
A Study of Graph Decomposition Algorithms for

Parallel Symmetry Breaking
Sayyad Nayyaroddeen, Mahak Gambhir, and Kishore Kothapalli

International Institute of Information Technology, Hyderabad

Gachibowli, Hyderabad, India 500 032.

Email: {sayyad.n,mahak.gambhir}@research.iiit.ac.in, kkishore@iiit.ac.in

Abstract—Parallel algorithms on large graphs play a promi-
nent role in various problems from several domains of sciences
and engineering. Of these, symmetry breaking problems such
as matchings and colorings are fundamental owing to a large
number of applications. Algorithms for symmetry breaking
problems are studied in several parallel/distributed settings over
the decades.

However, as the size of graphs corresponding to real-world
phenomenon increase, it is imperative to use not only just
parallelism but also algorithmic enhancements based on the
structure of real-world graphs. A popular approach in this
context is to use a graph decomposition to break the problem into
multiple subproblems the solutions of which can be used to solve
the original problem. A big question in this direction that is left
unanswered by current research is to study which decomposition
is appropriate for a given computation and a target architecture.

In this context, we address the above question with respect
to three problems: Maximal Matching (MM), Vertex Coloring
(COLOR), and Maximal Independent Set (MIS). For these three
problems, we study three different decomposition techniques
including one based on bridges, one based on a random par-
titioning, and one based on vertices of degree k for a given k.
We show that existing algorithms for the above computations
on a multi-core CPU and a GPU can be significantly improved
by making use of an appropriate decomposition of the input
graph. Our study indicates that the exact decomposition to use
depends more on the problem and is largely independent of target
architecture between the CPU and the GPU.

I. INTRODUCTION

Graphs have applications to a variety of problems in science

and engineering. This, coupled with the emergence of multi-

and many-core accelerators over the last decade, has led to

a renewed interest in parallel algorithms for graphs. Several

graph problems including shortest paths, traversals, spanning

tree construction, now are known to have very efficient imple-

mentations on parallel architectures such as multi-core CPUs,

GPUs, and heterogeneous collections, see e.g., [2], [11], [13],

[25]. Library frameworks [30] that offer a collection of parallel

implementations for graph primitives are also proposed [30].

In recent years, one is witnessing a trend where parallel

algorithms and their implementations are designed with spe-

cial focus on real-world graphs. A popular approach in this

direction is to decompose the graph into subgraphs, solve

the original problem on the subgraphs, and then assemble

the solutions on the subgraphs to arrive at a solution on the

original graph. Decompositions such as those based on Metis

and ParMetis, based on biconnected components, based on

edge partitioning, and random decompositions are currently

used by various authors for problems such as shortest paths,

and betweenness centrality [2], [11], [25], [27].

However, one important question that is left unanswered

by most current works using the decomposition model is

to understand which decomposition is most suitable for a

given graph problem and a given parallel architecture. In

this paper, we address the above question while focusing on

symmetry breaking problems. Symmetry breaking problems

include problems such as a Maximal Matching (MM), Col-

oring (COLOR), and Maximal Independent Set (MIS). These

problems have applications to settings such as scheduling and

efficient sparse matrix computations [29] and are being studied

actively in the parallel computing community [1], [6], [10].

In our study, we consider four light-weight decomposition

techniques: based on bridges (BRIDGE), based on random

partitioning (RANDOM), and based on vertices of degree

k for a given k (DEGk), Metis/ParMetis based (METIS).

These decompositions induce 2-edge connected components,

random induced subgraphs, induced subgraphs of high and

low degree vertices, and induced subgraphs with fewer cross

edges, respectively.

Our study in this paper has two lessons. Firstly, we show

that graph decomposition can lead to significant parallel per-

formance gains for MM, COLOR, and MIS. Secondly, our

study indicates that within these problems, the best partitioning

mechanism depends on the problem and is relatively agnostic

to the architecture between the CPU and the GPU. For

instance, for the coloring problem on multicore CPUs, we

show that the DEGk partitioning with k = 2 is most suitable as

the DEGk partitioning induces subgraphs whose independent

coloring is also a valid coloring (See Section IV).

A summary of our results is contained in Table I where we

show the best decomposition strategy and the corresponding

speed up obtained for problems MM, COLOR, and MIS. It

can be noticed from Table I that the improvement obtained

by the decomposition based algorithm is significant except for

the case of the COLOR problem on GPUs.

A. Related Work

One of the prominent works that suggests the use of graph

decomposition in solving symmetry breaking problems is that

of Hoschbaum [16]. Hoschbaum [16] uses a decomposition

based on the biconnected components of the graph to arrive

at solutions for problems including vertex cover, matching,
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TABLE I: A Summary of our Results.

CPU GPU

Problem Decomposition Speedup Decomposition Speedup

MM RAND 3.5X RAND 2.53X

COLOR DEGk 1.27X RAND 1X

MIS DEGk 3.39X DEGk 2.16X

coloring and maximum flow problems. In addition to studying

the techniques proposed in [16], we focus on the applicability

of other decomposition strategies and also study parallel

algorithms.

Addressing the concerns of practicality, in recent years,

symmetry breaking on modern parallel architectures is be-

ing keenly studied. Prominent works in this direction for

MM include the algorithm and its implementation by Auer

and Bisseling [1], Blelloch [6], Birn [15]. For COLOR, the

vertex−based and the edge−based algorithms of [10] respec-

tively improve on the early work of [7], [12]. For MIS, the

latest reported results are from Blelloch [6]. More details of

these and related works are provided in Sections III–V.

