
Pagoda: A Dynamic Overlay Network for Routing, Data
Management, and Multicasting

Ankur Bhargava∗ Kishore Kothapalli Chris Riley Christian Scheideler† Mark Thober
Department of Computer Science

Johns Hopkins University
3400 N. Charles Street

Baltimore, MD 21218, USA
{ankur,kishore,chrisr,scheideler,mthober}@cs.jhu.edu

ABSTRACT
The tremendous growth of public interest in peer-to-peer systems in
recent years has initiated a lot of research work on how to design ef-
ficient and robust overlay networks for these systems. While a large
collection of scalable peer-to-peer overlay networks has been pro-
posed in recent years, many fundamental questions have remained
open. Some of these are:

• Is it possible to design deterministic peer-to-peer overlay
networks with properties comparable to randomized peer-to-
peer systems?

• How can peers of non-uniform bandwidth be organized in an
overlay network?

We propose a dynamic overlay network called Pagodathat pro-
vides solutions to both of these problems. The Pagoda network
has a constant degree, a logarithmic diameter, and a 1/logarithmic
expansion, and therefore matches the properties of the best ran-
domizedoverlay networks known so far. However, in contrast to
these networks, the Pagoda is deterministicand therefore guaran-
teesthese properties. The Pagoda can be used to organize both
nodes with uniform bandwidth and nodes with non-uniform band-
width. For nodes with uniform bandwidth, any node insertion or
deletion can be executed with logarithmic work, and for nodes with
non-uniform bandwidth, any node insertion and deletion can be ex-
ecuted with polylogarithmic work. Moreover, the Pagoda overlay
network can route arbitrary multicast problems with a congestion
that is within a logarithmic factor of what a best possibleoverlay
network of logarithmic degree for that particular multicast problem
can achieve, even though the Pagoda is a constant degree network.
This holds even for nodes of arbitrary non-uniformbandwidths.
We also show that the Pagoda network can be used for efficient
data management.

∗Supported by NSF Grant CCR-0311321.
†Supported by NSF grant CCR-0311121 and NSF grant CCR-
0311795.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’04,June 27–30, 2004, Barcelona, Spain.
Copyright 2004 ACM 1-58113-840-7/04/0006 ...$5.00.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Distributed networks; F.2.8 [Analysis of Al-
gorithms and Problem Complexity]: Non-numerical Algorithms
and Problems—Routing and layout; G.2.2 [Discrete Mathemat-
ics]: Graph Theory—Network problems

General Terms
Algorithms, Theory

Keywords
peer-to-peer networks, routing, multicasting

1. INTRODUCTION
In recent years, peer-to-peer overlay networks have become ex-

tremely popular for a variety of reasons. For example, the fact that
peer-to-peer systems do not need a central server means that indi-
viduals can search for information or cooperate without fees or an
investment in additional high-performance hardware. Also, peer-
to-peer systems permit the sharing of resources (such as computa-
tion and storage) that otherwise sit idle on individual computers.
Therefore, it is not surprising that peer-to-peer systems have in-
spired an enormous amount of research. Despite many advances,
fundamental problems have remained open, such as:

1. Is it possible to design deterministic peer-to-peer overlay
networks with properties comparable to randomized peer-to-
peer systems?

2. How can peers of non-uniform bandwidth be organized in an
overlay network?

Why are these problems important and non-trivial? An obvious
advantage of a deterministic over a randomized solution is the abil-
ity to locally self-correctthe overlay network so that it not only
fulfills the given connectivity rules but also retains certain desir-
able topological properties such as a high expansion. The property
of self-stabilizationwas introduced by Dijkstra in his 1974 paper
[8] and is considered an important property in existing peer-to-peer
systems [29, 22, 25]. By definition, (pseudo-)random constructions
cannot be self-correcting with regard to expansion because the sys-
tems can be in a state with a poor expansion although all connec-
tivity rules are fulfilled. Although this may be unlikely to happen if
everybody is honest, adaptive adversarial attacks can make such a
situation very likely (see also [10]). Designing scalable, determin-
istic overlay networks with a high expansion is a highly non-trivial

170

problem. The first such construction just recently emerged, and the
construction and its analysis is quite involved [4].

Also, organizing peers of non-uniform bandwidth in a scalable
way is an important and non-trivial problem. It is important be-
cause in reality, peers have different connections to the Internet
with bandwidths that may be several orders of magnitude apart.
Also, future peer-to-peer systems will have to allow peers to ad-
just the bandwidth they want to contribute to it to be acceptable
since many peer-to-peer applications may run in a peer at the same
time. Thus, a system is needed that can organize peers of non-
uniform bandwidth and that can adapt to changing bandwidths in a
scalable way. DHT-based peer-to-peer approaches cannot (in their
basic form) take advantage of high bandwidth peers, because their
approach of giving every peer the same degree and randomly dis-
tributing peers in the system will isolate high bandwidth peers,
making them ineffective. A straight-forward solution would be
to simply include multiple virtual peersfor each high-bandwidth
peer into the system. This approach, however, does not work well
in general, because allowing a peer to have multiple virtual peers
in the system reduces its scalability and increases its vulnerabil-
ity. It reduces its scalability because frequent bandwidth changes
may create a high update cost when using virtual peers, and it in-
creases its vulnerability because if a high-bandwidth peer leaves,
many virtual peers will leave with it, potentially creating disruption
of service and high repair costs for the overlay network. It would
therefore be much better to give every peer just a single, bounded
degreenode in the network while retaining the property that high-
bandwidth peers can be utilized well. This is exactly what we solve
with the overlay network proposed in this paper. Before we present
our network, we review previous work.

1.1 Overlay networks for uniform peers
A large collection of scalable peer-to-peer overlay networks has

been proposed in recent years. Among them are Tapestry [31],
Chord [29], Pastry [25], CAN [22], Viceroy [18], Koorde [13], and
DH graphs [19]. Also generic approaches have recently been pre-
sented that allow one to turn general families of static graphs into
dynamic graphs. See, for example, [19] and [1]. All of these con-
structions crucially depend on the fact that nodes are given random
IDs (which may either be obtained by a random number generator
or with the help of a pseudo-random hash function). Hence, they
cannot guaranteea good expansion or diameter.

