
Lower Bounds for Information Gathering in Adversarial Systems
(Extended Abstract)

Kishore Kothapalli Christian Scheideler
Department of Computer Science Computer Science Department

Johns Hopkins University Technische Universität München
3400 N. Charles Street D-85748 Garching

Baltimore, MD 21218, USA. Germany.
kishore@cs.jhu.edu scheideler@in.tum.de

Abstract

In this paper we consider the problem of routing packets to a common destination, also known
as information gathering. Information gathering is an important communication primitive in sensor
networks and allows an observer to collect information fromthe sensors. Because sensors usually do
notmove, they form a static topology of possible communicationlinks, but since sensors may frequently
be in sleep mode or their communication may be disrupted by interference or obstacles, communication
links may be up and down in an unpredictable way. In order to ensure that algorithms work well inany
scenario, we assume that the state of the edges and also packet injections are under the control of an
adversary.

Recent studies of information gathering under adversarialmodels have shown that for simple topolo-
gies such as the line graph it suffices for an online algorithmto have a buffer size that is a logarithmic
factor bigger than that of the optimal algorithm to achieve full throughput. In this paper, surprisingly, it
will be shown that even small deviations to the line graph such as a fork graph have a huge overhead on
the buffer size and therefore pose significant challenges for online algorithms in the worst case.

Our study suggests that one should either look at randomizedalgorithms or sacrifice a fraction of the
throughput. In the latter context, we show that for the line graph the throughput improves exponentially
as we allow a slightly higher overhead in the buffer size.

1 Introduction

Communication problems arising in sensor networks have attracted a lot of research attention in recent
years. A large number of projects that study a variety of communication problems in sensor networks have
been initiated and evaluated experimentally [1, 7, 10]. Butmuch of the theoretical work remains to be done.
However, especially for sensor networks, where human intervention is limited once the sensors are deployed,
theoretical work is very important to ensure that the algorithms indeed work correctly and efficiently under
any circumstances. In order to ensure a high efficiency the protocols must adapt themselves to dynamic
network conditions so that resources, such as energy, can beused as efficiently as possible.

Communication in sensor networks falls under two modes: sensor-to-observer and observer-to-sensor.
However, sensor-to-observer is by far the dominating mode of communication. The special case of a single
observer is also calledinformation gatheringwhere all the injected packets have the same destination. For
the case of information gathering, recent studies [8] have shown that there exist simple, local-control online
strategies that are efficient with regard to throughput and buffer size when the network topology is either
a line or a cycle. A natural question then is to find out whethersuch results exist also for other simple

1

topologies. In this paper, we answer this question in the negative by proving lower bounds on the buffer size
required by online algorithms to compete with the optimal algorithm with regard to throughput.

1.1 Model

We model the sensor network as a graphG = (V,E) where the nodes represent the sensors and the edges
represent the potential communication links. All the injected packets have the same destination inG. We
assume that time proceeds in synchronized steps. The graphG has a static topology but the edges may not
be available for communication at all time steps. The edges are available for communication only during
certain time steps and the edges that are available for communication during a time step are also called
activeedges. To achieve reliable communication over active edges, we assume that a MAC layer support
along with virtual carrier sensing is available. During every time step at most one packet can be sent along
each active edge and every packet needs one time unit to crossan edge. We consider only directed edges.
This does not exclude the undirected edge case as, along withMAC layer support, each undirected edge
can be seen as two directed edges, one in each direction. The edge activations and the packet injections are
assumed to be under adversarial control.

Given nodes with buffer sizeB, we let the adversary inject an arbitrary number of packets at any node
and activate (or deactivate) an arbitrary subset of edges ateach time step so long as no packet has to be
deleted while using an optimal routing algorithm. Thus, while using the optimal routing algorithm each
node has at mostB packets at any time step and all other packets have been successfully delivered to the
destination. The throughput of an algorithm is measured as the number of packets successfully delivered.

To study the performance of online algorithms we use competitive analysis. For any sequenceσ of edge
activations and packet injections by the adversary such that an optimal algorithm with buffer sizeB never
has to delete a packet, we say that algorithmA is c-competitive if algorithmA with buffer sizecB also
never has to delete any packet. In the following,B will always mean the buffer size of an optimal routing
algorithm. Theheightof nodev, denotedht(v), is the number of packets stored in the buffer at that node.

For the case of a fixed buffer space, we are interested in studying the throughput achieved by the online
algorithm. AlgorithmA is said to be(r, c)–competitive if for any sequenceσ of edge activations and packet
injections, algorithmA with buffer sizerB achieves a throughput of at leastc times that of the throughput
achievable by an optimal algorithm using buffer sizeB. The optimal algorithm is not allowed to delete any
packets while the online algorithm may have to delete packets.