B. Organization of the Paper

The rest of the paper organized as follows. In Section II

we present the decomposition techniques. In Sections III–V

we discuss the application of the decomposition algorithms

to MM, COLOR, abd MIS respectively. The paper ends with

concluding remarks in Section VI.

II. DECOMPOSITION ALGORITHMS

In this section, we briefly describe the decomposition tech-

niques used in the subsequent sections. We also outline parallel

algorithms that can arrive at the required decomposition.

A. BRIDGE: A Bridge Based Decomposition Algorithm

Algorithm 1 Bridge Decomposition Algorithm

1: Dcmp Bridge(Graph G)
2: T ← BFS(G) /*STEP 1*/

3: for all e = (w, v) ∈ G \ T do

4: Mark the tree edges in the process of computing the

least common ancestor of w and v

5: /* STEP 2 */

6: for e ∈ E(T ) do

7: If e is not marked then B ← B∪ {e}
8: return B and {G1, G2, ...} as the connected components

of G−B

Algorithm 1 (see also [8]) describes an approach to de-

compose the graph into 2-edge-connected components. In

Algorithm 1, there are two major steps to decompose a graph.

In Step 1, a BFS tree is found and in the next step the least

common ancestor is found for each of non−tree edges. To

compute the BFS tree we take an arbitrary vertex r as root

and perform a parallel BFS. We fix vertex r as the root of the

tree. The output of Step 1 is a parent array, P (v) and a level

array, L(v). For the root r, we set P (r) = −1, and L(r) = 0.

We use a basic property of the graph to find bridges. Any

bridge in a graph can never be a part of a cycle. In Step 2,

for each non−tree edge e = xy, we find the least common

ancestor (LCA) of x and y by walking up the tree towards

the root from x and y in parallel. Each edge encountered in

this walk is marked. Edges of T that are not marked at the

end of the for-loop in Step 2 are the bridges of G. Given the

bridges of G, the graph G can be decomposed by removing

these bridges. This results in a collection of 2-edge connected

subgraphs G1, G2, · · · , of G. An example for the BRIDGE

decomposition is given in Figure 1 (b).

B. RAND: A Randomized Decomposition Algorithm

Algorithm 2 Randomized Decomposition Algorithm

1: Dcmp Rand(Graph G, size)
2: for all v ∈ V in parallel do

3: Choose an integer i ∈ {1, 2, · · · , k} uniformly at ran-

dom

4: Assign v to Vi

5: return G[Vi] for 1 ≤ i ≤ k and Gk+1 as the edge induced

subgraph of {uv|u ∈ Vi and v ∈ Vj , i �= j}.

We study a randomized decomposition of a graph G as

follows. For a given k ≥ 2, the vertex set is partitioned

into V1, V2, · · · , Vk subsets. For each i, the set to which vi
belongs to is chosen uniformly at random. The graph G can

be decomposed as the induced subgraphs Gj = G[Vj ] for

1 ≤ j ≤ k. We also let Gk+1 be the subgraph that has edges

uv of G such that u and v do not belong to the same vertex

partition. We also refer to the edges in Gk+1 as cross edges.

The graphs Gj , for 1 ≤ j ≤ k + 1, may be disconnected

in nature. We expect that applications that use the RAND

decomposition will work with graphs that are not necessarily

connected. The interest in this decomposition technique is due

to its simplicity. It may be noted that a similar decomposition

is used in designing algorithms in the k-machine model [20].

A pseudocode for RAND decomposition is given in Algorithm

2. An example for the RAND decomposition is given in Figure

1 (c).

C. DEGk: A Degree Based Decomposition Algorithm

Algorithm 3 Degree-k Decomposition Algorithm

1: Dcmp Degreek(Graph G, k)
2: VL ← ∅
3: VH ← ∅
4: for all v ∈ V in parallel do

5: if degree(v) ≤ k then

6: VL ← VL ∪ {v}
7: else

8: VH ← VH ∪{v}
9: return GL ← G[VL]; GH ← G[VH ]; and GC ← G \
{GH ∪GL}

In the Degree-k based decomposition, the graph is decom-

posed into three subgraphs GH , GL and GC . The subgraph

599599



Fig. 1: (a) input graph G. (b) BRIDGE decomposition of G. (c) RAND decomposition of G with group size 2. Vertices

{b, c, e, h, g} are in group 1 and {a, d, f} are in group 2. (d) DEG2 decomposition of G.

TABLE II: LIST OF GRAPHS USED IN OUR EXPERIMENTS
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GH is the subgraph induced by vertices degree more than k.

The subgraph GL induced by vertices of degree at most k. GC

includes the cross edges between GH and GL. Notice that

these resulted subgraphs need not necessarily be connected.

We expect that applications that use the DEGk decomposition

will work with graphs that are not necessarily connected. This

decomposition is seen to be helpful in cases where a parallel

traversal of the graph, such as BFS, can be slow due to the

large diameter of the underlying graph. A pseudocode for

DEGk decomposition is given in Algorithm 3. An example

for the DEGk decomposition is given in Figure 1 (d).

D. Decomposition Time

We briefly study the time taken by the decomposition algo-

rithms. We start by describing the dataset and the experimental

platform, also used in the rest of the paper.

1) Dataset: We experiment on different classes of undi-

rected graphs with varying number of vertices and edges.

The graphs are obtained from the University of Florida graph

dataset [9]. The graphs are listed in Table II. For graphs that

are not connected, we add additional edges to make the graph

connected. Directed edges are converted to undirected edges

and self-loops in the graphs are ignored.
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Fig. 2: Figure shows the time required for each decomposition

technique for the graphs listed in Table II.

