program is treated as a training run
that is used to determine the task mapping for later runs. In

contrast to our work, their model is not input dependent and

hence can suffer on cases where the actual input plays a crucial

role in the process. The work of Luk et al. builds upon the

5151

work of Gregg et al. [10] that considers historical runtime data

to arrive at work partitioning.

In a more recent work, Boyer et al. [6] use the current

execution profile of a program to perform load balancing on

the remaining part of the input. This method can however

introduce communication overhead. Further, their method as-

sumes that each “chunk” of the work requires (near) equal

processing time. This uniformity assumption can be done

away with in our approach as sampling can preserve the

non-uniformity at least on expectation. Our method does not

require any runtime communication.

Semi-automatic work partitioning where user inputs on the

relative performance characteristics of the devices are used

to arrive at the partitioning is proposed by Hou et al. [16].

On the other hand, our approach does not require any user

inputs and is fully automatic. Work partitioning for power

efficiency by using various system power usage parameters is

proposed in [30]. Their approach requires one to use execution

time characteristics on a given device for a given problem.

Obtaining such metrics is not easy, and hence limits the

applicability of works based on them.

A work partitioning framework using shared work queues

in the context of heterogeneous systems is presented by

Augonnet et al. [2]. Our approach differs from this approach as

we do not need any runtime data sharing that may be difficult

in an heterogeneous execution environment. Moreover, the

work volume may not be directly related to the contents of

the work queue and hence using work queues may not solve

the problem of work partitioning effectively.

2) CC: Algorithms in the PRAM model for finding the

connected components of a graph have been given by given

by Hirschberg et al. [14], and by Shiloach and Vishkin

[26]. The algorithm by Shiloach and Vishkin [26] is more

suited for sparse graphs and has been the choice algorithm

for most parallel implementations on multi-processor systems

[11], GPUs [27], and heterogeneous systems [5], [4].

3) spmm: The multiplication of two matrices, dense and

sparse alike, is an important primitive with applications to

many areas of computing. The spmm workload is one of the

important computations in parallel computing and is featured

in the Berkeley dwarfs [1]. A considerable work is therefore

targeted at improving the performance of spmm on modern

parallel architectures including multi-core CPUs via the Intel

MKL library [18], GPUs, and heterogeneous platforms.

Focusing on sparse matrices, one of the first notable works is

that of Gustavson [13] that presents a Row-Row fashion spmm
algorithm. Buluc et al. [7] conducted a detailed study of spmm
on distributed memory systems. Sulatycke et al. [29] present

cache optimized algorithms on sequential machines for sparse

matrix multiplication. They explore Row-Row and Column-

Row formulations of matrix multiplications. More recently,

in [22], heterogeneous algorithms for spmm are designed on

CPU+GPU systems.

II. SAMPLING BASED WORK PARTITIONING

In this section, we describe our approach for work partition-

ing in the context of heterogeneous algorithms. For simplicity

sISampleINPUT
I

ExtrapolateT Ts

Uniform
Importance}

Identify

{
Gradient
Granular} Best−Fit

Learning
Mining{ }{

Fig. 2. An illustration of our sampling method. Each step has a choice of
techniques some of which are listed in the bottom half of the figure. The
techniques that we use in this paper are shown in bold-face font.

of the exposition, we consider a simple heterogeneous system

with one CPU attached to one GPU. However, our technique

can be extended easily to other heterogeneous computing

platforms.

Let I be an input instance for a heterogeneous algorithm A
for a problem P . We consider the situation that A partitions

the input I based on some parameter (threshold) into two

pieces I1, I2 so that each piece of the input is processed on a

separate device in the computing platform. Our approach has

the following steps.

1) Sample: Create an input Is of size smaller than I using

randomization and sampling.

2) Identify: On the input Is, apply algorithm A and

identify the right value(s) of the threshold(s) for input

Is.

3) Extrapolate: Extrapolate the value(s) of threshold(s) on

Is to those for I .

Figure 2 illustrates the above steps. As shown in Figure

2, there are multiple ways to accomplish each step. The

choices we use in this paper are shown in bold-face font.

The exact nature of sampling may also impact answers to the

above questions. In this work, we limit ourselves to uniform

sampling. We leave the scope for other sampling methods, e.g.,

importance sampling [23], that have found favor in randomized

sampling for future work.

Further, the extrapolation required in Step 3 may depend on

the nature of the heterogeneous algorithm and the nature of

the computation. We observe that in some cases Step 3 may

require one to deploy tools from other domains such as data

mining or learning theory. In particular, the larger question

in Step 3 is to “find” the relation between work partitioning

that can be achieved on the sampled input Is to that of the

original input I . This relation may be studied offline on a

sample dataset and the knowledge of the relation can then be

used for “any” input instance.

Some of the benefits of our approach are as follows. Firstly,

Steps 1 and 3 of our approach, i.e., Sample and Extrapolate,

can be seen to be input dependent, and Step 2 can be seen to

be algorithm dependent. Therefore, our method caters to both
the algorithm and the input instance. Secondly, as we use ran-

domization and sampling, our method can work well for non-

uniform and irregular workloads also. In a way, randomization

and sampling help us obtain a faithful miniaturization Is (of

I) that can provide insurance against some parts of the input

biasing a deterministic work partitioning methodology in use.