1.2 Related work

Communication problems under the presence of an adversary have been studied in several papers. In the
context of queuing it has been studied in [5, 6, 12]. In the context of routing, the study of adversarial models
has been presented in [4]. The special case of information gathering has been the study of several recent
papers, for example [3, 8]. In [3], the authors consider an adversary that is as powerful as in our model
and show a competitive ratio ofO(n) for any general network topology. However, it was left as an open
question whether focusing on specific topologies would result in better algorithms. In [8], this question was
positively answered for the line and cycle topologies.

1.3 Our Results

Our work considers various simple topologies and shows thatfor online algorithms performing information
gathering, there exist adversarial scenarios which force the online algorithms to use a huge buffer space. A
common feature in most of the topologies we consider, thoughthey are simple extensions to the line graph,
is that there exist nodes, also calledbranching points, where multiple paths meet. In our model, the online
algorithms have to decide whether or not to move a packet along an active edge. Since edges are active

2

(b)(a)

D

bp

de
st

in
at

io
n

 b
ra

nc
h

D

2n+2

3n+1

left branch

1 2 3

right branch

n+2 n+3n 2n+1

branch

Figure 1: Figure (a) shows a star graph and (b) shows a fork graph.

only during certain adversarially selected time steps, packets moved across branching points by an online
algorithm mistakenly may be hard to get back. As we will show,the adversary can exploit such situations
often enough without violating the limitations imposed in the model so that the online algorithm requires a
huge buffer size to store all the packets. Proofs omitted from this extended abstract can be found in [9].

In Section 2, we show that for the star graph onn nodes (see Figure 1(a)),any deterministic online
algorithm has a lower bound ofΩ(n). In Section 3, we show that for the fork graph of3n + 1 nodes (see
Figure 1(b)), the competitive ratio of anyTc–bounded algorithm (defined in Section 3.1) has a lower bound

of Ω(n
1

log log n).
In Section 4, along the line of work in [2], we also investigate the throughput achievable on the line

network when the online algorithm is allowed to use a buffer space that is only dependent on the buffer
space of the optimal algorithm. We show that the throughput has an exponential improvement when the
buffer size used by the online algorithms is twice that of theoptimal algorithm (see also [11]).

2 Lower Bounds for the Star Graph

In this section, we show that for the star graph shown in Figure 1(a),anydeterministic online algorithm has
a huge lower bound. Each branch has the same number of nodesc, for some constantc. Let m = Θ(n)
denote the number of branches.

The adversary is adaptive and works in stages. The steps of the adversary in each stage are described
below. Assuming that the adversary has performedk − 1 stages, we show how to proceed in stagek. At the
beginning of stagek, the adversary has a setSk of m− k +1 branches such that the average height of nodes
in Sk is at least(k−1)B/2. The rest of thek branches are denoted bySk. Further, at the beginning of stage
k, the optimal algorithm has no packets at any node. The adversary selects two branchesA1 andA2 from
Sk and does the following.

1. InjectB packets at each node in branchA1. This injection increases the average height of nodes in
A1 to at least(k + 1)B/2.

2. Activate edges so that all the packets in branchA1 could be moved to branchA2. At the end of all
these activations, any deterministic algorithm has at least ckB/2 packets in one of the branches, which
we refer to as theheavierbranch and at mostckB/2 packets in one branch which we refer to as the
lighter branch. The optimal algorithm has all the newly injected packets in the lighter branch only.

3. Activate edges so that all the packets in thelighter branch could be moved to the destination. The
optimal algorithm has no packets in the lighter branch.

4. Now using thek branches inSk along with the lighter branch, the adversary creates one branch C
with the average node height at least(k−1)B/2. The setSk is updated by replacing the lighter branch
with branchC. The heavier branch is added to the setSk+1.

Since at the end of the above procedure the number of branchesin Sk reduces by 1, the adversary can
use the procedure form − k times. At the end the setSk+1 containsm − k branches such that the height

3

of nodes inSk+1 is at leastkB/2 and the setSk+1 containsk + 1 branches. Further, the optimal algorithm
has no packets at any of the nodes. The adversary can thus perform m − 1 such stages at the end of which
there is one branch with at leastc(m − 1)B/2 packets. From the above discussion, the following theorem
holds. Since for general graphs, the upper bound is shown to be O(n) in [3], Theorem 2.1 gives a tight
lower bound. The above approach of the adversary also extends to the case of trees of small degree, such as
complete binary trees. The details can be found in [9].

Theorem 2.1. Any deterministic online algorithm has a lower bound ofΩ(n) on the star graph.