2) Platform: Our experiments are conducted on a multicore

CPU and an NVidia GPU. We use the Intel E5-2650 CPU

for our experiments on a multicore CPU. The E5-2650 is

a dual processor with each processor having 10 cores. With

hyperthreading each core can support two logical threads. The

cores operate at a frequency of 2.3 GHz that can be boosted

up to 3 GHz using the turbo boost technology. The E5-2650

has 128 GB RAM and a memory bandwidth of 68 GB/s. In

addition, the memory hierarchy includes a 64 KB L1 cache

per core, a 256 KB L2 cache per core, and a shared 25 MB

L3 cache.

The NVidia Tesla K40c GPU houses 2880 cores over

15 SMs, with each core clocked at 745 MHz, providing

a peak double precision floating point performance of 1.43

TFLOPS and single precision floating point performance of

4.29 TFLOPS. The K40c GPU has an on board GDDR5 RAM

of 12 GB that is served by a 288 GB/sec channel. Each SM

also has a 64 KB configurable cache to exploit data locality.

3) Results: Figure 2 shows the timings for each of the

decomposition techniques on the E5-2650 CPU running 80

threads. Among all the decomposition techniques, DEG2 de-

composition takes the least time since it involves a simple

computation. RAND decomposition is the second fastest of

the four techniques. In BRIDGE decomposition, the BFS
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computation can become a bottleneck on graphs with a large

diameter in particular. The timings given in Figure 2 are for

only decomposing each graph to 10 sub-graphs when using the

RAND decomposition algorithm. As the number of sub-graphs

increases time also increases. A similar trend is observed also

on GPUs.

Remark 1: PMETIS [19] is another popular graph de-

composition technique that is used in several parallel graph

algorithms. However, for the applications we consider in this

paper such as MM, COLOR, and MIS, the current best

practical implementations [6], [10] in most cases finish faster

than the time it takes to decompose the graph using PMETIS.

For this reason, we exclude PMETIS from our study.

III. APPLICATION TO MAXIMAL MATCHING

Given a graph G = (V,E) on a set of vertices V and edges

E, a matching M is set of edges such that each vertex v has at

most one edge in M that is incident on v. The number of edges

|M | in matching M is called the cardinality of the matching.

A matching M is called maximal if no proper superset of

M also is a matching. Matching has applications to scientific

computing such as in the solution of sparse matrix-vector

multiplication [29] and in multi-level graph algorithms for

partitioning [15]. We start by reviewing existing approaches

to maximal matching in Section III-A. In section III-B, we

show our algorithms and follow it with experimental results

in Section III-C.

A. Existing Algorithms

One can summarize most existing algorithms [1], [5], [6],

[17] on mutlicore CPUs and GPUs for obtaining a maximal

matching as follows. Vertices that are yet unmatched find a

potential mate and propose to match with the chosen mate. A

subset of these proposals are found viable. This creates a set

of matched vertices and a set of vertices are left unmatched.

The vertices that are matched will also imply that some edges

are forbidden to be used for extending the matching. After

removing these forbidden edges, the algorithm will work on

the unmatched vertices and the remaining edges.

a) Multicore CPU Algorithms: Blelloch et al. [6] pro-

pose a randomized greedy parallel algorithm for maximal

matching. This algorithm, denoted Algorithm GM in the rest

of the discussion, assigns random priorities for the edges of

G. For each vertex, its adjacent edges are sorted by priority.

The priorities on the edges can be used to induce a Directed

Acyclic Graph (DAG) with edges that have no incoming

neighboring edges with higher priority called as roots of the

DAG. A matching can be found by removing the roots from

the DAG. The process is repeated until there are no more roots

to remove in the DAG. For more details, we refer the reader

to [6].

b) GPU Algorithms: On GPUs, Fagginger and Bisseling

[1] proposed a randomized matching algorithm. This has since

been improved by Birn et al. [5] via a procedure that relies

on local maxima of the edge weights. The algorithm from [5]

starts with an empty matching M . Every vertex tries in parallel

to find the adjacent heaviest edge. If a vertex v finds an edge

vw as local maximum and the other end point w also finds

that wv as the local maximum, then the edge vw is added to

the matching M . The adjacent edges of vw, and the vertices

v, w are removed from the graph G. This process repeats until

there are are no more edges left to be matched. In the rest of

the paper we refer to this algorithm as Algorithm LMAX.

B. Maximal Matching Algorithms Based on Graph Decompo-

sition

For all the decomposition based maximal matching al-

gorithms on multicore CPUs, we use Algorithm GM as a

subroutine and also as a baseline in our experimental results.

For our algorithms on GPUs, we use Algorithm LMAX as a

subroutine and also as a baseline in our experimental results.

In our pseudocodes we use MM acronym for corresponding

algorithms.

1) Algorithm MM-Bridge: In Algorithm MM-Bridge, we

apply the BRIDGE decomposition to the given input graph G.

As described in Section II, BRIDGE decomposition reduces

the graph G into a collection of two-edge-connected compo-

nents G1, G2, · · · , and a set of bridges B := {e1, e2, · · ·}. We

call the end points of the edges in B as bridge vertices. We

now process G1, G2, · · · in parallel to find maximal matchings

M1,M2, · · · respectively using a suitable maximal matching

algorithm. Based on the matching Mc := ∪iMi, we collect the

unmatched bridge vertices, say V ′, in Gb. Next we augment

the matching M by finding, in parallel, a maximal matching

Mb in the subgraph of G induced by V ′. The matching

M := Mc ∪Mb is a maximal matching of G. A pseudocode

for Algorithm MM-Bridge is given in Algorithm 4.