5252

Finally, since the size of the sampled input is expected to be

small, our method allows us the freedom to conduct multiple

runs of the algorithm on the sampled input to understand the

behavior of the original input.
Thus, for our technique to work, one has to devise mecha-

nisms for sampling, identifying the work partitioning for the

sampled input, and extrapolating the knowledge to the original

input. In particular, some questions that need to be addressed

in the context of our technique are the following.

• What should be the size of Is and how to sample I to Is
so that the characteristics of I are preserved in Is?

• What is the time taken in identifying the value(s) of the

threshold(s) on Is?

• How to extrapolate the value(s) of the threshold(s) on Is
to that of I?

Some of these questions can naturally lead to trade-offs.

For instance, it is intuitive to expect that the larger the size

of Is, the more accurate the extrapolation in Step 3 can be

performed. However, working with a larger Is may increase

the time spent in Step 2. In a similar fashion, a small Is offers

scope for a very small time spent in Step 2, but the accuracy of

the estimation may suffer. Since the size of the sample may

also depend on the problem, we conduct this study in later

sections. In our case studies, we apply the framework and also

study the above questions in detail. Our case studies concern

irregular workloads such as finding the connected components

of a graph and spmm. We also show subsequently (cf. Figure

7) that randomness is an essential ingredient in our proposed

technique.
Our technique can be extended to other heterogeneous

platforms naturally. In a way, the values of the threshold(s)

now can be treated as a vector, unlike a scalar in the simple

CPU+GPU case. We do not need any additional assumptions

such as the availability of advanced profiling, compilation, or

run-time systems.

III. CASE STUDY I – GRAPH CONNECTED COMPONENTS

Finding the connected components of a given graph is

an important computation with applications to several other

graph algorithms. In this work, we use an algorithm similar

to the algorithm of Banerjee et al. [5] to study our sampling

technique from Section II.
The algorithm starts off by dividing the input graph G =

(V,E) into two graphs GGPU and GCPU that are processed

on the GPU and the CPU respectively. An implementation of

the Shiloach and Vishkin algorithm [26] and the sequential

depth-first search algorithm [8] are used on the GPU and the

CPU respectively. Edges of G such that one end point is in

GGPU and another in GCPU are called as cross edges. Once

the connected components of GGPU and GCPU are identified,

the algorithm processes the cross edges so that the connected

components of GGPU and GCPU can potentially be merged.
We refer the reader to Algorithm 1 for an algorithmic

description. In Algorithm 1, the labels CPU :: and GPU ::
refer to the computations done in an overlapped manner on

the CPU and the GPU respectively.
As can be observed, the algorithm uses work partitioning

in Phase I (See Algorithm 1, Line 1–6) where the parameter t

Algorithm 1 Connected Components(G)

Input: A graph G = (V,E) with V = {v1, v2, · · · , vn}
Output: The number of components

{/* PHASE I: Partition */}
1: Find a threshold t between 0 to 100 using sampling.

2: ncpu := n×t
100 , ngpu = n− ncpu

3: Partition G into two subgraphs GGPU and GCPU with

V (GCPU) = {v1, v2, · · · , vncpu
} and

V (GGPU) = V \ V (GCPU);
4: Set E(GCPU) = E(G) ∩ (V (GCPU)× V (GCPU)).
5: Set E(GGPU) = E(G) ∩ (V (GGPU)× V (GGPU)).
6: Divide GCPU into equal parts GCPU1, GCPU2, ...GCPUc

when using c threads on the CPU.

{/* PHASE II: Heterogeneous Computation */}
7: GPU :: Find the connected components of GGPU

8: CPU :: Find the connected components of GCPU in

parallel

9: GPU :: Merge the components found on the CPU and the

GPU using cross edges

dictates the graphs GGPU and GCPU. However, it is not clear

as to what is a good value for t. In fact, the CC workload

is such that beyond exhaustive experimentation, there is no

reported way to find the best value of t. In particular, even if

we know the time taken for finding the connected components

of a given graph instance on the CPU and the GPU exclusively,

it is not clear as to the value of t since the correlation between

the runtime and the work volume is not directly established.

Using our sampling based framework from Section II, we will

find a good value for t with a small overhead as follows.

A. Sampling Framework

1) Sample: We choose a set S of
√
n vertices of G

uniformly at random. We then set G′ as the graph induced

by S in G, i.e., G′ = G[S].
2) Identify: We run the above heterogeneous algorithm,

Algorithm 1 with various values of the threshold on the graph

G′. To minimize the number of runs, we use a coarse-grained

estimation followed by a fine-grained process. To this end, we

run with values of t′ that differ by 8, and once the best value

of t′ is identified, we then run on values of t′ that differ by 1.

3) Extrapolate: In this case, if G′ preserves the properties

of G, then we expect that t should be identical to t′. Indeed that

is what we observe in our experimentation also and hence use

the value of t′ to partition the graph G as GGPU and GCPU.

B. Results

In this section, we study the results of our sampling based

approach. We use graphs listed in Table II for our experiments.

These datasets are drawn from standard datasets from the

University of Florida collection [28].

