Lower Bounds for Information Gathering in Adversarial &ysat

(Extended Abstract)
Kishore Kothapalli Christian Scheideler
Department of Computer Science Computer Science Departmen
Johns Hopkins University Technische Universitat Munche
3400 N. Charles Street D-85748 Garching
Baltimore, MD 21218, USA. Germany.
ki shore@s. j hu. edu schei del er@n. tum de
Abstract

In this paper we consider the problem of routing packets t@ramon destination, also known
asinformation gathering Information gathering is an important communication ptive in sensor
networks and allows an observer to collect information friie sensors. Because sensors usually do
notmove, they form a static topology of possible communicaliioks, but since sensors may frequently
be in sleep mode or their communication may be disruptedteyference or obstacles, communication
links may be up and down in an unpredictable way. In order smemnthat algorithms work well iany
scenario, we assume that the state of the edges and alsd pgekgons are under the control of an
adversary.

Recent studies of information gathering under adversarialels have shown that for simple topolo-
gies such as the line graph it suffices for an online algorithimave a buffer size that is a logarithmic
factor bigger than that of the optimal algorithm to achieméthroughput. In this paper, surprisingly, it
will be shown that even small deviations to the line grapthsaga fork graph have a huge overhead on
the buffer size and therefore pose significant challengesiftine algorithms in the worst case.

Our study suggests that one should either look at randoraigedithms or sacrifice a fraction of the
throughput. In the latter context, we show that for the lingpdp the throughput improves exponentially
as we allow a slightly higher overhead in the buffer size.

1 Introduction

Communication problems arising in sensor networks havac#d a lot of research attention in recent
years. A large number of projects that study a variety of camigation problems in sensor networks have
been initiated and evaluated experimentally [1, 7, 10]. Buth of the theoretical work remains to be done.
However, especially for sensor networks, where humanvatgion is limited once the sensors are deployed,
theoretical work is very important to ensure that the athoms indeed work correctly and efficiently under

any circumstances. In order to ensure a high efficiency the potdomust adapt themselves to dynamic
network conditions so that resources, such as energy, casdukas efficiently as possible.

Communication in sensor networks falls under two modess@eto-observer and observer-to-sensor.
However, sensor-to-observer is by far the dominating méd®mmunication. The special case of a single
observer is also callediformation gatheringwhere all the injected packets have the same destinatian. Fo
the case of information gathering, recent studies [8] hawava that there exist simple, local-control online
strategies that are efficient with regard to throughput anftebsize when the network topology is either
a line or a cycle. A natural question then is to find out whethesh results exist also for other simple

topologies. In this paper, we answer this question in thaiiegby proving lower bounds on the buffer size
required by online algorithms to compete with the optimgbaithm with regard to throughput.

1.1 Model

We model the sensor network as a graphk= (V, E') where the nodes represent the sensors and the edges
represent the potential communication links. All the itgetpackets have the same destinatiodzinWe
assume that time proceeds in synchronized steps. The @rédyals a static topology but the edges may not
be available for communication at all time steps. The edgeseailable for communication only during
certain time steps and the edges that are available for congation during a time step are also called
activeedges. To achieve reliable communication over active edgesssume that a MAC layer support
along with virtual carrier sensing is available. During gviéme step at most one packet can be sent along
each active edge and every packet needs one time unit toamasdge. We consider only directed edges.
This does not exclude the undirected edge case as, alongvwi layer support, each undirected edge
can be seen as two directed edges, one in each direction.dgkeaetivations and the packet injections are
assumed to be under adversarial control.

Given nodes with buffer siz&, we let the adversary inject an arbitrary number of packesna node
and activate (or deactivate) an arbitrary subset of edgeadt time step so long as no packet has to be
deleted while using an optimal routing algorithm. Thus, lehising the optimal routing algorithm each
node has at modB packets at any time step and all other packets have beensstdte delivered to the
destination. The throughput of an algorithm is measureti@sitimber of packets successfully delivered.

To study the performance of online algorithms we use cortipetainalysis. For any sequeneef edge
activations and packet injections by the adversary sudhathaptimal algorithm with buffer siz& never
has to delete a packet, we say that algoritAnis c-competitive if algorithmA with buffer sizecB also
never has to delete any packet. In the followidywill always mean the buffer size of an optimal routing
algorithm. Theheightof nodew, denotedht(v), is the number of packets stored in the buffer at that node.