2) Algorithm MM-Rand: In Algorithm MM-Rand, we ap-

ply the RAND decomposition given in Section II to the

input graph G prior to computing a maximal matching in

G. The RAND decomposition produces induced subgraphs

Gi = G[Vi] of the k partitions of V and an edge induced

subgraph Gk+1 consisting of cross edges. The nature of the

subgraphs produced by the RAND decomposition depends

upon the number of partitions we make. If the number of

partitions increases, the sparsity of the decomposed graph also

increases. So, we use the partition size k close to the average

degree of the graph and obtain the decomposition. We compute

a maximal matching Mj in the resulting induced subgraphs

Gj = G[Vj ] for 1 ≤ j ≤ k. Let MIS := ∪jMj be a matching

in G. We use MIS to remove vertices that are matched. We

then process the remaining subgraph of Gk+1 and obtain a

maximal matching Mk+1. The matching M := MIS ∪Mk+1

is a maximal matching in G. A pseudocode for Algorithm

MM-Rand is given in Algorithm 5.

3) Algorithm MM-Degk: Algorithm MM-DEGk applies the

DEGk decomposition given in Section II to the input graph

G before computing a maximal matching of G. We use

k = 2 in the DEGk decomposition. The DEGk decomposition

produces three subgraphs GH ,GL and GC , that are induced by

vertices of degree more than k, at most k, and the cross edges

respectively. We first find a matching MH in the graph GH .

We can then use MH to remove vertices in GL ∪GC that are

matched. In the remaining GL∪GC , we then find a matching
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Algorithm 4 MM-Bridge

1: Gc, Gb = Dcmp Bridge(G)
2: Mc ← ∅
3: Mb ← ∅
4: Mc ← MM(Gc)

5: V
′

← unmatched vertices in Gb using Mc

6: Mb ←MM(G[V ′])
7: return Mb ∪Mc

Algorithm 5 MM-Rand

1: {Gi : 1 ≤ i ≤ (k + 1)} = Dcmp Rand(G)
2: GIS = Gi : 1 ≤ i ≤ k

3: MIS ← ∅
4: Mk+1 ← ∅
5: MIS ← MM(GIS )

6: V
′

← unmatched vertices in Gk+1 using
MIS

7: Mk+1 ← MM(Gk+1[V
′])

8: return MIS ∪Mk+1

Algorithm 6 MM-Degk

1: GH , GL, GC = Dcmp Degreek(G, k)
2: M ← ∅
3: MH ← ∅
4: GLC ← GL ∪GC

5: MH ← MM(GH )

6: V
′

← unmatched vertices in GLC using
MH

7: MLC ← MM(GLC [V
′

])
8: return MH ∪MLC

MLC . Now, M := MH ∪MLC is a maximal matching in G.

A pseudocode for Algorithm MM-Degk is given in Algorithm

6.

C. Experimental Results

In this section we study the performance of Algorithms

MM-Bridge, MM-Rand, and MM-Degk for maximal matching

compared to Algorithms GM and LMAX on the graphs listed

in Table II. In our implementation of Algorithm GM, we use

the vertex numbers to help in the selection of potential mates.

In particular, for every vertex its neighbor with lowest id is

the potential mate. In the worst case, if every vertex proposes

to its potential mate it can result in a long chain of proposals.

In the end, out of each such long chain of proposals, only

one edge would get matched. Other vertices in the chain of

proposals fail to do so. We call this behavior as vain tendency.

a) Experiments on Multicore CPUs: Figure 3 (a) shows

the absolute timings of Algorithm GM and the decomposition

based algorithms on the multicore CPU.

It can be seen from Figure 3(a) that decomposition based

algorithms MM-Bridge and MM-Degk do not perform better

than Algorithm GM. This is due to the fact that the number

of edges removed in BRIDGE and DEG2 decomposition are

small enough that the algorithms still cannot get out of the

vain tendency. On the other hand, Algorithm MM-Rand tends

to perform better than also Algorithm GM. For the RAND

decomposition, we use 10 partitions in Algorithm MM-Rand.

Since the graph obtained by the RAND decomposition would

be sparser than the input graph G, Algorithm MM-Rand is

often seen to avoid the vain tendency property.

For the graph instance rgg-n-2-24-s0 it is observed

that with ten partitions, RAND decomposition creates induced

subgraphs which together contain 10% of the edges of G.

Algorithm MM-Rand, applied to the induced subgraphs is

seen to match about 70% of vertices in the induced subgraphs

within 17 iterations and the remaining matches are found in

another 400 iterations approximately. Algorithm GM requires

on the order of 14,000 iterations to find a maximal matching

on this instance. This huge difference in the behavior of the

algorithm on random subgraphs of the entire graph results

in a huge speedup on this instance. A similar behavior is

observed on the instance rg-n-2-23-so. On the other hand,

Algorithm MM-Rand tends to perform poorly on instances

kron-g500-logn20 and kron-g500-logn21 due to

the large average degree of these graphs. The average degree of

these graphs is close to 85 and the partition size we used fails

to create a sparse enough graph. However, if we increase the

size of the partitions to 100 for these instances then a speedup

is observed. The average speedup obtained by Algorithm MM-

Rand is 3.5 1.

b) Experiments on GPUs: Figure 3 (b) shows the ab-

solute timings of Algorithm LMAX and the decomposition

based algorithms on the GPU. As Algorithms GM and LMAX

follow a similar model in finding potential mates and matches,

we notice a similar trend in the performance of Algorithms

MM-Rand on the CPU and the GPU. Just as on the CPUs,

for graphs rgg-n-2-24-s0 and rgg-n-2-23-s0, the

high speedup acheived is on account of Algorithm MM-Rand

being able to match a large portion of vertices in the induced

subgraphs. On the other hand, on instance lp1, Algorithm

LMAX matches the 90% of vertices in first iteration whereas

Algorithm MM-Rand matches only 25% of vertices. Thus,

there is a slowdown on the instance lp1. The average speedup

obtained by the Algorithm MM-Rand on GPUs is 2.531.