1) Experimental Platform: Our heterogeneous computing

platform consists of an Nvidia K40c GPU attached to an

Intel(R) Xeon E5-2650 CPU via the PCI Express link. The

CPU has 128 GB RAM and is a dual processor with each

5353

 0

 50

 100

 150

 200

 250

ca
nt

co
ns

ph
co

p2
0k

_A
de

la
un

ay
_n

22
pd

b1
H

Y
S

pw
tk

qc
d5

_4
rm

a1
0

sh
ip

se
c1

w
eb

-B
er

kS
ta

n
w

eb
ba

se
-1

M
as

ia
_o

sm
ge

rm
an

y_
os

m
ita

ly
_o

sm
nt

he
rla

nd
s_

os
m

A
ve

ra
ge

 0

 2

 4

 6

 8

 10

 12

 14

7.5%

T
hr

es
ho

ld
 (

%
)

D
iff

er
en

ce
 (

%
)

Graph

Exhaustive
Estimated

NaiveAverage
NaiveStatic

Difference (%)

(a) Threshold

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

ca
nt

co
ns

ph
co

p2
0k

_A
de

la
un

ay
_n

22
pd

b1
H

Y
S

pw
tk

qc
d5

_4
rm

a1
0

sh
ip

se
c1

w
eb

-B
er

kS
ta

n
w

eb
ba

se
-1

M
as

ia
_o

sm
ge

rm
an

y_
os

m
ita

ly
_o

sm
ne

th
er

la
nd

s_
os

m
A

ve
ra

ge

 0

 2

 4

 6

 8

 10

R
un

tim
e

(m
s)

D
iff

er
en

ce
 (

%
)

Graph

Exhaustive
Estimated

NaiveAverage
NaiveStatic

Difference (%)

(b) Runtime

Fig. 3. Figure (a) shows the threshold estimated by the sampling method in comparison to the best possible threshold obtained by an exhaustive search. In
Figure (b), we show the time taken by Algorithm 1 using the threshold estimated by the sampling method in comparison to the time taken when using the
best possible threshold. In the latter, the time taken for the exhaustive search is not included.

Graph/Matrix n m or, NNZ

cant 62,451 4,007,383

consph 83,334 6,010,480

cop20k A 121,192 2,624,331

delaunay n22 4,194,304 25,165,738

pdb1HYS 36,417 4,344,765

pwtk 217,918 11,634,424

qcd5 4 49,152 1,916,928

rma10 46,835 2,374,001

shipsec1 140,874 7,813,404

Web Graphs
web-BerkStan 685,230 7,600,595

webbase-1M 1,000,005 3,105,536

Road Networks
asia osm 11,950,757 25,423,206

germany osm 11,548,845 24,738,362

italy osm 6,686,493 14,027,956

netherlands osm 2,216,688 4,882,476

TABLE II

LIST OF GRAPHS USED IN OUR EXPERIMENTS. IN THE TABLE, n REFERS

TO THE NUMBER OF NODES AND m REFERS TO THE NUMBER OF EDGES IN

THE GRAPH. WHEN VIEWED AS A MATRIX, n REFERS TO THE NUMBER OF

ROWS, AND NNZ REFERS TO THE NUMBER OF NON-ZEROS IN THE

MATRIX.

processor having 10 cores operating at 2.34 GHz. Using SMT,

the CPU can run 40 threads simultaneously. The Tesla K40c

GPU is a current generation Kepler micro-architecture from

NVidia that has 15 streaming multi-processors (SMX) with

each having 192 cores for a total of 2880 compute cores.

Each compute core is clocked at 745 MHz. Each SMX has

a hardware scheduler which schedules 32 threads at a time.

This group is called a warp and a half-warp is a group of 16

threads that execute in a SIMD fashion. Each of the cores of

the GPU has a fully cached memory access via a L2 cache

of size 1.5 MB. To program the GPU we use the CUDA API

Version 6.5.

2) Results: We study three aspects of our approach. One

is the closeness of the estimated threshold to that of the best

possible threshold obtained via an exhaustive search. Secondly,

we study the time overhead of our approach. Finally, we study

the trade-off between the sample size and the accuracy of the

approach.

In Figure 3(a), we show the threshold identified by our

method and the best possible threshold obtained by exhaustive

search. The label “Exhaustive” (“Estimated”) in Figure 3(a)

refers to the threshold obtained via an exhaustive search

(resp. the sampling method). The secondary Y-axis in Figure

3(a) shows the absolute difference between the estimated and

the one obtained by exhaustive search as a percentage. As

can be noted, the above difference is 7.5% on average. We

additionally compare our estimated results with two naive

partitioning mechanisms which provides shows the usefulness

of our mechanism. Towards this we compare our results

against two naive partitioning mechanisms that are labled in

Figure 3(a) and Figure 3(b) as ”NaiveStatic” and ”NaiveAver-

age”. NaiveStatic refers to the partitioning of the input graph

between the CPU and the GPU based on the FLOPS ratio.

Clearly, the GPU having a higher FLOPS rating gets the

bigger of the two partitions which is 88% on average. The

second ”NaiveAverage” partitioning is done based on prior

experimentations. Through several rounds of prior exhaustive

runs we arrive at an ideal partitioning threshold. The thresholds

arrived at for all the datasets under consideration are then

averaged and treated as the threshold percentage for all of

the input graphs. For the graphs that we have considered, this

averaged value of threshold comes to 90%.

We anticipate that the time taken by our algorithm using

the estimated threshold t′, would be close to the time taken

by our algorithm using the best possible threshold obtained

via exhaustive search.