Recently, a number of constructions for overlay networks e-
merged that allow good topological properties for arbitrary node
IDs. Among them are skip graphs [3], skip nets [11], and the Hy-
perring [4]. Whereas skip graphs and skip nets still need a random
number generator for the topology, the Hyperring is purely deter-
ministic and the only dynamic overlay network to date that has a
guaranteed low diameter and high expansion. However, whereas
in the randomized constructions the work for a node insertion and
deletion can be made as low as O(log n), w.h.p., the work for a
node insertion and deletion in the Hyperring is O(log3 n), where
n is the current number of nodes in the system. So an open ques-
tion has been whether this can be reduced to O(log2 n) or even
O(log n). Also, the Hyperring is rather complicated to maintain
and therefore an open question has also been whether simpler ap-
proaches exist for organizing peers in a deterministic way. This
paper answers both of these questions in the affirmative.

1.2 Overlay networks for non-uniform peers
Peers of high bandwidth are often more reliable and online for

a longer time than low bandwidth peers. Though it uses an un-
structured approach, Gnutella has a tendency towards integrating

long-living peers more tightly into the network than short-living
peers and therefore can be seen as a heuristic for taking advan-
tage of high bandwidth peers. A more structured approach is the
super-peer architecture of KaZaA [14]. It classifies peers into two
classes: the strong (high bandwidth) peers and the weak (low band-
width) peers, and it permits a weak peer to be connected to exactly
one strong peer. All queries are routed through strong peers, which
are also called super-peers. Super-peer networks are also part of
JXTA 2.0 [30].

Publications on various super-peer networks can be found in [20,
32, 33]. Also multi-tier topologies (i.e. topologies with more than
two classes of peers) have been proposed (e.g., [27]), where each
level consists of peers with approximately the same capabilities.
None of these publications have studied in a formal way how well
their topologies can handle arbitrary unicast or multicast problems.

1.3 Overlay networks for multicasting
There are a number of results on overlay networks for multicas-

ting. Overlay based approaches that just create a network for a sin-
gle multicast group can be found in [5, 9, 12, 24]. Approaches that
allow multiple multicast groups to be formed over the same over-
lay network are usually implemented on top of DHT-based systems
such as Chord, CAN, or Tapestry [6, 7, 15, 23, 28, 34]. All of these
approaches are scalable, but they only work well for uniform peers
because messages for these multicast groups will be routed through
the underlying DHT-based networks.

1.4 Our results
We propose a dynamic overlay network, called Pagoda, that can

handle routing, data management, multicasting, and node inser-
tions and deletions in a scalable and efficient way. In the following,
n always denotes the current number of peers or nodes in the sys-
tem.

Routing and data management in uniform overlay net-
works
For the uniform case, i.e. all nodes have a bandwidth of 1, our main
results for the Pagoda network are:

• Any node insertion or deletion can be executed in O(log n)
time and work.

• There is a local, randomized routing strategy that routes any
set of packets in which each node has at most one packet
and every packet has a random destination in O(log n) time,
w.h.p.

• There is a distributed hash table method that can keep data
distributed among nodes so that every node is responsible
for an expected O(1/n) fraction of the data.

Multicasting in non-uniform overlay networks
Our main results for the non-uniform case are:

• Any node insertion or deletion can be executed in O(log2 n)
time and work.

• The Pagoda network for non-uniform nodes creates a conges-
tion for routing arbitrary concurrent multicast requests that is
only by an O(∆ + log n) factor larger than the congestion
achievable by a best possibleoverlay network of maximum
degree ∆ for that particular problem.

Apart from proving existential results, we also provide local-
control strategies for building and maintaining multicast trees so

171

that a performance as predicted by the competitive bound can be
achieved. We also show that under certain local admission control
scenarios, our network can guarantee with high probability that
rate reservation requests for multicasting are successful.

1.5 Structure of the paper
We start in Section 2 with the description of the perfect, static

form of the Pagoda, and we prove some basic properties. In Sec-
tion 3 we show how to turn the Pagoda into a dynamic overlay
network for the case that all nodes have the same bandwidth. We
describe how to efficiently insert a node into or delete a node from
the Pagoda, and we show how to perform routing and data man-
agement in an efficient and robust manner. In Section 4, we extend
the Pagoda network to the case that we have arbitrary non-uniform
node bandwidths, and in Section 5 we show how this network can
be used for efficient multicasting. Due to space limitations, some
of the proofs are left out and will be found in a full version of the
paper.

2. THE STATIC PAGODA NETWORK
Our overlay network is basically a combination of a complete bi-

nary tree and a family of leveled graphs that are similar to the well-
known Omega network [16], together with some short-cut edges to
keep the diameter low. It is called Pagoda. We first define a perfect,
static form of it before describing dynamic constructions.

DEFINITION 2.1. Let d ∈ IN0. Thed-dimensional deBruijn,
DB(d), is an undirected graph with node setV = [2]d and an
edge setE = {{x, y} | x, y ∈ [2]d and there arep, q ∈ {0, 1} so
thatx = (b1, b2, . . . , bd−1, p) andy = (q, b1, b2, . . . , bd−1)}.

DEFINITION 2.2. Let d ∈ IN0. Thed-dimensional deBruijn
exchange network, DXN (d), is an undirected graph with node set
V = [d + 1] × [2]d and an edge set:

E = {{(j, x), (j + 1, y)} | j ∈ [d− 1],

x, y ∈ [2]d, {x, y} ∈ E(DB(d)) or x = y}

Figure 1 presents the 3-dimensional deBruijn, DB(3). DB(d)
has 2d nodes and a maximum degree of 4.

000

001

100

010

011

111

110

101

Figure 1: The structure of DB(3)

DEFINITION 2.3. Let d ∈ IN0. The d-dimensional Pagoda,
PG(d), is an undirected graph that consists ofd + 1 deBruijn
exchange networks,DXN (0), . . . ,DXN (d), where each node
(i, x) ∈ [i+1]× [2]i of DXN (i) is connected to the nodes(0, x0)
and(0, x1) in DXN (i+1) and to all nodes(0, y) in DXN (i+1)
that have an edge to(1, x0) or (1, x1).

In addition to this, for everyi and j ∈ {0, . . . , i}, every node
(j, x) in DXN (i) has short-cut edges to nodes(j, x0), (j, x1),
(j + 1, x0), and(j + 1, x1) in DXN (i + 1).