D. Discussion

The above suggest that on both multicore CPUs and GPUs,

using a random partitioning is a good strategy to obtain a

maximal matching in a sparse graph. On both the CPU and

the GPU, we did experiment varying the number of partitions

when using the RAND decomposition. It is observed that

as the number of partitions increases there is slowdown in

the performance of Algorithm MM-Rand. As the number of

partitions increases the induced subgraphs tend to be sparser

resulting in less number of matches within the subgraphs. We

used 10 partitions on the CPU and 4 on the GPU.

IV. APPLICATION TO COLORING

A vertex coloring of a graph is an assignment of colors to

vertices such that no two adjacent vertices are assigned the

same color. The twin objectives of the graph coloring is to

minimize both the number of colors used and the time required

to obtain the coloring. Vertex coloring has applications to a

variety of problems including task scheduling (see also [10],

[26]).

A. Existing Algorithms

One of the most prominent algorithms for obtaining an

O(Δ) vertex coloring in the parallel/distributed setting is

1The average speedup is calculated by excluding the instances
rgg-n-2-23-s0 and rgg-n- 2-24-s0.
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Fig. 3: Figure (a) shows the absolute timings of GM and decomposition based algorithms for maximal matching for the graphs

listed in Table II with 80 threads on the CPU. Figure (b) shows the absolute timings of algorithms LMAX and decomposition

based algorithms for maximal matching for the graphs listed in Table II on the GPU. The speedup obtained by Algorithm

MM-Rand is shown on the top of the bars with respect to Algorithms GM and LMAX on the CPU and the GPU respectively.

the algorithm of Luby [23]. The algorithm of Luby uses

randomization and can be made to run as a PRAM algorithm

that requires O(logn) time and O(m + n) work. Since then

there has been a lot of work in the distributed setting and also

in the parallel setting. Important works include the algorithm

of Barenboim and Elkin [3] for bounded arboricity graphs and

the algorithm of Barenboim et al. for general graphs [4].

With respect to the practical setting, Jones and Plassman

[18] proposed an algorithm based on independent sets. Hasen-

plaugh et al. [14] studied the algorithm of Jones and Plassman

[18] with vertex ordering such as largest degree first and small-

est degree first. These algorithms are proposed on multicore

CPUs. Gebremedhin and Manne [12] and Catalyurek et al.

[7] study a greedy/speculative optimistic coloring algorithm

where each thread tries to find the coloring of a vertex

independently. Vertices with a color conflict are uncolored and

the process repeats until all vertices are colored. Rokos et

al. [26] proposed a variant of speculative coloring algorithm

from [7] on multicore and manycore architecture that uses a

per-vertex FORBIDDEN array that stores colors forbidden for

each vertex. The size of the FORBIDDEN array is set at the

maximum degree of the graph. In a recent work, Deveci et

al. [10] made an improvement over the speculative algorithm

from [7] by using a fixed size FORBIDDEN array. Deveci et

al. [10] proposed two variants: a vertex−based algorithm and

an edge−based algorithm for manycore architectures.

The vertex−based algorithm from [10], denoted Algorithm

VB, uses a fixed size FORBIDDEN array to assign the colors

to vertices. Every vertex searches for valid color with in a fixed

range which is the size of the FORBIDDEN array in parallel.

If a valid color is not found then OFFSET variable is used

to increase the color range. Once all vertices are colored then

vertices with conflicting colors are detected. These vertices try

to obtain a valid color in the next round. This process repeats

until all vertices obtain a valid color. The edge−based algo-

rithm from [10] is designed to suit SIMD (Single Instruction

and Multiple data) architectures. The edge−based algorithm

proceeds by giving the smallest available color to every vertex.

Color conflicts are detected by checking whether the two end

points of any edge have the same color or not. If they have the

same color then the color of the endpoint with the lowest id is

reset. This process repeats till all vertices get a valid coloring.

Instead of a FORBIDDEN array, a 32 bit integer is used to

represent the availability of the colors. In rest of the paper we

refer to this algorithm as Algorithm EB.

B. Coloring Algorithms based on Graph Decomposition

From our experimentation, we noticed that Algorithm VB,

originally proposed for manycore settings [10], is also suitable

for multicore CPUs and outperforms the algorithm from [26].

Hence, on multicore CPUs, we use Algorithm VB as a

subroutine to find the coloring and also as a baseline for our

experiments. On GPUs, we use Algorithm EB as a subroutine

to find the coloring and also as a baseline for our experiments.

1) Algorithm COLOR-Bridge: On the input graph G, we

first use the BRIDGE decomposition as described in Section

II. Let the 2-edge-connected components of G be G1, G2, · · ·
and let B be the set of bridges. Let Gc := ∪iGi. We can

notice that the components Gc can be colored with the same

set of colors and independently in parallel. Once a coloring Cc

of Gc is obtained, the validity of Cc is tested with respect to

G and vertices in a color conflict are identified. These vertices

are recolored along with the graph consisting of the edges in

B. The coloring thus obtained is a valid coloring of G. A

pseudocode for COLOR-Bridge is given in Algorithm 7.