In Figure 3(b) we compare the time taken by Algorithm 1

when using our approach with respect to the time taken by the

algorithm when using the threshold, labeled as “Exhaustive”

in Figure 3(b). The label “Estimated” refers to the time taken

by Algorithm 1 when using the threshold t′ estimated by

5454

 0

 1

 2

 3

 4

 5

 6

sq
rt

(n
)/

4

sq
rt

(n
)/

2

sq
rt

(n
)

2s
qr

t(
n)

4s
qr

t(
n)

C
C

 T
im

e

Sample Size

delaunay_n22--Total
WebBase--Total

Fig. 4. Figure shows the trade-off between the size of the sample graph
and the overall time taken and the time taken in estimating the threshold by
Algorithm 1.

the sampling approach. The label ”Naive” represents the time

taken by the naive homogeneous solutions where there is no

partitioning involved and algorithm is run on the GPU only.

Note that the primary Y-axis in Figure 3(b) is on a log-scale.

The secondary Y-axis of Figure 3(b) shows the percentage

increase in the runtime of Phase II of Algorithm 1 when using

the threshold t′ to the time taken when using the best possible

threshold.

As can be seen, using our technique incurs a slowdown

of no more than 4% on average. The time taken to estimate

the threshold is around 9% of the overall time on average.

This indicates that the threshold we estimate can result in

a near balanced work partition. Our result should also be

seen in light of the fact that it is not practical to obtain the

best possible threshold whereas the sampling based approach

offers a practical solution. Further, our method performs much

better on large graphs as compared to small graphs indicating

that minor deviations from the best possible threshold can be

tolerated as the size of the graph increases.

Sensitivity: We proceed to study the sensitivity of our

results as we vary the sample size. To this end, we vary the size

of the sampled graph between
√
n/4 to 4

√
n and note the total

time taken (Phase I + Phase II of Algorithm 1). The results

of this study for two graphs is shown in Figure 4. As can be

seen, for both these graphs, the total time has a (near) concave

behavior. This is intuitive as a larger sample can provide for

better work partitioning at the expense of taking more time to

perform the estimation. At the sample size of
√
n, the total

time is minimum, so our choice of
√
n as the sample size is

justified.

IV. SPARSE MATRIX MULTIPLICATION ON

HETEROGENEOUS SYSTEMS

On a heterogeneous CPU+GPU platform, the current best

performing algorithm is to use the row-row based matrix

multiplication method on both the CPU and the GPU as shown

in [22]. The rows of matrix A, in the computation of A×B,

are partitioned across the CPU and the GPU such that the

computation for an optimal r% of the overall workload is

done on the CPU and the rest is done is on the GPU. This

parameter r will be referred to as the split percentage in the

rest of this section.

The algorithm from [22] is summarized as Algorithm 2

below. For spmm, it is actually possible to estimate the work

volume as follows. Consider the matrix product A × B and

obtain the vector VB with VB [i] set to the number of nonzeros

in the ith row of B. When B is of size n × p, VB has size

n × 1. The product A × VB will be a vector LAB such that

LAB [i] equals the work volume of the ith row of A in the

product A×B. We make use of this observation in Algorithm

2.

As can be observed, Algorithm 2 uses a work partitioning

approach. Given a work partition percentage r, the algorithm

computes LAB and divides the matrix A horizontally into two

matrices A1, A2 such that A1 × B has an r% of the work

volume of A×B and A2×B has the (100−r)% of the work

volume of A×B.

Algorithm 2 SPMM(A)

Input: A matrix A with n rows and m columns, a matrix B
with m rows and k columns, split percentage r

Output: Resultant Matrix C with n rows and k columns, C =
A×B
{Phase I: Partitioning }

1: Compute the load vector for LAB , L = |‖LAB |‖1 on the

GPU.

2: Calculate the load on CPU and GPU as LCPU = (r ×
L/100 and LGPU = L− LCPU on the GPU.

3: Find out the split row index i where VL[i] is closest LCPU

on the GPU.

4: Split the matrix A such that A1 = A[0 · · · i] and A2 =
A[i+ 1 · · ·n]
{Phase II: Heterogeneous Computation}

5: Compute A1 ×B using [22, Algorithm 1] on the CPU.

6: Compute A2 ×B [22, Algorithm 1] on the GPU.

7: Transfer results of GPU to CPU and add that to CPU ’s

results.

The split percentage r in Algorithm 2 is hard to find

analytically. Given the architectural peculiarities in a hetero-

geneous setting, there is often very little relation between the

system metrics posted by the manufacturer and the throughput

achieved (or time spent) on a given instance of sparse matrix

multiplication. Some of the reasons for this difficulty stem

from the fact that the computation is quite irregular in nature

more so for sparse matrices that exhibit an unstructured nature

of sparsity. In fact, small changes to the optimal work split

percentage can result in significant changes to the overall time

taken to complete the computation. In the following, we show

that sampling can be used to however arrive at a near balanced

partitioning of the computation across the CPU and the GPU.

A. Sampling Method

We use the following sampling method for identifying the

split percentage in the spmm computation on a CPU+GPU

heterogeneous platform.

5555

a) Sample: We choose a submatrix A′ of size n/k×n/k
from matrix A uniformly at random. This ensures that the

number of nonzeros in the matrix A′, denoted NNZ ′, is also

scaled appropriately as NNZ ′
i = NNZi/K where NNZ ′

i

denotes the number of non-zeroes in the ith row of A′ and

NNZi is the number of non-zeroes in the ith row of A, and K
is a constant. We use 4 as the value of K in our experiments.