0,0 0,1

1,0 1,1

0,00

1,111,10

0,01 0,110,10

1,011,00

0,0

2,00 2.,01 2,10 2,11

Figure 2: The structure of PG(2).

Ignoring the short-cut edges, the Pagoda is a leveled network
with the root being at level 0. Levels are consecutively numbered
from 0 to (

∑d
i=0 i) − 1. Given a node at level �, the nodes it is

connected to in level �− 1 are called its parents, and the nodes it is
connected to in level � + 1 are called its children.

The Pagoda network consists of the following types of edges:

• column edgesconnecting (j, x) to (j + 1, x) in a DXN,

• tree edgesconnecting (i, x) in DXN (i) to (0, x0) and
(0, x1) in DXN (i + 1),

• short-cut edgesconnecting (j, x) in DXN (i) to (j, x0),
(j, x1), (j + 1, x0), and (j + 1, x1) in DXN (i + 1), and

• deBruijn edgesrepresenting all remaining edges.

Each type is important for our protocols to work. Column edges
and tree edges allow to keep our protocols simple and efficient,
deBruijn edges allow to perform efficient routing (and deterministic
level balancing in the dynamic Pagoda), and short-cut edges keep
the diameter and congestion low.

2.1 Basic properties
Figure 2 shows the 2-dimensional Pagoda PG(2). PG(d) has∑d
i=0(i + 1)2i ≈ (d + 1)2d+1 nodes and maximum degree 20.

Furthermore, the following fact is easy to see:

LEMMA 2.4. PG(d) hasO(d2) levels and a diameter ofO(d).

PG(d) also has a good expansion. Recall that the node expan-
sion is defined as α = minU :|U|≤|V |/2 |N(U)|/|U | where N(U)
is the neighbor set of U .

LEMMA 2.5. PG(d) has an expansion ofΩ(1/d).

PROOF. Using standard techniques, it is not difficult to show
that every permutation routing problem in the Pagoda can be routed
with congestion O(d). Suppose now that the node expansion is
o(1/d). In this case there must be a set U with |N(U)| = o(|U |/d)
and |U | ≤ n/2. Then consider the permutation π that requires to
send all packets in nodes in U to Ū = V \ U . In this case, the
expected congestion must be ω(d), contradicting our bound above.
Thus, the expansion is Ω(1/d).

172

2.2 Pagoda vs. existing approaches
Our overlay network construction is closest to the line of papers

following the CAN approach [22]. The basic idea behind CAN
is to combine an infinite complete binary tree T with a family of
graphs G = {G� | � ∈ IN0} with |V (G�)| = 2� so that for every
� ≥ 0 the nodes in level � are interconnected according to G�.
Initially, a peer is just stored at the root of the tree. Insertions and
deletions of peers are handled so that the invariant is maintained
that every path down the tree starting with the root contains exactly
one peer. Peers are interconnected according to the edges in G
where a peer inherits all edges to its descendants. To keep the level
distribution of the nodes in balance, and therefore their degree low,
it was suggested to either use deterministic load balancing along
the edges in G or to choose random positions for newly inserted
nodes [1, 2, 22]. However, for any family G of bounded degree
graphs such a deterministic load balancing strategy can result in a
very poor expansion (as low as O(1/nε) for some constant ε >
0), so the CAN approach crucially depends on randomness to be
well-connected. In contrast to this, our way of combining a tree
with a family of graphs allows local, deterministic updates while
guaranteeing an expansion of Ω(1/ log n) at any time.

This result is possible because the way we use the Pagoda net-
work in a dynamic setting differs from the CAN approach in two
fundamental ways. First of all, in the dynamic Pagoda the invariant
is preserved that all parent positions of an occupied node position
are occupied, whereas in CAN the invariant is maintained that every
path down the CAN tree from the root contains exactly one occu-
pied position, and therefore peers are only at the edge of the CAN
tree. Second, the Pagoda network uses a DXN network with mul-
tiple levels at each tree level and not just single-level connections.
If one just used a single deBrujn graph at each tree level as this
was suggested, for example, in [17], then deterministic balancing
strategies (to keep nodes with missing children at approximately
the same level) would perform poorly (i.e. the expansion can be as
low as O(1/nε) for some constant ε > 0). This would not only be
the case in the CAN approach but also in our approach of having
all parent positions occupied.

Also the way the Pagoda network handles non-uniform peers is
fundamentally different from previous approaches. Instead of using
many virtual nodes or a multi-tier network to incorporate peers of
non-uniform bandwidth, every peer is just associated with a single
node, and a simple heap property is used to organize the peers in the
system: every parent of a peer must have a bandwidth that is at least
as large as the bandwidth of that peer. Thus, local, relative rules
are used to organize peers instead of the rather global nature of the
rules using virtual nodes or multi-tier networks (since an agreement
on the minimum bandwidth and bandwidth-to-tier assignments is
necessary there).

3. THE DYNAMIC PAGODA NETWORK
FOR UNIFORM NODES

Our basic approach for the dynamic Pagoda network is to keep
the nodes interconnected in a network that represents a subnetwork
of the static Pagoda network of infinite dimension. In this section,
we assume that all nodes have a bandwidth of 1. At any time, the
dynamic Pagoda network has to fulfill the following invariant:

INVARIANT 3.1.

(a) For any node in the dynamic Pagoda, all of its parent posi-
tions are occupied.

(b) For any pair of nodesv andw in the dynamic Pagoda,v and

w are connected in the dynamic Pagoda if and only ifv and
w are connected in the static Pagoda.

We start with some facts about the dynamic Pagoda network. A
node is called deficientif it has a missing child along a column or
tree edge (i.e. we do not consider missing children reachable via
deBruijn edges).

LEMMA 3.2. If Invariant 3.1 is true, then in the dynamic
Pagoda withn nodes, the difference between the largest level
and the smallest level with deficient nodes is at mostlog n.

PROOF. Let v be any node of largest level in the Pagoda. Notice
that such a node must be deficient. Suppose that v is at position
(j, x) in some DXN (d). The fact that every node must have all of
its parent positions occupied and the way the DXN is constructed
ensure that v is connected to at least 2j nodes at positions (0, y)
in DXN (d), where y is either the result of a right shift of x by at
most j positions or a left shift of x by at most j positions, padded
with arbitrary 0-1 combinations. Thus, if j = d, then all positions
in row 0 of DXN (d) must be occupied. If j < d, then one can
easily check that all positions in row j in DXN (d − 1) must be
occupied. Hence, the difference between the largest level and the
smallest level with a deficient node is at most d. Taking this into
account, one can show that d ≤ log n, which yields the lemma.

