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Abstract

We present Payload Content based Network Anomaly
Detection, we call as PCNAD. PCNAD is an improvement
to PAYL system which is considered one of the complete
systems for payload based anomaly detection. PAYL takes
into consideration the entire payload for profile calculation
and effectively for anomaly detection. Payload length is
very high on port numbers like 21 and 80. Hence it is
difficult to apply PAYL on high speed, high bandwidth net-
works. We use CPP (Content based Payload Partitioning)
technique which divides the payload into different partitions
depending on content of payload. PCNAD does payload
based anomaly detection using a few CPP partitions. We
demonstrate usefulness of the PCNAD on the 1999 DARPA
IDS data set. We observed 97.06% accuracy on port 80
using only 62.64% packet payload length with small false
positive rate. This is a significant improvement over PAYL
approach which uses 100% of the packet payload for
anomaly detection.

1 Introduction

In recent era of information security systems all major
network intrusion detection systems are still using signa-
ture based approaches for attack detection. Snort [1] and
Bro [13] are popular example of signature based intrusion
detection systems. Such systems use attack detection mech-
anisms based on signatures of already known attacks or
vulnerabilities. This technique works well if the signature
database is up to date. However, it has been observed that
signature based detection mechanism fails for zero day at-
tacks or mutation of known attacks due to lack of signa-
ture availability when a zero day attack is launched. An
alternative choice for this problem is anomaly detection sys-
tems [8]. In anomaly detection mechanism deviation from
normal behavior is detected to signal possible novel attack.
Network based anomaly detection can be applied at differ-
ent levels: protocol headers, packet payload. In PCNAD we
focus on packet payload based network anomaly detection.

Such system is useful for detecting payload based attacks
like R2L, U2R, and worm infections. We found PCNAD
system useful for detecting suspicious packets arriving on
the network which contain any payload based attack.

We propose a system which analyzes normal payloads
for a particular service on a host and makes a set of pay-
load profiles that are expected for that service. The pay-
load’s profiles are specific to the host and the communi-
cation behavior of the service; hence same profiles are not
applicable across the different network environments. The
system calculates byte frequency distribution using 1-gram
based approach to make payload profile. The packet pay-
load length has strong impact on the byte frequency dis-
tribution, so multiple profiles are created for different pay-
load lengths. Due to this, number of profiles for particular
service becomes very large. To minimize the complexity
of profile comparisons, profiles are clustered together. The
system is trained in unsupervised way for profiles creations.
In the testing phase system captures incoming payloads and
compares the payload with stored normal profiles. If the
new payload profile does not match with any stored profile
for same service, then an alert is generated indicating suspi-
cious packet. The system can be deployed at network entry
point level or at an end host.

A similar approach is used by PAYL [18] system and
proved to be very useful for attack detection on port 21 and
80. But payload length observed on the port 21 and 80 is
generally very high. And byte frequency computation for
longer length payload becomes difficult on high speed net-
works. Also if proper care is not taken in payload profiling
such a system is vulnerable to mimicry attacks. Taking into
consideration these facts, our system makes payload pro-
files depending on content of the payload rather than using
the same approach for all payloads. PCNAD uses Content
based Payload Partitioning (CPP) which was introduced and
used by [11] and [17] for making partitions in the files ac-
cording to the file content. CPP partitions the packet pay-
load into a number of partitions and then packet profile is
computed on these partitions. We tested our system on the
1999 DARPA IDS data set [14] which is a commonly used
data set by intrusion detection research community. In the
1999 DARPA IDS data set entire packet payloads are avail-
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able which is useful of our system. We found 97.06% cor-
rectness in attack detection with 8.82% false positive rate
in the results by profiling port 80 packets on 11 CPP par-
titions in payload. The 11 CPP partitions use 62.64% of
payload length on average which is much less than payload
length used by anomaly detection system PAYL [18] (which
is 100%). This reduction in payload scanning length makes
PCNAD system operable in high speed networks. While
partitioning CPP takes into consideration payload content,
hence the system is robust against the mimicry attacks.