This helps us to preserve the sparsity structure of A in the

sampled matrix A′.
b) Identify: We run the heterogeneous algorithm, Al-

gorithm 2, with various values of split percentage r′ on A′

and obtain an optimal split percentage for A′. To minimize

the number of runs, we use a coarse estimation followed

by a fine-grained process. The coarse estimation is done by

multiplying the sample matrices A′ and B′ on CPU and

GPU independently in parallel and stop when either of them

finishes. At this step, by observing the amount of work

processed, we can roughly estimate the split percentage for

A′ × B′. This is followed by a finer search to narrow down

on the exact work partition percentage for A′×B′. (Note that

this method cannot be used on the computation A×B due to

its large time requirement).

c) Extrapolate: In this case, if A′ preserves the sparsity

structure of A, then we expect that r should be identical to

r′. Indeed that is what we observe in our experimentation also

and hence use the value of r′ as the split percentage to divide

the work between the CPU and the GPU in the computation

of A×B.

B. Experimental Results

In this section, we study the results of our sampling based

approach for spmm. For experimentation we use the same plat-

form mentioned in Section III-B.1. We use the matrices listed

in Table II for our experiments. We multiply the matrix A by

itself for reasons of compatibility of matrix multiplication.

1) Results: We study three aspects of our approach as

described in Section III-B.2. In Figure 5(a), we show the

split percentage identified by our method rest and the best

possible threshold rbest obtained by an exhaustive search. The

label “Exhaustive” (“Estimated”) in Figure 5(a) refers to the

split obtained via an exhaustive search (resp. the sampling

method). The secondary Y-axis in Figure 5(a) shows the

absolute difference between the estimated and the one obtained

by exhaustive search as a percentage. As can be noted, the

above difference is 10.6% on average. As already explained

in the discussion of the previous results on graph connected

components, in this case too we consider two naive partioning

mechainsims namely ”NaiveStatic” and ”NaiveAverage”. The

former being the statically determined threshold based on

FLOPS ration while the later is the average of exhaustive

thresholds arrived at through multiple prior runs over all the

datasets under consideration.

We anticipate that the time taken by our algorithm using

the estimated split percentage, r′, would also be close to

the time taken by our algorithm using the best possible

threshold obtained via an exhaustive search. In Figure 5(b)

we compare the time taken by Algorithm 2 when using our

approach with respect to the time taken by the algorithm when

using the optimal split ratio r, labeled as “Exhaustive”. The

label “Estimated” (”Exhaustive”) refers to the time taken by

Algorithm 2 when using the split ratio r′, (resp. the best

possible split percentage). The primary Y-Axis shows the time

taken for the computation in milliseconds. The secondary

Y-axis of Figure 5(b) shows the percentage increase in the

runtime of Algorithm 2 when using the split percentage r′ to

the time taken when using the best possible split percentage.

As can be seen, using our technique with a sample matrix

of size N/4×N/4 incurs a slowdown of no more than 19% on

average. The time taken to estimate the threshold (overhead)

is 13% of the overall time on average. This indicates that

the threshold we estimate can result in a near balanced work

partition. In fact, our approach suffers more on web and road

networks compared to the other matrices. This behavior can

be explained likely by the artefact effects of sampling on

web and road networks. Our result should also be seen in

light of the fact that it is not practical to obtain the best

possible threshold whereas the sampling based approach offers

a practical solution.

Sensitivity: We proceed to study the sensitivity of our

results as we vary the sample size. To this end, we vary the size

of the sampled graph between n/10×n/10 and 4n/10×4n/10
and note the total time taken (Phase I + Phase II of Algorithm

2). The results of this study for two graphs is shown in Figure

6. As can be seen, for both these matrices, the time taken using

the sampling based approach has a near concave behavior.

This is intuitive as using a larger sample size can increase the

time taken to perform the estimation whereas a smaller sample

size can lead to inaccuracies in estimating the right threshold.

At the sample size of nearly N/4, we observe that we can

estimate the split percentage within a reasonable overhead. So

our choice of N/4 as the sample size is justified.

Role of Randomness: We finally note that randomization

in Step 1 of the sampling based technique is essential to its

success. To this end, we choose the sample matrix A′ as a

predetermined n/4 × n/4 submatrix of the input matrix A.

We perform the next two steps of our techniqe on the matrix

A′. We also repeat these steps on four different predetermined

submatrices of A. The results of this experiment are shown in

Figure 7 for two matrices cant and cop 20k. As can be seen

from Figure 7, predetermined samples tend to be inaccurate

in estimating work partition threshold.

V. CASE STUDY 3 – spmm ON SCALE-FREE SPARSE

MATRICES

In the context of sparse matrices, it can be observed that

several sparse matrices arising in practical scenarios exhibit

a scale-free nature. A matrix exhibiting a scale-free nature

has several rows with very few nonzero elements and very

few rows with a large number of nonzero elements. In other

words, the row densities follow a power-law distribution.