This lemma has some immediate consequences when combining
it with results about the static Pagoda:

LEMMA 3.3. If Invariant 3.1 is true, then the dynamic Pagoda
with n nodes is a constant degree network and hasO(log2 n) lev-
els, a diameter ofO(log n), and an expansion ofΩ(1/ log n).

Next we define local control algorithms that allow nodes to join
and leave the system, denoted by the operations JOIN and LEAVE,
while preserving Invariant 3.1 at any time (under the condition that
nodes depart gracefully).

3.1 Isolated Join and Leave operations
First, we describe the JOIN and LEAVE protocol for the case that

just one node wants to join or leave the system at a time.

The isolatedJOIN protocol
The basic strategy of the join protocol is to make sure that every
new node is inserted at a place that fulfills Invariant 3.1. Suppose
that node u wants to join the system. This is done in two stages.

Stage 1.Suppose that node v, at position (j, x) in DXN (i), is
initiating JOIN(u) to insert u into the network. If v has a short-cut
edge to a node at position (j, x0) in DXN (i + 1), then it forwards
the request to that node. Let this new node be v′. If v′ does not
exist then we refer to node v as v′.

We are now at some node v′, at position (j′, x′) in DXN (i′). If
v′ has a short-cut edge to a node at position (j′, x′1) in DXN (i′ +
1) (here the column with suffix 1 is used to ensure an even spread-
ing of JOIN requests), then it forwards the request to that node. Let
this node be the new v′. We repeat this until no new v′ exists. Call
this last node v′′.

We are now at some node v′′, at position (j′′, x′′) in DXN (i′′).
If v′′ is not deficient then v′′ forwards the request to the node at
position (j′′ + 1, x′′) in DXN (i′′) if j′′ < i′′, and else it forwards
the request to the node at position (0, x′′1) in DXN (i′′ + 1). This
is the new v′′. This is repeated until no new v′′ exists. Call this last
node w. At this point stage 1 ends and we proceed with stage 2 on
this node.

173

Stage 2.Initially, the JOIN request must be at some deficient node
w. If w = (i, y) in some DXN (d) with 0 < i < d, then w requests
information about the column child (i.e. the child reachable via the
column edge) from all parents of w. If all parents report an exist-
ing child, w can integrate u as its column child without violating
Invariant 3.1(a). Otherwise, w forwards the JOIN request for u to
any parent w′ reporting a missing column child, i.e. it is deficient.

If i = 0, then w requests information from its parents about each
tree child that is a parent of its column child. If all relevant tree
children exist, w can integrate u as its column child, and otherwise
w forwards the JOIN request to any parent w′ reporting a missing
tree child.

Finally, if i = d, then w picks any of its missing tree children
v and requests information from w’s parents about each column
child that is a parent of v. If all relevant column children exist, w
can integrate u at the position of v, and otherwise w forwards the
JOIN request to any parent w′ reporting a missing column child.

This is continued until u can be integrated.

The isolatedLEAVE protocol
Suppose that a node u wants to leave the Pagoda. This is also done
in two stages. Stage 1 is the same as stage 1 for the JOIN protocol.

Stage 2.Initially, the LEAVE request must be at some deficient
node w. If w has a child, then w forwards the request to any one of
its children. This is continued until w does not have any children.
Once this is the case, w exchanges its position with u so that u can
leave the network.

The JOIN and LEAVE protocols above achieve the following re-
sult.

THEOREM 3.4. Any isolatedJOIN or LEAVE operation can be
executed inO(log n) time and with constant topological update
work.

PROOF. Consider any JOIN request starting at some node v.
From the construction, it can be seen that the request is transferred
through at most d short-cut edges until the request reaches a node
v′ in DXN (d − 1) (the second largest DXN in the system). From
a node in DXN (d − 1), at most O(log n) column or tree edges
have to be traversed to reach a deficient node w in DXN (d) or
DXN (d−1). From node w on, every time the request is transferred
to a deficient node, the level of the node w′ receiving the request de-
creases by one. Hence, it follows from Lemma 3.2 that the JOIN re-
quest can be transferred along at most log n deficient nodes. Thus,
an isolated JOIN request can be executed in O(d) = O(log n) time.

Also every LEAVE request is sent along at most d short-cut edges
and O(d) column or tree edges until it reaches a deficient node w.
From w, it takes at most log n further nodes to reach a node without
children, at which the LEAVE request can be finished. Hence, also
any isolated LEAVE request can be executed in O(d) = O(log n)
time.

The bound on the update work (i.e. the number of edge changes)
is obvious.

3.2 Concurrent Join and Leave operations
We also study the congestion of concurrent versions of the JOIN

and LEAVE protocol. Notice that the bounds are guaranteed.

The concurrentJOIN protocol
The concurrent JOIN protocol is similar to the isolated JOIN proto-
col, with the difference that once a request reaches a deficient node

w, it assigns a position of smallest level to the JOIN request that is
reachable via column or tree edges below w and that has not been
taken by any other pending JOIN request in w. w only forwards a
JOIN request to a parent w′ of w if w′ is deficient and in addition
can assign a position to the JOIN request with a smaller level than
it was scheduled for in w. This makes sure that JOIN requests are
monotonically improving. Once a deficient node w with JOIN re-
quests can integrate a node at a column child or tree child position
without violating the invariant, it does so and passes the pending
requests relevant for that child to that child.

Notice that there are no conflicts among deficient nodes concern-
ing the integration of new nodes because a deficient node only in-
tegrates a new node at a column or tree child.

THEOREM 3.5. Any set of concurrentJOIN requests with at
most one request for each old node can be executed with congestion
O(log n) at non-deficient nodes.

The concurrentLEAVE protocol
The concurrent LEAVE protocol is also similar to the isolated
LEAVE protocol. However, here we want to make sure that every
node has at most one LEAVE request at any time. Hence, in stage
1, a LEAVE request waits at its current node until the endpoint of
the next edge on its path does not have a LEAVE request any more.
Once a LEAVE request completed stage 1, it moves to any deficient
child (which must exist if there is a child) that currently does not
have a LEAVE request. Once a node storing a LEAVE request has
no children any more, it finishes the LEAVE protocol by moving to
the position of the node that wants to leave.