3 Lower Bounds for Simple Fork Graphs

Since a star graph onn nodes has a node of degreeΘ(n), intuitively it might be said that this presents too
many opportunities for the adversary to create situations that are difficult to handle for online algorithms.
However, in this section we show that even a single branchingpoint in the topology is enough for the
adversary to force the online algorithms to require a huge buffer space.

In this section, we consider the problem of information gathering in the fork graph shown in Figure 1(b).
All packets have the same destination marked as nodeD. Each branch of the fork consists ofn nodes and
the nodebp (for branchingpoint) is the node where the three branches of the fork meet. The lower bound
applies to the class ofTc–bounded algorithms, defined below.

3.1 Tc–bounded algorithms

We now define a class of deterministic online algorithms called theTc–bounded algorithms for a fixed
constantTc ≥ 0. We callTc the climbing thresholdof the online algorithm which denotes the height up
to which packets may climb up along an active edgeu → v even ifht(u) < ht(v). More formally, when
ht(u) ≤ ht(v), if |ht(u)−ht(v)| ≤ Tc, the online algorithmmay send a packet along an active edgeu → v.
However, ifht(u) < ht(v) and|ht(u) − ht(v)| > Tc the online algorithm isnot allowed to move a packet
along edgeu → v. The above definition is not limiting since most online algorithms [3, 8] do not let packets
climb above a certain threshold.

We now show the following lower bound for simple fork graphs for anyTc–bounded online algorithm.

Theorem 3.1.AnyTc–bounded online algorithm has a lower bound ofΩ(n1/ log log n log n) on a fork graph
of 3n + 1 nodes.

Proof (sketch): The adversary works in phases and each phase consists of two stages namely, thebuilding
stageand thespreading stage. In phasei ≥ 0, the adversary works with a consecutive set of nodesLi, Ri

and Di in the left, right and the destination branch respectively.For i = 0, Li = {1, 2, · · · bp} and
Ri = {n + 2, n + 3, · · · , 2n + 1} andDi similarly consists of all nodes in the destination branch.

In the building stageof phasei, the adversary uses the nodes inLi andDi to create a height ofhi at
nodebp. The heighthi is defined ash1 = B log n − Tc andhi+1 = 2hi − Tc. Due to its large height, the
nodebp acts as a barrier preventing the online algorithm to move anypackets injected in the right branch to
be moved towards destination. The building stage ends when all nodes inRi have a height ofhi+1.

Thespreading stageof phasei involves creating consecutive nodesLi+1, Ri+1 andDi+1 in each of the
left, right and destination branches respectively. This time adversary uses theRi nodes to create a height of
hi+1 in theLi+1 andDi+1 nodes with|Li+1| = |Li|/ log n and|Di+1| = |Di|/ log n. Here the adversary
injects packets in theLi (resp. Di) nodes and activates edges to theRi nodes. This causes the online
algorithm to keep the packets atLi(resp.Di) nodes whereas the optimal algorithm can move the packets to
theRi nodes.

4

1 2 3 n−1 n (D)

Layer

Layer

Layer

0

1

2

Figure 2: Line network with layers of alternating direction.

The adversary can performi = Ω(log n/ log log n) such phases at the end of which there is at least one
node in the online algorithm with a height of2Ω(log n/ log log n)B log n = Ω(n1/ log log nB log n).

4 Bounds for the Line Graph with a Fixed Buffer

As shown in the previous sections, to achieve the same throughput as that of the optimal algorithm, the
buffer size required by online algorithms could be as high asthe size of the network except for line graphs
and cycle graphs. Hence, as in [2], it is important to study the throughput achievable by online algorithms
when only a buffer of fixed size, independent of the size of thenetwork, is used.

We consider the line graph onn nodes with nodes numbered from left to right starting with 1 and node
n being the destination of all packets (see Figure 2). It is easy to notice that when using the same buffer
space as that of the optimal algorithm the throughput achievable isΩ(1/n). However, when just doubling
the buffer space, we show the throughput improves exponentially to Ω(1/

√
n) for the GuidedBalancing

algorithm [8]. A brief review of the GuidedBalancing algorithm is provided below.

The GuidedBalancing Algorithm

In the GuidedBalancing algorithm each node in the network has a buffer that is used to store packets. Each
buffer hasslotsnumbered consecutively starting from1 and each slot can store exactly one packet. The
slots are grouped into layers where eachlayer is a consecutive set ofB slots. The layers are numbered
consecutively starting from0 and the slots1 to B belong to layer 0 andiB + 1 to (i + 1)B belong to layer
i, for i ≥ 0. The direction of the layer is the direction in which packetscan be moved by the algorithm in
that layer. Thus, in an Always-Towards-Destination layer packets can only move towards the destination
and in an Always-Away-Destination layer packets can only move away from the destination. The algorithm
maintains layers that are alternating in direction starting with layer 0 being an Always-Towards-Destination
layer, as shown in Figure 2. We now present the GuidedBalancing algorithm [8].