The rest of the paper is organized as follows. Section
2 discusses related work in network anomaly detection. In
Section 3 we describe our system working in detail. Section
4 presents the experimental results and evaluations of the
method applied to the 1999 DARPA IDS data set. In Section
5 we conclude the paper.

2 Related Work

Presently in industry rule based network intrusion detec-
tion systems such as Snort [1] and Bro [13] are most popu-
lar. These systems use signatures or fingerprints to identify
known attacks. But signature based systems are clueless in
case of novel attacks where attack pattern is not matching
with stored signatures. In such scenarios anomaly detec-
tion systems differentiate between a ’normal’ network ac-
tivity and something other than ’normal’. These systems
give better attack detection at the cost of high false pos-
itive rate. Network Anomaly detection systems such as
PAYL [18], ALAD [9], PHAD [10], SPADE [3], NIDES [4]
and NATE [16] compute statistical models for normal net-
work traffic and generate alarms when incoming traffic
shows a large deviation from the normal model. These
systems can be further classified depending on the features
used to compute the normal models. Some of these sys-
tems viz. SPADE, NIDES and PHAD systems work with
protocol headers. These systems use different features ex-
tracted from Ethernet, IP, ICMP, TCP, UDP packet head-
ers for anomaly detection. These systems have shown bet-
ter results for detecting protocol level attacks like scanning,
probing etc. As these systems ignore the payload contents,
they show very poor results for detecting application level
attacks. Few network intrusion detection systems use con-
nection and state level information for modeling profiles.

Some systems use few payload features for anomaly de-
tection. NATE [16] uses first 48 bytes as a statistical fea-
ture starting from the IP header which includes at most the
first 8 bytes of the payload of each network packet. But 48
bytes of payload is too less to find out any payload based
attack. ALAD [9] uses features depending on the first word
of each input line from the first 1000 application payloads
in addition to packet header features. ALAD system tries to
analyze the payload without any pre-knowledge just like us,
but it restricts profiling to only first 1000 lines.

Web based anomaly detection systems like [7] and [8] are

based on only packet payload. As these approaches focus
only on HTTP traffic, it takes advantage of known protocol
format for constructing profile model. But these systems are
not useful for detecting attacks on other protocols. Our sys-
tem shares many characteristics with PAYL [18] which uses
an approach based on payload byte distribution for profile
computation. PAYL uses the entire payload for profile com-
putation. Due to this system is not well suited for high speed
network with huge data travelling across the network. Our
system aims to remove this weakness of the PAYL system
by profiling payloads depending on CPP (Content Based
Payload Partitioning).

3 Payload Content based Network Anomaly
Detection

Anomaly detection systems run in two phases. In the
training phase these systems profile normal behavior of net-
work activity and store these profiles. In the testing phase
such system compares current network activity profile with
the stored profiles and report alerts when anything other
than normal profile is seen on network. For such a system
following are major design goals [18]:

1. Generality of the system: The system should be appli-
cable for broad range of applications or protocols. Due
to this anomaly detection systems which are protocol
and service independent are always preferred.

2. Incremental Profiling: The incremental profile up-
dates computed profiles to accommodate changing
communication patterns. The network activities keep
on changing; the attack detection mechanism should
proactive to accommodate these changes.

3. Low false positive rate: False positives are a major area
of concern in anomalous detection systems. As these
systems reports alert for any thing other than stored
normal profiles; accuracy in detecting truly anomalous
events is very important.

4. Resistance to Mimicry attack: In mimicry attacks, the
attacker has access to the same information as the at-
tack detection mechanism. Here the attacker attempts
to know what is ”normal” for detection mechanism.
Once this information is available, attacker crafts an at-
tack to replicate normal behavior. Such an attack may
be considered as normal packet payload by anomaly
detection system which is a serious vulnerability. The
system should be resistant to mimicry attacks.

5. Efficiency to operate in the high bandwidth environ-
ments: As high speed, high bandwidth networks be-
coming very common, anomaly detection mechanism
need to be enough efficient to scan a huge amount of
traffic.
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6. Unsupervised Learning: Anomalous detection system
requires availability of labeled data in the training
phase. Due to human errors in labeling a huge vol-
ume of data unsupervised learning is always preferred
in any anomalous detection system for normal profile
creations. Unsupervised learning requires very little or
no human intervention in the training phase.