Notice that such a node cannot be a node that wants to leave it-
self because LEAVE requests are only sent downward, and therefore
the node would have already been removed had it issued a LEAVE

request.

THEOREM 3.6. Any set of at mostn/2 concurrentLEAVE re-
quests can be executed with congestionO(log n) at non-deficient
nodes.

3.3 Routing
Suppose that we want to route unicast messages in the Pagoda

network. Consider any such unicast packet p with source s = (j, x)
in DXN (i) and destination t = (j′, z) in DXN (i′). First, p picks
a random pair of real values (c, r) ∈ [0, 1)2 (a precision of log n
bits for each is sufficient). Then, p is sent in three stages:

1. Spreading stage: First, send p from s along column edges
and a tree edge to (i − 1, x/2) in DXN (i− 1). Then, send
p upwards to the node (0, y) in DXN (i − 1) with y being
the closest prefix of r. From there, forward p to the node
(k, y/2) in DXN (i− 2) with k/(i− 2) being closest to c.

2. Shuttle stage: Forward p along short-cut edges across nodes
(k′, y′) with k′ being closest to c and y′ being the closest
prefix of r until a node (k′, y′) in DXN (i′ − 2) is reached.

3. Combining stage: Perform stage 1 in reverse direction (with
s replaced by t) to forward p to t.

Notice that as long as s and t are non-deficient nodes, this strategy
is successful even while nodes join and leave the system, because
the position of every node that is an non-deficient node will be fixed
in the Pagoda. Also, whenever a node leaves, the node replacing it
can inherit its packets so that no packet gets lost. More general
strategies for ensuring reliable communication even while nodes

174

are moving, using the concept of virtual homes, can be found in
Section 5.3.

With these facts in mind, one can easily design a protocol based
on the random rank protocol (see, e.g., [26]) to show the following
result:

THEOREM 3.7. If every node wants to send at most one packet,
the packets have random destinations, and every node being the
destination of a packet does not move forO(log n) steps, the rout-
ing strategy above can route the packets inO(log n) time, with high
probability.

3.4 Data management
Finally, we show how to dynamically manage data in Pagoda.

We use a simple trick to distribute data evenly among the nodes of
the Pagoda so that it is searchable. Suppose that we have a (pseudo-
)random hash function mapping each data item to some real vector
(c, r) ∈ [0, 1)2. The current place of a data item d is always the
lowest possible position (j, x) in the Pagoda where x is the closest
prefix of r and j/|x| is closest to c among all j′/|x| with 0 ≤
j′ ≤ |x| (|x| denotes the length of x, and thus the dimension of the
DXNowning (j, x)).

This strategy implies that if DXN (d) represents the largest ex-
change network that has occupied positions in the Pagoda, then all
data items will be stored at nodes in DXN (d−2), DXN (d−1), or
DXN (d). Since every node will at most have to store an O(1/(d ·
2d)) fraction of the data and d · 2d = Θ(n), we get:

THEOREM 3.8. The data management strategy ensures that ev-
ery node is only responsible for an expectedO(1/n) fraction of the
data at any time, and this bound even holds with high probability if
there are at leastn log n data items in the system.

Notice that none of the DHT-based systems can achieve the
bounds above in their basic form – they only achieve a bound of
O(log n/n). Combining the data management strategy with our
routing strategy above, requests to arbitrary, different data items
with one request per node can be served in O(log n) time, w.h.p.
The results in Section 5 imply that this also holds for cases in
which some nodes want to access the same data item, i.e. we have
a multicast problem, if requests can be combined.

4. THE DYNAMIC PAGODA NETWORK
FOR NON-UNIFORM NODES

Next we show that the Pagoda network can also be used for arbi-
trary non-uniform node bandwidths. In this case, we want to main-
tain the following heap property to allow efficient multicasting.

INVARIANT 4.1. For any nodev in the Pagoda,

(a) all of its parent positions are occupied, and

(b) the bandwidth ofv is at most the bandwidth of any of its
parents.

Similar to the uniform case, we require these invariants to be
fulfilled while nodes join and leave the system. Because of item
(b), we cannot just do a single exchange operation to integrate or
remove a node but we have to be more careful. First, we describe
the JOIN and LEAVE operations for the isolated case, and then we
consider the concurrent case.

4.1 Join and Leave operations
For any node u in the Pagoda, max-child(u) refers to the child of

maximum bandwidth and min-parent(u) refers to the parent with
minimum bandwidth.

The isolatedJOIN protocol
Suppose that node v is executing JOIN(u) to insert a new node u
with bandwidth b(u) into the network. This is done in three stages.
Stages 1 and 2 are identical to the uniform case. So it remains to
describe stage 3 which is similar to inserting a node in a binary
heap.

Stage 3.Once the JOIN request for u has reached a deficient node
with an empty column or tree child position in which u can be inte-
grated without violating Invariant 4.1(a), u is integrated there with
active bandwidtha(u) equal to the minimum of b(u) and the band-
width of its min-parent. The active bandwidth is the bandwidth it
is allowed to use without violating Invariant 4.1(b). Then, u re-
peatedly compares b(u) with a(u). If a(u) < b(u), it replaces its
position with the position of its min-parent and afterwards updates
a(u) to min{b(u), b(min-parent(u))}. Once u reaches a position
with a(u) = b(u), the JOIN protocol terminates. The process of
moving u upwards is called shuffle-up.

The isolatedLEAVE protocol
Suppose that a node u wants to leave the Pagoda. Then it first sets
its active bandwidth to b(u). Afterwards, u repeatedly replaces
its position with its max-child and updates its active bandwidth to
a(u) = b(max-child(u)) until it reaches a position with no child.
At this point, u is excluded from the system so that Invariant 4.1 is
maintained. The process of moving u downwards is called shuffle-
down.

Bandwidth changes
If the bandwidth of some node u increases, we use the shuffle-up
procedure, and if the bandwidth of some node u decreases, we use
the shuffle-down procedure to repair the invariant.

Isolated update requests have the following performance.

THEOREM 4.2. Any isolated join operation, leave operation,
or bandwidth change of a node needsO(log2 n) time and work to
repair the invariant.