Such a concentration of the nonzeros in a small fraction of

the rows can have significant implications for algorithm design

and implementation as shown in [24]. The algorithm from

[24] is shown below as Algorithm 3. The algorithm can be

5656

 0

 20

 40

 60

 80

 100

 120

 140

ca
nt

co
ns

ph
co

p2
0k

_A
de

la
un

ay
_n

22
pd

b1
H

Y
S

pw
tk

qc
d5

_4
rm

a1
0

sh
ip

se
c1

w
eb

-B
er

kS
ta

n
w

eb
ba

se
-1

M
as

ia
_o

sm
ge

rm
an

y_
os

m
ita

ly
_o

sm
ne

th
er

la
nd

s_
os

m
A

ve
ra

ge

 0

 10

 20

 30

 40

 50

 60

 70

10.66%

S
pl

it
%

D
iff

er
en

ce

Exhaustive
Estimated

NaiveAverage
NaiveStatic
Difference

(a) Split Percentage

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

ca
nt

co
ns

ph
co

p2
0k

_A
de

la
un

ay
_n

22
pd

b1
H

Y
S

pw
tk

qc
d5

_4
rm

a1
0

sh
ip

se
c1

w
eb

-B
er

kS
ta

n
w

eb
ba

se
-1

M
as

ia
_o

sm
ge

rm
an

y_
os

m
ita

ly
_o

sm
ne

th
er

la
nd

s_
os

m
A

ve
ra

ge

 0

 20

 40

 60

 80

 100

19.1%

T
im

e(
m

s)

D
iff

er
en

ce
 %

Exhaustive
Estimated

NaiveAverage
NaiveStatic
Difference

(b) Runtime

Fig. 5. Figure (a) shows the split percentage estimated by the sampling method in comparison to the best possible threshold obtained by an exhaustive
search. In Figure (b), we show the time taken by Algorithm 2 using the threshold estimated by the sampling method in comparison to the time taken when
using the best possible threshold. In the latter, the time taken for the exhaustive search is not included.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

N
/1

0

1.
5N

/1
0

2N
/1

0

2.
5N

/1
0

3N
/1

0

3.
5N

/1
0

4N
/1

0

sp
m

m
 T

im
e(

m
s)

asia_osm--Total
pwtk--Total

Fig. 6. Figure shows the trade-off between the size of the sample matrix
and the overall time and the time spent in estimating the split percentage by
Algorithm 2.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Top
-L

ef
t

Top
-R

igh
t

Bot
to

m
-L

ef
t

Bot
to

m
-R

igh
t

R
un

tim
e

(m
s)

Quadrant Selected as Sample

Quadrant Runtime for cant
Quadrant Runtime for cop20k_A

Exhaustive Runtime for cant
Exhaustive Runtime for cop20k_A

Fig. 7. Figure showing the importance of randomization in our technique.

summarized as follows. We show that having such knowledge

about the nature of sparsity can also help in efficient sampling.

In particular, the size of the sample required in this case will be

smaller than the case of the earlier section. This results in a less

overhead in the sampling and estimation phase. This section

also shows that the sampling technique can be used when the

work partitions are based on indirect parameters rather than

the work volume directly.

Given two scale-free matrices A and B, we wish to compute

their product C = A×B. (Throughout, we assume that A and

B are compatible for multiplication). Algorithm HH-CPU [24]

has four phases as shown in Algorithm 3. In the first phase,

the algorithm uses a threshold t to prepare matrices AH , AL

and BH , BL that contain the high dense and low dense rows

of A and B respectively. A row of a matrix is said to be a

high (resp. low) dense row if the row has more (less) than t
non-zeros. In Phase II, the algorithm computes the product of

AH with BH on the CPU and the product of AL with BL on

the GPU. In Phase III, the products AH with BL and that of

AL with BH are computed on both the CPU and the GPU.

The results of the computations done in Phases II and III are

combined in Phase IV.

As can be observed, Algorithm 3 requires a threshold t
such that in Phase II, rows with more than t nonzeros are

processed on the CPU, while rows with less than t nonzeros

are processed on the GPU. We apply our sampling technique

from Section II to obtain the value of the threshold t.

Algorithm 3 Algorithm HH-CPU

1: /* Phase I */ Identify thresholds tA, tB and the matrices

AH , AL, BH , and BL.

2: /* Phase II */ Compute AH ×BH on the CPU, and

AL ×BL on the GPU using [22, Algorithm 1]

3: /* Phase III */ Compute AH ×BL and AL×BH on the

CPU and the GPU.

4: /* Phase IV */ Combine the results of Phases II and III

using both the CPU and the GPU

5757

A. Sampling Framework

We apply the sampling technique to obtain a good estimate

for the threshold t as follows. For uniformity in scalability we

consider the same matrix for both A and B. So in effect, B

and A are the same matrices.

1) Sample: We first create a submatrix A′ of A with
√
n

rows. The elements of this submatrix are chosen such that A′

has a sparsity pattern that is similar to that of the sparsity

pattern of A on expectation. This is achieved by sampling
√
n

rows of A uniformly at random to be included in A′. In each

such row, we sample elements from the corresponding row of

A and ensure that the column indices are transformed so that

the column indices are within 1 to
√
n.

2) Identify: In the second step, we use a gradient descent

based approach to find the best threshold that works for A′,
say t′. This requires us to run our algorithm on A′ multiple

times with various thresholds. However, since the size of A′

is smaller than that of A, the time incurred in these additional

runs is often a small fraction of the time taken on A.

3) Extrapolate: Finally, we extrapolate t′ obtained for A′

to get a good threshold tA for A. For this, we note that

the relation between ts and tA can depend on the nature of

computation and the nature of the algorithm that is being used.

For the case of spmm, we use an off-line best-fit strategy that

finds the most plausible relation between ts and tA. We find

that tA = ts × ts and therefore use tA as the threshold in

Algorithm 3.