For the case of a fixed buffer space, we are interested inisitlye throughput achieved by the online
algorithm. AlgorithmA is said to bgr, c)—competitive if for any sequeneeof edge activations and packet
injections, algorithmA with buffer sizer B achieves a throughput of at leastimes that of the throughput
achievable by an optimal algorithm using buffer s2eThe optimal algorithm is not allowed to delete any
packets while the online algorithm may have to delete packet

1.2 Related work

Communication problems under the presence of an adversagy lteen studied in several papers. In the
context of queuing it has been studied in [5, 6, 12]. In theextrof routing, the study of adversarial models
has been presented in [4]. The special case of informatitiregag has been the study of several recent
papers, for example [3, 8]. In [3], the authors consider areeghry that is as powerful as in our model
and show a competitive ratio @¥(n) for any general network topology. However, it was left as paro
guestion whether focusing on specific topologies wouldlt@sietter algorithms. In [8], this question was
positively answered for the line and cycle topologies.

1.3 Our Results

Our work considers various simple topologies and showsfthainline algorithms performing information

gathering, there exist adversarial scenarios which fdreenline algorithms to use a huge buffer space. A
common feature in most of the topologies we consider, thahgh are simple extensions to the line graph,
is that there exist nodes, also calleénching pointswhere multiple paths meet. In our model, the online
algorithms have to decide whether or not to move a packegadmnactive edge. Since edges are active

w
destination 3
branch &

branch
/

=}
T

2
left branch right branch

1 2 3 n bp n+2 n+3 2n+1

@ (b)
Figure 1: Figure (a) shows a star graph and (b) shows a fophgra

only during certain adversarially selected time stepsk@@cmoved across branching points by an online
algorithm mistakenly may be hard to get back. As we will shihg, adversary can exploit such situations
often enough without violating the limitations imposed lie tmodel so that the online algorithm requires a
huge buffer size to store all the packets. Proofs omitteoh fifuis extended abstract can be found in [9].

In Section 2, we show that for the star graphromodes (see Figure 1(ayny deterministic online
algorithm has a lower bound 61(n). In Section 3, we show that for the fork graph3f + 1 nodes (see
Figure 1(b)), the competitive ratio of afy—bounded algorithm (defined in Section 3.1) has a lower bound
of Q(niosiosn),

In Section 4, along the line of work in [2], we also investmgdlhe throughput achievable on the line
network when the online algorithm is allowed to use a buffemce that is only dependent on the buffer
space of the optimal algorithm. We show that the throughast dan exponential improvement when the
buffer size used by the online algorithms is twice that ofdh&mal algorithm (see also [11]).

2 Lower Bounds for the Star Graph

In this section, we show that for the star graph shown in FEdifa),any deterministic online algorithm has
a huge lower bound. Each branch has the same number of npftessome constant. Letm = ©(n)
denote the number of branches.

The adversary is adaptive and works in stages. The step® @diversary in each stage are described
below. Assuming that the adversary has perforrhedl stages, we show how to proceed in stagét the
beginning of stagé, the adversary has a s&t of m — k + 1 branches such that the average height of nodes
in Sy is at leas{k — 1) B/2. The rest of thé branches are denoted BY. Further, at the beginning of stage
k, the optimal algorithm has no packets at any node. The aalyeselects two branche$; and A; from
Si. and does the following.

1. Inject B packets at each node in brandh. This injection increases the average height of nodes in
A toatleastk +1)B/2.

2. Activate edges so that all the packets in bradghcould be moved to brancH,. At the end of all
these activations, any deterministic algorithm has at l8aB /2 packets in one of the branches, which
we refer to as théeavierbranch and at mostt B /2 packets in one branch which we refer to as the
lighter branch. The optimal algorithm has all the newly injectedqetx in the lighter branch only.

3. Activate edges so that all the packets in figater branch could be moved to the destination. The
optimal algorithm has no packets in the lighter branch.

4. Now using thek branches inS;, along with the lighter branch, the adversary creates onechr&
with the average node height at le@ist- 1) B /2. The setS}, is updated by replacing the lighter branch
with branchC'. The heavier branch is added to the Sgt ;.

Since at the end of the above procedure the number of braittigsreduces by 1, the adversary can
use the procedure fon — k times. At the end the séf;., containsm — k branches such that the height

3

of nodes inS; 1 is at least: B/2 and the seb}, | containsk + 1 branches. Further, the optimal algorithm
has no packets at any of the nodes. The adversary can thasrpenf — 1 such stages at the end of which
there is one branch with at leagtn — 1) B /2 packets. From the above discussion, the following theorem
holds. Since for general graphs, the upper bound is showe t@(h) in [3], Theorem 2.1 gives a tight
lower bound. The above approach of the adversary also exteritle case of trees of small degree, such as
complete binary trees. The details can be found in [9].