PROOF. First, consider the insertion of some node u. The pro-
cess of moving the request of u downwards only needs O(log n)
time. According to Lemma 3.3, u is integrated at some level � =
O(log2 n). Hence, the shuffle-up process only requires O(log2 n)
messages and edge changes because each exchange of positions be-
tween u and some parent v to repair Invariant 4.1 moves u one level
upwards and requires updating only a constant number of edges.
Every shuffle operation maintains the invariant for all nodes in-
volved in it. Hence, the total time and work is O(log2 n).

Similar arguments can be used for node departures and band-
width changes.

The concurrentJOIN protocol
The only difference between the isolated and concurrent JOIN pro-
tocol is that we are more careful about exchanging positions. If
a node u wants to replace its position with some parent v, then u
checks whether v is a node that has not finished its JOIN operation
or bandwidth increase operation yet (i.e. a(v) < b(v)). If so, u
does nothing. Otherwise, u replaces its position with v.

The concurrentLEAVE protocol
Also the concurrent LEAVE protocol is similar to the isolated
LEAVE protocol, with the only difference that if some node u
in the process of leaving the network wants to replace its position

175

with some child v, u first checks whether v is a node that has
not finished its LEAVE operation or bandwidth decrease yet (i.e.
a(v) > b(v)). If so, u does nothing. Otherwise, u replaces its
position with v.

Bandwidth increase or decrease is handled similarly. The next
lemma shows that the concurrent operations always terminate with
a work that is at most the sum of the work for isolated update oper-
ations.

LEMMA 4.3. For any set ofk concurrent insertions, deletions,
and bandwidth changes of nodes, the work and time required to
repair Invariant 4.1 isO(k log2 n).

PROOF. The work bound is obvious. Thus, it remains to prove
the time bound.

Consider k concurrent update requests. From the analysis in the
uniform case we know that O(k log n) work is necessary for nodes
of JOIN requests to be integrated into the system. Each time step
progress is made here until all JOIN requests are integrated.

Afterwards, we mark all nodes with 1 that have not completed
their JOIN or bandwidth increase operation yet, all nodes with -1
that have not completed their LEAVE or bandwidth decrease oper-
ation yet, and all other nodes with 0. Suppose that there is at least
one node marked as 1. Then let v be any of these nodes of min-
imum level. Since the level of v must be at least 1 (as the root
cannot be a 1-node), it can replace its position with its min-parent,
thereby making progress. On the other hand, suppose that there is
at least one node marked as -1. Then let v′ be any of these nodes of
maximum level. If v′ does not have any children, then v′ can leave,
and otherwise it can replace its position with its max-child, thereby
making progress in any case.

Hence, we make progress in every step. Since the total work of
the shuffle-up, shuffle-down, and departure operations is bounded
by O(k log2 n), the time spent for executing these operations is
also bounded by O(k log2 n).

5. MULTICASTING
Finally, we study how well the non-uniform Pagoda supports ar-

bitrary concurrent multicasting.

5.1 Competitiveness
In this section we show that the Pagoda network is O(∆OPT +

log n)-competitive with respect to congestion in the best possible
network of degree ∆OPT when the multicast problem is posed as a
flow problem. We are given a set of client-server-demand triples
called streams, (Tk, sk,Dk), where Tk is a set of client nodes
served by a server node sk and Dk is a demand vector which spec-
ifies the flow demanded of sk by each client node. We start by con-
structing a flow system for one server, sk, and one client t ∈ Tk.
We name this flow system, fk,t. We assume that sk is a node in
DXN (i) and t is a node in DXN (j).

1. Spreading stage: This stage spreads flow originating at sk

in DXN (i) evenly among the nodes in DXN (i− 2). This is
done in three steps.

a. Move the flow from sk along column edges to the top
node in DXN (i).

b. Move the flow upwards to the bottom node in DXN (i−
1) along the tree edge connecting the two DXN ’s.
From there, cut the flow into 2i−1 flow pieces of uni-
form size and send piece i upwards to node (0, i) along
the unique path of deBruijn edges representing right
shifts.

c. Move all flow from the top nodes in DXN (i − 1) to
the bottom nodes in DXN (i−2) along tree edges. Ev-
ery bottom node in DXN (i − 2) sends flow along its
column edges so that each node in the column gets the
same fraction of flow. That is, at the end every node in
DXN (i−2) has a 1/((i−1)2i−2) fraction of the flow
of sk.

2. Shuttle stage: Short-cut edges are used to send the flows
forward to DXN (j − 2) (which may be upwards or down-
wards in the Pagoda) so that the flows remain evenly dis-
tributed among the nodes in each exchange network visited
from DXN (i− 2) to DXN (j − 2).

3. Combining stage: This stage is symmetric to stage 1, i.e.
we reverse stage 1 to accumulate all flow in t.

This results in a flow system, fk,t, for a source sk and a desti-
nation t ∈ Tk. Let fk,t(e) be the flow through any edge e in this
flow system. The procedure is repeated for each client t ∈ Tk. We
now construct a flow system, fk, for the stream k. We lay the flow
systems fk,t one on top of the other. The flow through an edge
in system fk is the maximum flow through the same edge in each
fk,t. That is, let fk(e) be the flow through any edge e in flow sys-
tem fk. Then fk(e) = maxt∈Tk fk,t(e). Note that we select the
maximum flow because if there are two flows of the same stream
going through an edge then we simply keep the one with the higher
bandwidth (the lower bandwidth stream may be reconstructed from
the higher one). We use flow system fk to route multicast flow for
stream k. We show that this strategy yields a low congestion.

THEOREM 5.1. The Pagoda network onn nodes of non-uni-
form bandwidth that satisfies Invariant 4.1 has a competitive ratio
of O(∆OPT + log n) for any multicast flow problem compared to
the congestion in an optimal network for this problem whose degree
is bounded by∆OPT.

PROOF. Let OPT be a network that routes the given flow system
with minimum possible congestion COPT, i.e. that minimizes the
maximum amount of flow through a node. W.l.o.g. we assume that
every demand is at most the bandwidth of the source and destina-
tion.