B. Experimental Results

In this section, we study the results of our sampling based

approach for spmmon scale-free matrices. We use the scale-

free matrices (Matrices in rows till 1 through 11 excluding 4

and 7), listed in Table II for our experiments. The matrices

excluded are not scale-free in nature and hence Algorithm

HH-CPU is not suitable as discussed in [24]. For reasons

of compatibility, we multiply each matrix in Table II with

itself. (In other words, we compute A×A). The experimental

platform we use is as described in Section III-B.1.

We start by analyzing the sampling based approach and

its ability to identify the right value of the threshold t in

Phase I of Algorithm 3. In Figure 8[a], we plot the threshold

obtained by the sampling method, labeled as “Estimated”,

and the best possible threshold, labeled as “Exhaustive”. The

secondary Y-axis shows the absolute difference between these

two as a percentage. It can be observed that indeed the average

difference is around 5.25%. The labels ”NaiveStatic” and

”NaiveAverage” denotes the naive partitioning values arrived

using techniques already discussed in the previous workloads.

In Figure 8(b) we compare the time taken by Algorithm HH-

CPU using the estimated threshold, tA, to that of the time taken

by the algorithm when using a best possible threshold obtained

via an exhaustive search. As earlier, the label “Exhaustive”

refers to the runtime of Algorithm HH-CPU using the thresh-

old identified via an exhaustive search. The secondary Y-axis

in Figure 8(b) shows the percentage difference between the

runtime of Algorithm HH-CPU when using the thresholds tA
and the one obtained by an exhaustive search. As can be seen,

the time taken when using the threshold tA is only 6% away

from the time taken using the best possible threshold. The

better performance compared to spmm from Section IV is

due to the fact that the size of the sample is much smaller

now thereby reducing the time spent in Phase I of Algorithm

3. The sampling based approach therefore offers a practical

way to find the near best threshold whereas the best possible

threshold obtained by an exhaustive search is not a practical

alternative.

Sensitivity: To understand the trade-off between the sam-

ple size required and the accuracy of estimating the threshold,

we conduct the following experiment. We vary the number of

rows in the sampled matrix A′ as
√
n/4,

√
n/2,

√
n, 2 · √n,

and 4 · √n. We then record the time taken by Algorithm 3

when using the threshold obtained from Phase I. Intuitively,

the accuracy of estimating the threshold improves significantly

as we increase the size of A′. However, the time taken to

estimate the threshold also increases as the time taken in each

run of Algorithm HH-CPU on input A′ increases with the size

of A′.
The results of this study on two matrices is shown in Figure

9. In Figure 9, the Y-axis shows the total time taken by

Algorithm HH-CPU over varying sample size. We observe that

the overall time has a minimum when the size of the sampled

matrix is
√
n×√n.

VI. CONCLUDING REMARKS

In this paper, we have proposed sampling as an effective

and practical method to help in work partition in the context

of heterogeneous algorithms. We have applied the technique

to three important problems and studied the advantages of the

approach. It is interesting to adapt and apply our techniques

to other emerging heterogeneous computational platforms and

also to other problems that require work partitioning.

REFERENCES

[1] K. Asanovic et al. A View of the Parallel Computing Landscape Comm.
ACM, 2009 V. 52, pp. 56–67.

[2] C. Augonnet, S. Thibault, N. Raymond, P. Wacrenier. StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures.
Conc. and Comp.: Prac. & Exp., v. 23 n. 2, pp.187–198.

[3] D. S. Banerjee, P. Sakurikar, and K. Kothapalli. Fast, scalable parallel
comparison sort on hybrid multicore architectures. In Proc. AsHES, 2013,
pp. 1060-1069.

[4] D. S. Banerjee, S. Sharma, and K. Kothapalli. Work efficient parallel
algorithms for large graph exploration. In HiPC, 2013 pp. 81-93.

[5] D. S. Banerjee, and K. Kothapalli. Hybrid Algorithms for List Ranking
and Graph Connected Components in Proc. of HiPC, 2011. pp. 1-10.

[6] M. Boyer, K. Skadron, S. Che and N. Jayasena. Load Balancing in a
Changing World: Dealing with Heterogeneity and Performance Variability.
in Proc ACM Computing Frontiers, 2013. pp. 21:1–21:10.

[7] A. Buluc and J. R. Gilbert. Challenges and advances in parallel sparse
matrix-matrix multiplication. In Proc. ICPP’08, pp 503–510, 2008.

[8] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to
algorithms MIT Press, 2001.

[9] A. Gharaibeh, B. Costa, E. Santos-Neto, and M. Ripeanu. On Graphs,
GPUs, and Blind Dating: A Workload to Processor Matchmaking Quest.
In in Proc. of IEEE IPDPS (2013). pp. 851-862.

[10] C. Gregg, M. Boyer, K. Hazelwood, and K. Skadron. Dynamic
heterogeneous scheduling decisions using historical runtime data. in
Workshop on Applications for Multi- and Many-Core Processors, 2011.

[11] J. Greiner. A comparison of parallel algorithms for connected compo-
nents, in Proc. SPAA, 1994, pp. 16–25.