Theorem 2.1. Any deterministic online algorithm has a lower boundX§f:) on the star graph.

3 Lower Bounds for Simple Fork Graphs

Since a star graph om nodes has a node of degréén), intuitively it might be said that this presents too
many opportunities for the adversary to create situatibas dre difficult to handle for online algorithms.
However, in this section we show that even a single branchiigt in the topology is enough for the
adversary to force the online algorithms to require a hudfebsapace.

In this section, we consider the problem of information gaitig in the fork graph shown in Figure 1(b).
All packets have the same destination marked as @odEach branch of the fork consists @fnodes and
the nodebp (for branchingpoint) is the node where the three branches of the fork meed.IGwer bound
applies to the class @f.—bounded algorithms, defined below.

3.1 T.-bounded algorithms

We now define a class of deterministic online algorithmsechltheT,.—bounded algorithms for a fixed
constantl, > 0. We callT, the climbing thresholdof the online algorithm which denotes the height up
to which packets may climb up along an active edge> v even ifht(u) < ht(v). More formally, when
ht(u) < ht(v), if |ht(u) —ht(v)| < T, the online algorithrmay send a packet along an active edge- v.
However, ifht(u) < ht(v) and|ht(u) — ht(v)| > T, the online algorithm isiot allowed to move a packet
along edge: — v. The above definition is not limiting since most online altfons [3, 8] do not let packets
climb above a certain threshold.

We now show the following lower bound for simple fork grapbs ény7,.—bounded online algorithm.

Theorem 3.1. AnyT.—bounded online algorithm has a lower bound@fn '/ 1°81°2" 1og 1) on a fork graph
of 3n + 1 nodes.

Proof (sketch): The adversary works in phases and each phase consists abiyas s1amely, thibuilding
stageand thespreading stageln phase > 0, the adversary works with a consecutive set of nabg®;
and D; in the left, right and the destination branch respectiveori = 0, L; = {1,2,---bp} and
R, ={n+2,n+3,---,2n+ 1} and D; similarly consists of all nodes in the destination branch.

In the building stageof phasei, the adversary uses the nodeslinand D; to create a height of; at
nodebp. The heighth; is defined a%; = Blogn — T, andh; 1 = 2h; — T,. Due to its large height, the
nodebp acts as a barrier preventing the online algorithm to movepakets injected in the right branch to
be moved towards destination. The building stage ends whaodes inR; have a height of;, 1.

Thespreading stagef phasei involves creating consecutive nodes, |, R; 1 and D, in each of the
left, right and destination branches respectively. Thmsetadversary uses th&¢ nodes to create a height of
hi+1 inthe L;11 and D, 1 nodes with|L; 1| = |L;|/logn and|D;41| = |D;|/logn. Here the adversary
injects packets in thd.; (resp. D;) nodes and activates edges to tRenodes. This causes the online
algorithm to keep the packets Bi(resp.D;) nodes whereas the optimal algorithm can move the packets to
the R; nodes.

Figure 2: Line network with layers of alternating direction

The adversary can perforin= Q(log n/log log n) such phases at the end of which there is at least one
node in the online algorithm with a height 208/ loglogn) B gy = Q(n!/ 108108 Blog n). O

4 Bounds for the Line Graph with a Fixed Buffer

As shown in the previous sections, to achieve the same thpuigas that of the optimal algorithm, the
buffer size required by online algorithms could be as higthassize of the network except for line graphs
and cycle graphs. Hence, as in [2], it is important to studyttivoughput achievable by online algorithms
when only a buffer of fixed size, independent of the size oftvork, is used.

We consider the line graph onnodes with nodes numbered from left to right starting witimtl aode
n being the destination of all packets (see Figure 2). It iy éagiotice that when using the same buffer
space as that of the optimal algorithm the throughput aebievis2(1/n). However, when just doubling
the buffer space, we show the throughput improves expabnto 2(1/./n) for the GuidedBalancing
algorithm [8]. A brief review of the GuidedBalancing algin is provided below.

The GuidedBalancing Algorithm

In the GuidedBalancing algorithm each node in the netwoskéhbuffer that is used to store packets. Each
buffer hasslotsnumbered consecutively starting fromand each slot can store exactly one packet. The
slots are grouped into layers where edayer is a consecutive set dB slots. The layers are numbered
consecutively starting frorh and the slotd to B belong to layer 0 andB + 1 to (i + 1) B belong to layer

i, for ¢ > 0. The direction of the layer is the direction in which packeds be moved by the algorithm in
that layer. Thus, in an Always-Towards-Destination layackets can only move towards the destination
and in an Always-Away-Destination layer packets can onlyenaway from the destination. The algorithm
maintains layers that are alternating in direction stgriith layer O being an Always-Towards-Destination
layer, as shown in Figure 2. We now present the GuidedBaigradgorithm [8].