Select any node u in pagoda. Let it be in exchange network
DXN (i). We show that the congestion at this node due to the flow
system resulting from our routing strategy above is no more than
O(log n) · COPT due to stages 1 and 3 and O(∆OPT) · COPT

due to stage 2. We show these bounds in parts. We first bound
the congestion at u due to stage 1, c1(u). The flows through u
due to stage 1 are the sum of the flows that originate in DXN (i),
DXN (i + 1) and DXN (i + 2). Let the congestion due to each of
these be c1a(u), c1b(u) and c1c(u) respectively. Clearly, c1(u) =
c1a(u)+c1b(u)+c1c(u). We bound each of these three separately:
Stage 1a: Node u receives flow from nodes that are below it (in the
same column) in exchange network DXN (i). We call this set S.
The flow is

∑
k maxv∈S{dk(v)}. Note that the max term is used

since flows belonging to the same stream are combined, resulting
in a flow of largest demand among these. Therefore, the congestion
at u is c1a(u) = 1

b(u)

∑
k maxv∈S{dk(v)} ≤ ∑

v∈S

∑
k

dk(v)
b(v)

≤
|S| · COPT. The set S contains at most log n nodes. Therefore
c1a(u) ≤ log n · COPT.
Stage 1b: Node u receives flow from the bottom nodes of DXN(i).
Let f ′

k(·) be the flow sent up by a bottom node. Thus, each bottom
node sends a flow of f ′

k(·)/n to each top node. Note that f ′ is
purely the spreading caused by stage 1b.

176

Let S be the set of bottom nodes with paths crossing u, and let
D be the set of top nodes with paths crossing u. We bound |S| and
|D| as follows:

Let u be in level h of DXN(i). There are 2i nodes in each level of
DXN(i), and each node has an address of i bits. Due to the bit-shift
routing of the de Bruijn graphs, the nodes in set S must have the
same i− h first bits as u has last bits. Thus, the first h bits can be
anything, and |S| = 2h. In a similar manner, the nodes in D must
have the same first h bits as the nodes in S, thus |D| = 2i−h. Now,
the number of paths crossing u is |S| · |D| = 2i.

The flow from each node v ∈ S that reaches u is f ′
k(v)·|D|

2i ,
which is the number of nodes in D times the amount of flow des-
tined for each node in the top row of DXN (i). Since |D|

2i = 1
|S| ,

this becomes f ′
k(v)

|S| .
Since flows belonging to the same multicast group merge into

one flow equal to the maximum of the two it follows that the flow

that reaches u is
∑

k maxv∈S
f ′

k(v)

|S| . Assuming v1 and v2 are the
two tree children of v, the congestion at u is

c1b(u) =
1

b(u) · |S|
∑

k

maxv∈Sf
′
k(v) ≤

∑

v∈S

∑
k f ′

k(v)

b(v) · |S|

≤ 1

|S|
∑

v∈S

c1a(v1) + c1a(v2) ≤ 2 log n · COPT

Stage 1c: Node u receives flow from the bottom node in its column.
Therefore, the congestion at u, c1c(u) is at most the congestion
at the bottom node in the exchange network. The bottom node
receives flow from its two descendants in DXN(i + 1). Note that
the two descendants will send up equal flows, let one of them be v.
So, c1c(u) ≤ 2c1c(v) ≤ 4 log n · COPT.

We show the bounds for flows due to stage 2 with the help of
Lemma 5.2. We need to lower bound the congestion that an opti-
mal network can achieve. We do this by showing how an optimal
network with bounded degree has limited bandwidth to send flows.

LEMMA 5.2. Let EOPT be the set of edges in the optimum
network. For any pair of setsX and Y that are subsets of
the set of nodes, letD(X,Y) =

∑
sk∈X maxv∈Tk∩Y {dk(v)}

and B(X,Y) =
∑

(u,v)∈EOPT∩X×Y min{b(u), b(v)}. Then
COPT ≥ D(X, Y)/B(X, Y).

PROOF. Consider any pair of sets X, Y ⊆ V . B(X,Y) as de-
fined in the statement measures the bandwidth between sets X and
Y . Note that it is not necessary that X and Y form a cut. Similarly,
D(X, Y) is the demand that X asks of Y . The ratio of B(X,Y) to
D(X, Y) is the average congestion. The max congestion must be
at least the average congestion. Therefore COPT ≥ D(X,Y)

B(X,Y)
.

Stage 2: Let U be the set of nodes in the Pagoda which be-
long to all exchange networks above and including DXN(i + 1).
Let Z be all nodes in exchange network DXN(i + 2). Let V be
all nodes below and including exchange network DXN(i + 3).
Let the collective flow through exchange network DXN(i) be
f . Any stream whose source is in U ∪ Z and has a destina-
tion in V ∪ Z must go through DXN(i). The expression for the
flow is:f =

∑
sk∈U∪Z maxv∈V ∪Zdk(v). Due to lemma 5.2 we

bound f as follows: f ≤ (|U |∆OPT maxi∈V ∪Z{bi} + |U ∪
Z|∆OPT maxi∈V {bi} + |Z|∆OPT maxi∈Z{bi}) · COPT.

The first term accounts for bandwidth between U and V ∪
Z, the second term for bandwidth between V and U ∪ Z, and

the third term for bandwidth within Z. Hence, f ≤ 3 |U ∪
Z|∆OPT maxi∈V ∪Z{bi} · COPT ≤ 3 |U ∪ Z|∆OPT bu · COPT.

Since the Pagoda spreads tree flow evenly across all nodes in
each exchange network, the flow through u is at most f

|DXN(i)| .

Therefore c2(u) ≤ f
|DXN(i)|·bu

. The construction of the Pagoda

implies that |U∪Z| < 2 |Z|, and |DXN (i)| ≥ |Z|
12

. Thus, c2(u) ≤
72 ∆OPT · COPT.

The congestion at u due to stage 3 is identical to the congestion
due to stage 1 because the two cases are symmetric. Hence, c(u) =
2 c1(u) + c2(u) ≤ (14 log n + 72 ∆OPT) · COPT. The theorem
follows.

5.2 Turning multicast flows into trees
In practice, it may be expensive or impossible to divide and re-

combine streams. Instead, we choose a pseudo-random hash func-
tion h that maps every node v in the Pagoda to a pair of real values
(c, r) ∈ [0, 1)2. Similar to the routing strategy in Section 3.3,
we can then adapt the multicast scheme in the following way for a
source s and target t:

1. Spreading stage: (a) is the same as above, but instead of
spreading the flow in (b), we route all flow to the node (0, y)
in DXN (i − 1) with y being the closest prefix of r. From
there, forward the flow to the node (k, y/2) in DXN (i− 2)
with k/(i− 2) being closest to c.