In past few years it has been observed that, the above
design goals are difficult to achieve together. Hence differ-
ent systems attempt to balance these competing criteria’s for
payload anomaly detection.

3.1 PCNAD System Architecture

The PCNAD system architecture is shown in Figure 1.
The system has two major components Packet Profiler and
PCNAD Anomaly Detector. The Packet profiler component
deals with normal packet profiling and creates the reduced
profile model. In PCNAD Anomaly Detector module in-
coming packet is compared with stored profiles and alerts
are generated if incoming packet is significantly different
from stored profiles.

Packet Profiler
Anomaly Detector

PCNAD

CPP based profile
Computator

Length−wise and 
Profile−wise Clustering

ProfileReduce 
Model

Packet
Profile

CPP based profile
Computator

Comparator
Profile

Anamoly Detector
Packet

Incoming PacketNormal Traffic

Packet
Profiles

Figure 1. PCNAD System Architecture.

In PCNAD, we model the payload using an n-gram anal-
ysis. An n-gram is a sequence of n adjacent bytes in a pay-
load unit. A sliding window with width n is passed over
the whole payload and the occurrence of each n-gram is
counted. Recently many security systems have started us-
ing n-gram analysis [2] for anomaly detection systems.

Our system profiles the payload using 1-gram approach
in unsupervised way. A 1-gram model is considered as the
simplest model for payload profiling. This simplicity is very
useful while processing high voluminous network data. A

1-gram model requires a linear time scanning of the pay-
load data and an update of a small 256-element histogram.
This histogram stores byte frequencies observed for ASCII
characters 0-255. PAYL has shown that the 1-gram model is
sufficient and accurate for payload based attack detection.

As packet payloads show very wide variation in content,
it is necessary to cluster packet payloads according to var-
ious criterions and then apply profiling on these clusters of
packets. Our system does the payload clustering depending
on the destination port number, length of the payload, di-
rection of traffic (inbound or outbound) and byte frequency
profile of payload. This results in a much reduced profile
model which is useful in the testing phase. Each network
application has its own protocol and has its own payload
type. This payload is site specific and varies with time so
incremental profiling is required. Our system divides the
packet payload into variable length content blocks using
CPP(Content Based Partitioning). Before understanding the
training phase for packet profiling lets discuss CPP.

3.2 Understanding Content Based Payload Parti-
tioning

Content Based Payload Partitioning was introduced in
the file system domain in LBFS [11]. Autograph [6] and
Earlybird [15] uses CPP for partitioning the payload at real
time. CPP scheme determines the boundaries of each pay-
load partition based on payload content. It generates vari-
able length content block from the payload. The generated
partitions changes a little under byte insertion or deletion
from payload. This makes PCNAD system robust against
the mimicry attacks.

CPP uses Rabin fingerprinting [12] to partition packet
payload into content blocks. It computes a series of Rabin
fingerprints ri over a sliding n-byte window on the packet
payload. It starts with first n bytes in the payload and slides
one byte at a time toward the end of the payload. It is effi-
cient to find a Rabin fingerprint over a sliding window due
to the linear complexity of computations. As CPP slides its
window along the payload, it ends a content block when ri

matches a predetermined stopping criteria S. The average
content block size produced by CPP is depending on user
defined stopping criteria which is configured by the user.
We can choose stopping criteria in different ways, it does
not affect end results as long as we apply same criteria in
the training and testing phase.

Rabin fingerprint function gives an integer value (ri)
over a window size payload. If ri mod 1000 is in the range
of 550 to 600 (this is stopping criteria S we have chosen) we
declare end of the current partition and move to next char-
acter to get another partition. Else we proceed to the next
character after adding the present character to the current
partition.

As CPP decides content block boundaries probabilisti-
cally, CPP may generate very short content blocks. Very
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short content blocks do not represent byte frequency distri-
bution of the payload properly causing payload profiling is
most likely to be incorrect. Due to this in PCNAD, we im-
pose minimum content block size limit and take care that
this condition is satisfied by CPP generated partitions.