Algorithm GuidedBalancing
1. for every time step and every active edgev)
2. if there exists a layef with the direction same as the direction(af v)
so thatu has at least packet in layer andv has at mosB packets in layef then
3. move a packet in layerfrom v to v
4. for every time step at every node
5. accept the incoming packets and the injected packetstaradtiem at the lowest
empty slots available currently.
End Algorithm

We now prove a lower bound on the throughput achievable byGihidedBalancing algorithm while
using2B slots. We do this by proving an upper bound on the number efiodals that the GuidedBalancing
algorithm can suffer via an interestingtnessing mechanismA matching upper bound on throughput is
shown in [9].

Theorem 4.1. On the line graph of: nodes, the GuidedBalancing algorithm has a competitive rat
(2,92(1/+/n)) on the throughput.

Proof (sketch): Consider assigning a withess for every packet deleted bytifine algorithm. This
witness is assigned as a pair of packets in the online atgoritThis process can be modeled as a graph
Gq = (Vg, Ey), the deletion graph, with vertices representing the packethe online algorithm and
edges representing deletions encountered by the onlioeithaly. For a node. € V;, let P(u) denote the
corresponding packet in the online algorithm. It can be shtwvat the deletion graph has the following
property [9].

Lemma 4.2. At all time steps, between any two nodes € V,, there is at most one edge.

The proof of the theorem follows from the above lemma. O

5 Conclusions

Our lower bounds show that relatively simple topologiegadly create huge challenges for information
gathering in sensor networks. Thus, one should either msnaized algorithms or suffer a loss in through-
put to improve the competitive ratio.

While theoretical lower bounds show the limit of what onlailgorithms can hope to achieve, the average
case behavior of the online algorithms might still be muddseWhile our preliminary experimental results
support this hypothesis, detailed experimental studieseguired. It would also be interesting to see if
relaxing the power of the adversary model considered waad to better results.

References

[1] Pico project. Available at http://bwrc.eecs.berkedelu/Research/Pideadio/Default.htm.

[2] AIELLO, W., OSTROVSKY, R., KUSHILEVITZ, E., AND ROSEN, A. Dynamic routing on networks with fixed-
size buffers. IACM SODA(2003), pp. 771-780.

[3] AWERBUCH, B., BERENBRINK, P., BRINKMANN, A., AND SCHEIDELER, C. Simple online strategies for
adversarial systems. IEEE FOCS(2001), pp. 158-167.

[4] AWERBUCH, B., AND LEIGHTON, T. Improved approximation algorithms for the multi-comahity flow prob-
lem and local competitive routing in dynamic networks AGM STOQ1994), pp. 487-496.

[5] BORODIN, A., KLEINBERG, J., RAGHAVAN, P., SUDAN, M., AND WILLIAMSON, D. Adversarial queuing
theory. INACM STOQ(1996), pp. 376-385.

[6] GOEL, A. Stability of networks and protocols in the adversariaégeing model for packet routing. WCM
SODA(1999), pp. 911-912.

[7] INTANAGONWIWAT, C., GOVINDAN, R., AND ESTRIN, D. Directed diffusion: A scalable and robust commu-
nication paradigm for sensor networks.Rroc. of the 6th ACM/IEEE Mobicom Conferen@900), pp. 56—67.

[8] KOTHAPALLI, K., AND SCHEIDELER, C. Information gathering in adversarial systems: lineg eycles. In
ACM SPAA(2003), pp. 380—389.

[9] KOTHAPALLI, K., AND SCHEIDELER, C. Lower bounds for information gathering in adversarigtems.
Available at www.cs.jhu.edw/kishore/, 2005.

[10] LINDSEY, S.,AND RAGHAVENDRA, C. PEGASIS: Power Efficient GAthering in Sensor Informat®ystems.
In Proc. of IEEE Aerospace Conferen@902), pp. 3:1125-1130.

[11] REHRMANN, R., MONIEN, B., LULING, R., AND DIEKMANN, R. On the communication throughput of
buffered multistage interconnection networks AGM SPAA1996), pp. 152-161.

[12] ScHEIDELER, C., AND VOCKING, B. From static to dynamic routing: efficient transformasoof store-and-
forward protocols. IFACM STOQ1999), pp. 215-224.