2) Algorithm COLOR-Rand: We start by using the RAND

decomposition to decompose the input graph G. Recall that

RAND decomposition creates a partitioning of vertices into

V1, V2, · · · , Vk and a set of cross edges Gk+1. We color

induced subgraphs Gi = G[Vi] for 1 ≤ j ≤ k in parallel with
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Algorithm 7 COLOR-Bridge

1: Gc, Gb = Dcmp Bridge(G)
2: Cc(v)← 0 for all v ∈ V

3: C(v)← 0 for all v ∈ V

4: Cc ← COLOR(Gc)
5: C ← Cc

6: V
′

← conflicted vertices Gc ∪Gb using C

7: Color V
′

in Gc ∪ Gb and update the color
of V ′ in C

8: return C

Algorithm 8 COLOR-Rand

1: {Gi : 1 ≤ i ≤ (k + 1)} =Dcmp Rand(G)
2: GIS = Gi : 1 ≤ i ≤ k

3: C(v)← 0 for all v ∈ V

4: CIS(v)← 0 for all v ∈ V

5: CIS ← COLOR(GIS )
6: C ← CIS

7: V
′

← conflicted vertices of G using C

8: Color V
′

in GIS ∪ Gk+1

9: upate the color of V ′ to C

10: return C

Algorithm 9 COLOR-Degk

1: GH , GL, GC = Dcmp Degreek(G, k)
2: C(v)← 0 for all v ∈ V

3: CH(v)← 0 for all v ∈ V

4: CH ← COLOR(GH )
5: C ← CH

6: Color GL in GL ∪GC using k+ 1 sized
FORBIDDEN array and update the color
of vertices in GL to C

7: return C

an identical palette. Let CIS denote the coloring obtained for

the induced subgraphs. We check the validity of CIS with

respect to G and vertices whose colors conflict are collected.

In a latter step we recolor the vertices in a color conflict

with respect to the coloring CIS , along with the graph Gk+1.

The coloring thus obtained is now a valid coloring of G. A

pseudocode for COLOR-Rand is given in Algorithm 8.

3) Algorithm COLOR-Degk: In Algorithm Color-Degk, We

decompose the input graph G using the DEGk decomposition

where we use k = 2. Recall that Degk decomposition gives

three subgraphs GH ,GL,GC . We first obtain a coloring of GH

and denote the coloring as CH . As only one end point of

the edges in GC is colored according to the coloring CH , no

vertices are in color conflict with respect to the coloring CH .

When k = 2, vertices in GL have degree at most 2. We use an

additional k+1 colors max(CH)+ 1 to max(CH)+ k+1 to

obtain the coloring of GL. We initialize the color of of vertices

in GL with max(CH)+1. We use a k+1 sized FORBIDDEN

array to check the availability of colors. Vertices that have a

color conflict use the FORBIDDEN array to obtain a new

color that is potentially valid. This process repeats in iteration

until all vertices in GL are validly colored. When k = 2,

Algorithm COLOR-Degk uses a FORBIDDEN array of size

3 for coloring GL. Using a small sized FORBIDDEN array

improves the performance of Algorithm COLOR-Degk. It is

easy to see that the coloring obtained CH∪CLC is the coloring

of G. A pseudocode for COLOR-Degk is given in Algorithm

9.

C. Experimental Results

We study the performance of the decomposition based algo-

rithms Color-Bridge, Color-Rand, and Color-Degk on graphs

listed in Table II.

a) Experiments on Multicore CPUs: In our implementa-

tion of Algorithm VB, we keep the size of the FORBIDDEN

array to be the average degree of the graph being colored.

Figure 4(a) shows the absolute timings of Algorithm VB and

the decomposition based algorithms on the graphs listed in

Table II.

For Algorithm COLOR-Rand, it can be noticed that for

every cross edge uv, with u ∈ Gi and v ∈ Gj for distinct i

and j, the colors of u and v obtained when coloring subgraphs

Gi and Gj may conflict. This results in a necessary recoloring

of such end points resulting in additional time taken to finish

the coloring. As the number of partitions increase, the number

of cross edges increase in expectation, and hence the number

of end points whose colors conflict also increases. In our

experiment with two partitions, we found that about 45%

vertices enter into a color conflict after the coloring of induced

subgraph. The recoloring of these vertices increases the overall

time resulting in a decline in the speedup. Algorithm COLOR-

Bridge also faces a similar problem.

On the other hand, in Algorithm COLOR-Degk once GH

is colored, no such recoloring is required. Further, the vertices

in GL can be colored using a smaller palette of k + 1
colors. As real-world graphs tend to have a good number of

vertices of degree at most 2, Algorithm COLOR-Deg2 can

exploit this property and obtain a speedup over Algorithm VB.

The average speedup obtained by Algorithm COLOR-Deg2 is

1.27X.

For the above reasons, among the decomposition based

algorithms, Algorithm COLOR-Deg2 performs better than

Algorithm VB on the CPU. On the other hand, there is

a decline in the performance of Algorithm COLOR-Degk

for instances c-73, rg-n-2-22-so and rg-n-2-23-so.

Decomposing graph c-73 using RAND decomposition takes

time that is relatively large and hence no speedup is observed.