Algorithm GuidedBalancing
1. for every time step and every active edge(u, v)
2. if there exists a layerℓ with the direction same as the direction of(u, v)

so thatu has at least1 packet in layerℓ andv has at mostB packets in layerℓ then
3. move a packet in layerℓ from u to v
4. for every time step at every nodeu
5. accept the incoming packets and the injected packets and store them at the lowest

empty slots available currently.
End Algorithm

We now prove a lower bound on the throughput achievable by theGuidedBalancing algorithm while
using2B slots. We do this by proving an upper bound on the number of deletions that the GuidedBalancing
algorithm can suffer via an interestingwitnessing mechanism. A matching upper bound on throughput is
shown in [9].

5

Theorem 4.1. On the line graph ofn nodes, the GuidedBalancing algorithm has a competitive ratio of
(2,Ω(1/

√
n)) on the throughput.

Proof (sketch): Consider assigning a witness for every packet deleted by theonline algorithm. This
witness is assigned as a pair of packets in the online algorithm. This process can be modeled as a graph
Gd = (Vd, Ed), the deletion graph, with vertices representing the packets in the online algorithm and
edges representing deletions encountered by the online algorithm. For a nodeu ∈ Vd, let P (u) denote the
corresponding packet in the online algorithm. It can be shown that the deletion graph has the following
property [9].

Lemma 4.2. At all time steps, between any two nodesu, v ∈ Vd, there is at most one edge.

The proof of the theorem follows from the above lemma.

5 Conclusions
Our lower bounds show that relatively simple topologies already create huge challenges for information
gathering in sensor networks. Thus, one should either use randomized algorithms or suffer a loss in through-
put to improve the competitive ratio.

While theoretical lower bounds show the limit of what onlinealgorithms can hope to achieve, the average
case behavior of the online algorithms might still be much better. While our preliminary experimental results
support this hypothesis, detailed experimental studies are required. It would also be interesting to see if
relaxing the power of the adversary model considered would lead to better results.

References

[1] Pico project. Available at http://bwrc.eecs.berkeley.edu/Research/PicoRadio/Default.htm.

[2] A IELLO , W., OSTROVSKY, R., KUSHILEVITZ , E., AND ROSÉN, A. Dynamic routing on networks with fixed-
size buffers. InACM SODA(2003), pp. 771–780.

[3] AWERBUCH, B., BERENBRINK, P., BRINKMANN , A., AND SCHEIDELER, C. Simple online strategies for
adversarial systems. InIEEE FOCS(2001), pp. 158–167.

[4] AWERBUCH, B., AND LEIGHTON, T. Improved approximation algorithms for the multi-commodity flow prob-
lem and local competitive routing in dynamic networks. InACM STOC(1994), pp. 487–496.

[5] BORODIN, A., KLEINBERG, J., RAGHAVAN , P., SUDAN , M., AND WILLIAMSON , D. Adversarial queuing
theory. InACM STOC(1996), pp. 376–385.

[6] GOEL, A. Stability of networks and protocols in the adversarial queueing model for packet routing. InACM
SODA(1999), pp. 911–912.

[7] I NTANAGONWIWAT, C., GOVINDAN , R., AND ESTRIN, D. Directed diffusion: A scalable and robust commu-
nication paradigm for sensor networks. InProc. of the 6th ACM/IEEE Mobicom Conference(2000), pp. 56–67.

[8] K OTHAPALLI , K., AND SCHEIDELER, C. Information gathering in adversarial systems: lines and cycles. In
ACM SPAA(2003), pp. 380–389.

[9] K OTHAPALLI , K., AND SCHEIDELER, C. Lower bounds for information gathering in adversarial systems.
Available at www.cs.jhu.edu/∼kishore/, 2005.

[10] L INDSEY, S.,AND RAGHAVENDRA , C. PEGASIS: Power Efficient GAthering in Sensor Information Systems.
In Proc. of IEEE Aerospace Conference(2002), pp. 3:1125–1130.

[11] REHRMANN, R., MONIEN, B., LULING , R., AND DIEKMANN , R. On the communication throughput of
buffered multistage interconnection networks. InACM SPAA(1996), pp. 152–161.

[12] SCHEIDELER, C., AND V ÖCKING, B. From static to dynamic routing: efficient transformations of store-and-
forward protocols. InACM STOC(1999), pp. 215–224.

6