5858

 0

 20

 40

 60

 80

 100

 120

 140

ca
nt

co
ns

ph

co
p2

0k
_A

pd
b1

H
Y

S

pw
tk

rm
a1

0

sh
ip

se
c1

w
eb

-B
er

kS
ta

n

w
eb

ba
se

-1
M

A
ve

ra
ge

-40

-30

-20

-10

 0

 10

 20

 30

 40

T
hr

es
ho

ld

D
iff

er
en

ce
 (

%
)

Matrix

Exhaustive
Estimated

Difference (%)
NaiveAverage

NaiveStatic 5.25%

(a) Threshold

 0

 1000

 2000

 3000

 4000

 5000

 6000

ca
nt

co
ns

ph

co
p2

0k
A

pd
b1

H
Y

S

pw
tk

rm
a1

0

sh
ip

se
c1

w
eb

-B
er

kS
ta

n

w
eb

ba
se

-1
M

A
ve

ra
ge

 0

 5

 10

 15

 20

 25

 30

 35

 40

T
im

e
(m

s)

D
iff

er
en

ce
 (

%
)

Matrix

Exhaustive
Estimated

NaiveAverage
NaiveStatic

Difference (%)

6.01%

(b) Runtime

Fig. 8. Timings of HH-CPU using the estimated threshold versus the empirical threshold. The plot also shows the time taken for the estimation of the
threshold. The line anchored to the secondary Y-axis shows the percentage difference between the time taken by Algorithm 3 using the estimated threshold
and the empirical threshold.

 500

 600

 700

 800

 900

 1000

 1100

sq
rt

(n
)/

4

sq
rt

(n
)/

2

sq
rt

(n
)

2*
sq

rt
(n

)

4*
sq

rt
(n

)

T
ot

al
 T

im
e

(m
s)

Sample Size

Webbase Total
Cant Total

Fig. 9. Figure shows the trade-off between the sample size and the overall
time and the time taken for estimating the threshold by Algorithm 3 for two
matrices.

[12] D. Grewe and Michael F. P. O’Boyle. A Static Task Partitioning
Approach for Heterogeneous Systems Using OpenCL in Intl. Conf. on
Compiler Construction, 2011. pp. 286-305.

[13] F. Gustavson. Two fast algorithms for sparse matrices: Multiplication
and permuted transposition. ACM T. Math. Soft.,4(3):250–269, 1978.

[14] D. S. Hirschberg, A. K. Chandra, D. V. Sarwate. Computing connected
components in parallel computers CACM 22, 8 (1979), 461–464

[15] S. Hong, N. C. Rodia, and K. Olukotun. On Fast Parallel Detection of
Strongly Connected Components (SCC) in Small-World Graphs. In Proc.
of SC’13 (2013) pp. 92:1–92:11.

[16] Q. Hou, K. Zhou, and B. Guo. SPAP: A programming language for
heterogeneous many-core systems. Technical report, Zhejiang University
Graphics and Parallel Systems Lab, 2010.

[17] S. Indarapu, M. Maramreddy, and K. Kothapalli. Architecture- and
Workload-aware algorithms for Spare Matrix- Vector Multiplication, in
Proc. ACM Compute, 2014. pp. 3:1–3:9.

[18] Intel Math Kernel Library https://software.intel.com/en-us/intel-mkl

[19] K. Kofler, I. Grasso, B. Cosenza and T. Fahringer An Automatic Input-
Sensitive Approach for Heterogeneous Task Partitioning in ACM ICS,
2013. pp. 149-160.

[20] C-K. Luk, S. Hong, and H. Kim Qilin: Exploiting Parallelism on
Heterogeneous Multiprocessors with Adaptive Mapping. in Proc. of Intl.
Symp. on Microarchitecture (MICRO), 2009. pp. 45-55.

[21] H. Ltaief, S. Tomov, R. Nath, and J. Dongarra, Hybrid Multicore
Cholesky Factorization with Multiple GPU Accelerators, IEEE T. on Par.
and Dist. Comp, 2010.

[22] K. Matam, S. Indarapu, and K. Kothapalli. Sparse Matrix Matrix
Multiplication on Hybrid CPU+GPU Platforms, in Proc. of HiPC, 2012.

[23] R. Motwani and P. Raghavan Randomized Algorithms Cambridge
Univeristy Press, 2000

[24] K. R. Ramamoorthy, D. S. Banerjee, K. Srinathan and K. Kothapalli
A Novel Heterogeneous Algorithm for Multiplying Scale-Free Sparse
Matrices IPDPS Workshops 2015, pp. 637–646.

[25] J. Shen, A. L. Varbanescu, P. Zou, Y. Lu, and H. Sips Improving
Performance by Matching Imbalanced Workloads with Heterogeneous
Platforms. in Proc. ACM ICS, pp. 241–250, 2014.

[26] Y. Shiloach and U. Vishkin,. An O(logn) parallel connectivity algo-
rithm. J. Algorithms, pp. 57–67, 1982.

[27] J. Soman, K. Kothapalli, and P. J. Narayanan. Some GPU Algorithms
for Graph Connected Components and Spanning Tree, Parallel Processing
Letters, vol. 20, no. 4, pp. 325–339, 2010

[28] Stanford Network Analysis Platform dataset ,
http://www.cise.ufl.edu/research/sparse/matrices/SNAP/

[29] P. D. Sulatycke, and K. Ghose. Caching-efficient multithreaded fast
multiplication of sparse matrices, in Proc. of IPDPS, pp.117-123, 1998.

[30] G. Wang and X. Ren Power-efficient work distribution method for CPU-
GPU heterogeneous system. in Proc. ISPA, 2010. pp. 122-129.

5959