Graphs rg-n-2-22-so and rg-n-2-23-so have very

few vertices of degree at most 2 resulting in no improvement

for Algorithm Color-Deg2.
b) Experiments on GPUs: Figure 4 (b) shows the abso-

lute timings of Algorithm EB and the decomposition based

algorithms. It can be seen that the decomposition based al-

gorithms fail to achieve noticeable speedup in most instances.

Moreover, for instances c-73 and lp1, Algorithm EB finishes

faster than the time taken for the decomposition of the graphs.

An additional reason for the lack of speedup is the impact of

cross edges in coloring.

D. Discussion

The above suggest that on multicore CPUs using the DEGk

partitioning is a good strategy to obtain a coloring in a

sparse graph. With respect to Algorithm Color-Rand, we did

experiment varying the number of partitions when using the

RAND decomposition. It is observed that as the number of

partitions increases there is slowdown in the performance of

Algorithm Color-Rand. As the number of partitions increases

the increase in the number of cross edges results in more color

conflicts.

The number of colors used by the decomposition based

algorithms did not differ significantly compared to Algorithms
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Fig. 4: Figure (a) shows the absolute timings of the VB and decomposition algorithms on Y-axis for the graphs listed in Table

II with 80 threads configuration and numbers on the top of the bars shows the speedup obtained by the COLOR-Degk with

respect to Algorithm VB. Figure (b) Shows the absolute timings of EB and decomposition algorithms on Y-axis for the graphs

listed in Table II on GPU and numbers on the top of the bars shows the speedup obtained by the COLOR-Rand with respect

to Algorithm EB.

Algorithm 10 MIS-Bridge

1: {Gi : i ≥ 1} =Dcmp Bridge(G)
2: GB := G[B]
3: Hi ← Gi \Gb , for all i ≥ 1
4: if Δ(∪Hi) < Δ(GB) then
5: IA = LubyMIS(∪Hi)

6: else
7: IA = LubyMIS(GB)

8: Remove vertices which have neighbours in
IA from the remaining graph to get R

9: IB = LubyMIS(R)

10: return IA ∪ IB

Algorithm 11 MIS-Rand

1: {Gi : 1 ≤ i ≤ (k + 1)} = Dcmp Rand(G)
2: Hi ← Gi \Gk+1 , for 1 ≤ i ≤ k

3: if Δ(∪Hi) < Δ(Gk+1) then
4: IA = LubyMIS(∪Hi)

5: else
6: IA = LubyMIS(Gk+1)

7: Remove vertices which have neighbours in IA
from the remaining graph to get R

8: IB = LubyMIS(R)

9: return IA ∪ IB

Algorithm 12 MIS-Degk

1: GH , GL, GC = Dcmp Degreek(G, k)
2: IC = LexMIS(GC )

3: Remove vertices from GL and GH based
on IC to get reduced graphs G′

L
and G′

H

4: GR = G′

L
∪G′

H

5: IR = LubyMIS(GR)

6: return IC ∪ IR

VB and EB. Algorithm COLOR-Rand increases the average

number of colors by 3.9%, 3.4% on CPU, GPU respectively.

Algorithm COLOR-Degk uses 3% more colors on CPU and

4.6% on GPU. Algorithm COLOR-Bridge does not use any

additional colors on CPU, where as on GPU it uses 4.5% more

colors.

V. APPLICATION TO MIS

The Maximal Independent Set (MIS) problem is one of

the most fundamental problems in graph theory, especially

in the parallel/distributed setting. Given a graph G(V,E), an

independent set of G is defined as a subset I of the vertex

set V such that vertices in I are mutual non−neighbors in

G. The set I qualifies as a maximal independent set (MIS) if

every vertex of the graph either belongs to the set I , or has at

least one neighbour in it. Computing an MIS is an important

step in solving numerous graph problems in fields as varied as

routing and networking, topological control, scheduling, and

work distribution and optimization. See for instance [24].

A. Existing Algorithms

The first (poly)logarithmic round algorithm to find the MIS

in a parallel/distributed setting, referred to as LubyMIS, is

given by Luby [22]. This algorithm uses randomization to

break symmetry. It guarantees that in each iteration of the

algorithm, at least half the vertices are eliminated, leading to

completion in an expected O(logn) parallel time/distributed

rounds. Since the algorithm of Luby, there has been significant

work on the problem, including work focusing on special

classes of graphs such as graphs with bounded growth [28]

and graphs with bounded arboricity [4]. Blelloch et al. [6]

proposed a parallelization of the popular greedy algorithm to

obtain the MIS of the graph. This algorithm has an expected

run-time of O(log2 n) in the PRAM sense.

B. Algorithms Based on Decomposition

In this section, we describe algorithms for obtaining an MIS

using the decomposition techniques from Section II. In our al-

gorithms, we use Algorithm LubyMIS as a subroutine. We also

use Algorithm LubyMIS as a baseline for our experiments.

1) Algorithm MIS-Bridge: To obtain an MIS of a graph

G, Algorithm MIS-Bridge uses the BRIDGE decomposition

which breaks G into a set of 2-edge connected components

G1, G2, · · · and a set B of bridges. Let Hi := Gi\B, for i ≥ 1,

be the graph obtained by removing end points of edges in B
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from each Gi. Let IA be an MIS in ∪iHi. Notice that IA is an

independent set of the graph G but is not necessarily maximal.

To extend IA as an MIS, we eliminate from G vertices that

are in IA or have a neighbor in IA to get a reduced graph R.

Let IB be an MIS of R. Then I = IA ∪ IB is an MIS of the

graph G.