3.3 Training PCNAD for profile creations

In the training phase PCNAD calculates the payload pro-
file specific for a destination port. Since payload length ar-
riving at a particular port varies a lot, this causes variation
in payload profile. The different length payloads have dif-
ferent types of content; larger payloads are more likely to
have non-printable characters. Thus, we compute a pay-
load model for all different lengths for each port depend-
ing on direction of flow (inbound or outbound). For a real
time traffic monitoring system it is necessary to keep profile
model simple. We use the frequency of each ASCII charac-
ter 0-255 which we call as ’byte frequency’ for profile cal-
culation. But some stable character frequencies and some
variant character frequencies can result in the same average
frequency. Hence we compute the variance and standard de-
viation of each frequency as another characterizing feature.
The average and standard deviation values of 256 charac-
ters from one profile are used to compare that profile with
another profile. In the training phase we compute profile for
each specific length l of payload targeted to a destination
port d. It computes Pd,l model on packet payloads which
is byte frequency of payload with length l targeted to port d
. This generates huge number of profiles as for every small
length variations we are computing profiles differently. To
reduce information stored in the profile model we apply dif-
ferent clustering techniques on these profiles. These cluster-
ing techniques are length-wise clustering and profile-wise
clustering. PCNAD initially applies length wise clustering,
which combines profiles of length li and lj together where
difference between the lengths li and lj is less than thresh-
old lt. The resultant profile has byte frequency distribution
which is average of two profiles combined together. The re-
sultant profile represents payload’s having a length equal to
the average payload length of combined profiles. The value
of lt is kept user configurable. Once length-wise clustering
is done profile-wise clustering is applied. The profile-wise
clustering pays attention on sparse profiles. In a sparse pro-
file very few number of packets participate in the calcula-
tion of the profile. In profile-wise clustering, sparse profiles
are merged with their nearest matching profile. The near-
est matching profile is found by taking into consideration
Manhattan distance md of the profiles from each other. If
the value md is less than threshold mt, then two profiles are
combined together using the same technique used in length-
wise clustering. The value of mt is user configurable. The
graph in Figure 2 shows normalized average byte frequen-
cies observed on port 80 for characters 0-255 before apply-
ing CPP.

Up to this point we use similar techniques for payload

Figure 2. Normalized average byte frequency
distribution on port 80 using entire payload.

profiling with PAYL. But PAYL uses entire payload for pro-
file computations, which is difficult to do in high speed, high
bandwidth networks. Our system computes profile depend-
ing on only initial N partitions we got after applying CPP
on payload. The value of N is user configurable. As de-
scribed in the above section, CPP does payload partitioning
depending on the content of the payload in protocol inde-
pendent way. CPP gives an offset in payload which is last
position of N th partition. We compute the payload profile
by using payload length up to this offset. We kept number
of partitions to be used i.e. N configurable in system and
tested system for correctness of the results. Figure 3 shows
the byte frequency graph by taking into consideration 11
partitions (where we got most correct results) of payload on
port 80. As we can see graphs in Figure 2 and Figure 3
similar nature and we are not loosing any profile relevant
information after using 11 CPP partitions.

Figure 3. Normalized average byte frequency
distribution after applying CPP on port 80 us-
ing 11 partitions in CPP.
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3.4 Testing PCNAD system for attack detections

In the testing phase PCNAD compares the incoming
packet payload profile with stored profile Pd,l associated
with same destination port and having similar payload
length. This comparison is done by finding out the sim-
plified Mahalanobis distance between the stored profile and
the new profile. If incoming payload is not matching with
any of the stored profile, then an alert is generated notify-
ing suspicious packet arrival. In the testing phase as well
we use CPP to partition the incoming payload into N par-
titions. PCNAD takes into consideration payload length up
to N th partition to compute profile of the payload. Here the
value of N is equal to the one used in the training phase.
To find out the distance between stored profile and incom-
ing packet payload profile, we use simplified Mahalanobis
distance which is given by PAYL system [18]. Each pro-
file is considered as a feature vector of 256(ASCII values)
elements. The advantage of Mahalanobis distance is that, it
takes into account not only the average values but also vari-
ance and the covariance of the variables. In computing the
Mahalanobis distance high price is paid to compute multi-
plications and square roots after summing the differences
across the byte value frequencies. After noting down these
things PAYL has given simplified Mahalanobis distance for-
mula as: d(B,A) =

∑255
i=0(|Bi − Ai|/(σi + α)) where B

and A are two feature vectors, vector B is the feature vector
of the arriving payload, and A is the feature vector com-
puted in the training phase. σi is standard deviation on ith

ASCII characters while α is smoothing factor added to re-
move possibility of distance becoming infinity when σi is
zero.