It is to be noted that computing IA followed by obtaining the

graph R, followed by computing IB can be done alternatively

by first computing IB as an MIS of GB , and using IB to

obtain the graph R followed by computing IA. We observed

that computing an MIS on the sparser of the graphs ∪iGi \B,

or GB is beneficial in practice. Hence, we base the choice on

the average degree of the graphs in question. The pseudocode

for this algorithm is given in Algorithm 10.

2) Algorithm MIS-Rand: In Algorithm MIS-Rand, we use

the RAND decomposition approach prior to computing an

MIS of the input graph. The RAND decomposition produces

k induced subgraphs Gi = G[Vi] and the graph Gk+1

consisting of cross edges according to the partitioning of V .

Let Hi := Gi \Gk+1 and H := ∪Hi. We start by computing

an MIS IA in H using Algorithm LubyMIS. Using IA, we

can then remove from G vertices that are either in IA or have

a neighbor in IA to get a reduced graph R. We then compute

an MIS IB of the remaining graph using again the Algorithm

LubyMIS. It can be seen that I := IA ∪ IB is an MIS of G.

As in the case of Algorithm MIS-Bridge, IA and IB can be

computed in any order. We base our decision on which of the

two graphs ∪iGi or Gk+1 is sparser. The pseudo-code for this

method is given in Algorithm 11.

3) Algorithm MIS-Deg2: In Algorithm MIS-Deg2, we use

the DEGk decomposition approach with k = 2 prior to

computing an MIS of the input graph. The output of the

decomposition is seen as consisting of graphs GL, GH , and

GC , which are respectively the graphs induced by vertices of

degree at most 2, vertices of degree greater than 2, and the

cross edges. With its degree bounded by two, the graph GC

necessarily consists only of a set of paths that do not overlap

with each other. We start by computing an MIS IC in GC .

Instead of Algorithm LubyMIS, we use the algorithm from

[21, Section III] that is designed for bounded degree graphs.

The algorithm of [21] requires orientation on the edges of

the graph. We use the vertex numbers to induce the required

orientation. Once an MIS IC in GC is obtained, we use IC
to remove from G vertices that are either in IC or have a

neighbor in IC . An MIS IR is computed in the graph that

remains using Algorithm LubyMIS. It can be seen that IC∪IR
is an MIS of G. Algorithm 12 gives a high level description

of the procedure.

C. Experimental Results

We study the performance of the decomposition based

algorithms MIS-Bridge, MIS-Rand, and MIS-Degk on the

graphs listed in Table II.

1) Experiments on the CPU: From Figure 5, it can be seen

that Algorithm MIS-Bridge is the slowest in almost all cases.

This can be attributed to the fact that the BRIDGE decompo-

sition algorithm takes time comparable to that of finding the

MIS using Luby’s algorithm [22]. Although Algorithm MIS-

Rand does away with the need to spend time finding bridges,

it really is not the best way to partition a graph as the MIS

computation has little to gain from it. Algorithm MIS-Deg2,

on the other hand, achieves a considerable speedup compared

to that of Algorithm LubyMIS. This can be attributed to the

fact that real world graphs tend to have a large number of

vertices of degree two or smaller. The Deg2 decomposition

can be seen to remove them quickly. Some of the speedup is

also due to using the algorithm of Kothapalli and Pindiproli

[21] for computing an MIS of the graph induced by vertices

of degree at most two.

On instance lp1, we see a speedup as high as 10.5x as

the instance has more than 90% of vertices with degree at

most 2. On instances such as rgg-n-2-24, Algorithm MIS-

Deg2 performs poorer than Algorithm LubyMIS. This could

be attributed to the fact that random graphs lack the properties

required for Algorithm MIS-Deg2 to do better. Algorithm

MIS-Degk achieves an average speedup of 3.3x compared to

Algorithm LubyMIS.

2) Experiments on the GPU: From Figure 5(b), we observe

a similar trend with respect to GPUs. The time consumed by

the BRIDGE decomposition algorithm renders this decomposi-

tion strategy noncompetitive. No significant gains are observed

using Algorithm MIS-Rand also. Algorithm MIS-Deg2, on

the other hand, shows remarkable improvements for reasons

similar to the performance gains on a multicore CPU. We see

graphs like lp1 and c-73 giving speedups of the order of

50-150 times, while others gain a modest 3-4 times. On an

average, we get a speedup of 2.16 times. 2

3) Discussion: We observe that the Degk decomposition is

highly suited for obtaining an MIS, owing to the little time

spent in decomposition and also the strong structural property

of isolating an induced sub-graph of degree at most 2. This

also indicates that the decomposition strategy employed has a

big influence on the performance obtained. A good decompo-

sition allows the use of simple, special purpose algorithms on

the sub-graph(s) which can easily outperform algorithms for

general graphs.

VI. CONCLUSIONS

In this paper, we studied three graph symmetry breaking

problems and four graph decomposition algorithms on two dif-

ferent parallel architectures. Our study shows that mainly the

computation at hand, and, partially, the target architecture can

significantly influence the decomposition algorithm to use. In

future, we plan to study other parallel graph computations for

suitability with respect to various decomposition algorithms.
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and compressing networks for betweenness centrality. In Proc. SIAM
Data Mining Conference (SDM). SIAM, 2013.

[28] J. Schneider and R. Wattenhofer. An optimal maximal independent set
algorithm for bounded-independence graphs. Distributed Computing,
22(5-6):349–361, 2010.

[29] B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribution
method for parallel sparse matrix-vector multiplication. SIAM review,
47(1):67–95, 2005.

[30] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens.
Gunrock: A high-performance graph processing library on the GPU. In

ACM SIGPLAN Not., 50:265–266, 2015.

607607