In the testing phase PCNAD does incremental profiling
as well. If arriving payload was found to be normal with
comparison to some stored profile, then that stored profile
is combined with arriving payload profile using technique
used in the length-wise clustering.

4 Experimental Results

We tested PCNAD on the 1999 DARPA IDS data
set [14], which is considered as a standard data set to eval-
uate intrusion detection systems. The data consists of three
weeks of training data and two weeks of test data. Although
there are problems due to the nature of the simulation envi-
ronment that created the data, it still remains a useful set of
data to compare techniques [5].

In our experiment setup we initially implemented pay-
load based anomaly detection system which profiles the
packet taking into consideration entire payload. We con-
duct experiments using each packet as the data unit which
were inserted in mySQL database. We examined the
only inbound TCP traffic to the ports 0-1023 of the hosts
172.16.xxx.xxx.

We trained the system on the DARPA dataset using data
of week 1 and week 3 and then evaluated the detector on

data of weeks 4 and 5. We found 61 attack instances out of
62 on port 21 and port 80. Thus using full payload 98.39%
of attacks were detected. Afterwards we added CPP mod-
ule in the profiling module for selecting initial N partitions
of the packet payload and we computed payload profile on
these partitions (rather than using whole payload). We kept
number of CPP partitions to be taken into consideration for
payload profiling configurable. We got best result at 0.001
smoothing factor. The rest of configurations like lt,mt,
smoothing factor etc. kept exactly similar as that of pre-
vious system (where whole payload is taken into account
for profiling) implementation and observed correctness of
result for various choices of N .

As we increase number of partitions, the average pay-
load size taken into consideration for profile computation
goes on increasing. Also we observed an increase in the
correctness of results with increase in number of CPP par-
titions taken into consideration for payload profiling. Fig-
ure 4 shows the relevant results.

Figure 4. Percentage of attacks detected and
% of payload size used by varying CPP parti-
tions on port 80.

For 11 partitions, we found best results with 97.06% of
attacks detected correctly and using an average 62.64% of
packet payload. False positive rate observed for these con-
figurations is 0.17%. This indicates that we could save
37.36% of packet processing on port 80 which is a sig-
nificant improvement over PAYL. We got similar success
on port 21, where 96.43% of attack detected using average
60.12% of packet payload used and a false positive rate of
0.1114% when 11 partitions are used. The results are shown
in Table 1.

5 Conclusion

In this paper we proposed a system which can detect
anomalous packet payloads without taking into considera-
tion entire payload length. This is improvement to systems
like PAYL which considers whole payload for anomaly de-
tection. The experimental results prove our method good
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Payload profil-
ing using full
payload

Payload profil-
ing using CPP

Attacks detected 61 60
Average %
of payload
considered

100 61.13

Average % of
false positive
rate

0.0623 0.1407

Time required
to process 100
packets in the
training phase

102.592 ms 101.269 ms

Time required
to process 1000
packets in the
testing phase

5.171 ms 5.014 ms

Table 1. Result Summary at port 21 and 80

in attack detection on port 21 and port 80. As PCNAD
uses Content based Payload Partitioning (CPP), the system
is safe against the mimicry attacks. Presently our system
is showing poor results at other ports like 22, 23, 25. Also
false positive rate is more after using CPP partitions for pro-
filing which may be due to random nature of data at these
ports. If we combine our technique with header level, ses-
sion, and connection based information then false positive
rate can be brought down. As a future work we plan to re-
vise the partitioning criteria in order to apply this technique
successfully on other ports like 22,23, and 25.
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