2. Shuttle stage: Forward the flow along short-cut edges across
nodes (k′, y′) with k′ being closest to c and y′ being the
closest prefix of r until a node (k′, y′) in DXN (j − 2) is
reached.

3. Combining stage: Reverse the spreading stage to send the
flow to t.

Multicast flows that belong to the same stream are combined so that
for every edge e, the flow for that stream through e is the maximum
demand over all flows of targets t that are part of that stream.

Using this rule, it is not surprising that the expected congestion
of our integral flow scheme is equal to the congestion of the divisi-
ble flow scheme above.

THEOREM 5.3. The integral multicast flow scheme has an ex-
pected competitive ratio ofO(∆OPT + log n) compared to an op-
timal network with degree∆OPT.

PROOF. The theorem can be shown by following the line of ar-
guments in the proof of Theorem 5.1. Here, we just give an in-
tuition of why the theorem is correct. We start with bounding the
expected congestion for stages 1 and 3.

LEMMA 5.4. The expected congestion from routing the spread-
ing stage isO(log n)-competitive against an optimal network of
degree∆OPT.

PROOF. Let di be the total demand requested by node i across
all streams, and let bi be node i’s bandwidth. Consider the con-
gestion on any node in DXN(i) first. Since flow is sent up along
column edges, the worst congestion occurs at the top nodes of
DXN (i). If dmax is the largest demand of any node in some node
v’s column, then v must route at most (i + 1) · dmax demand,
under the worst case assumption that the demands are for different
streams and cannot be combined. Since v has at least the bandwidth
of every node with demand dmax, this is O(log n)-competitive.

177

This analysis also applies to routing along column edges in the fi-
nal stage.

Now consider the congestion on any node in DXN(i− 1) caused
by the spreading stage. We know that the nodes on the bottom of
DXN(i− 1) are O(log n)-competitive, because their congestion is
at most twice the congestion at the nodes at the top of DXN(i).
Since each stream is going to a random, independently selected
location in DXN(i−2), each is going to a random node at the top of
DXN(i − 1). Thus, the expected congestion at the top is balanced
and therefore is O(log n)-competitive. Furthermore, congestion
is caused by streams crossing nodes in the middle of the DXN,
but the self-routing properties of the deBruijn graph (which extend
to the DXN) imply that the maximum expected congestion in the
middle is between the maximum expected congestion in the bottom
and the maximum expected congestion in the top part and therefore
no worse. Hence, also the nodes in the middle of the graph are
O(log n)-competitive in congestion.

Next we consider stage 2.

LEMMA 5.5. The expected congestion from routing flow in the
shuttle stage isO(∆OPT + log n)-competitive against an optimal
network of degree∆OPT.

PROOF. Consider the boundary between any two DXN net-
works. The flows crossing this boundary upwards (resp. down-
wards) along short-cut edges must have a set of sources S and a
set of destinations T with S ∩ T = ∅. Hence, there is a cut in
the optimal network that all these flows have to cross. Further-
more, since we are sending exactly one copy of the stream across
the cut, we are sending no more flow than OPT must send. The
same upper bound on the amount of flow across a cut holds as
in the divisible flow case. Since the nodes along which the flows
travel are randomly selected, the expected congestion at any node
is a fraction of the total flow proportional to the number of nodes
in the DXN, which implies that the congestion is expected to be
O(∆OPT + log n)-competitive.

Combining the two lemmata yields Theorem 5.3.

5.3 Multicast streaming
Next, we address the issue of how to use the multicasting capa-

bilities for multimedia streaming where peers can enter and leave a
multicast stream at any time. To ensure reliable streaming, a mech-
anism is needed to join and leave a multicast stream, to reserve
bandwidth in the nodes along that stream, and to use a local admis-
sion control rule for admitting multicast stream requests in a fair
and transparent way.

5.3.1 Joining and leaving a multicast stream
Consider the situation that node u in the Pagoda wants to join

a multicast stream S of source s. Node u then prepares a control
packet containing the demand d requested by it and sends the con-
trol packet to s as described in Section 5.2. Along its way, the
control packet will try to reserve a bandwidth of d. If it succeeds, it
will continue to reserve bandwidth along its way until it reaches a
point in which for the stream S a bandwidth of at least d is already
reserved.

Every node along the multicast stream will only store for each of
its incoming edges the client requesting the stream with the largest
demand.

Suppose now that some node u wants to leave a multicast stream
S. Then it first checks whether it is the client with largest demand

for S that traverses itself by checking its incoming edges. If not,
u does not need to send any control packet. Otherwise, u checks
whether there is a path of some client v for S into u. If so, u
prepares a control packet with the largest demand of these clients.
Otherwise, u prepares a control packet with demand 0. This control
packet is sent towards the source s of S as in Section 5.2. Each time
the control packet reaches a node v that is also traversed by other
clients to S (that arrive at different incoming edges), the demand of
the control packet is updated to the largest demand of these clients.
This is continued until the control packet reaches a node v traversed
by some client for S with demand larger than the original demand
of u.

5.3.2 Rate reservation
For a rate reservation scheme to be transparent and fair, a policy

is needed that gives every peer a simple, local admission control
rule with the property that if a request is admissible according to
this rule, then the rate reservation request should succeed with high
probability. We will investigate two such rules:

Suppose that every node v representing a server in the network
offers multimedia streams s(v)

1 , s
(v)
2 , . . . with rates r(v)

1 , r
(v)
2 , . . . so

that
∑

i r
(v)
i ≤ b(v). Then consider the following rules for some

client v.

• Admission rule 1: Admit any multicast request to some
server w as long as b(v) ≤ b(w) and the total demand of
the requests in v does not exceed εb(v)/ log n.

• Admission rule 2: Admit any multicast request to some
server w as long as v is not belonging to any other multi-
cast group and the demand of the request does not exceed
εmin{b(v), b(w)}/ log n.

Rule 1 will normally be the case in practice because servers of
streams usually have a higher bandwidth than clients, but rule 2
would also allow multicasting if this is not true.

THEOREM 5.6. When using admission rule 1 or 2, every re-
quest fulfilling this rule can be accommodated in the Pagoda, w.h.p.

PROOF. Recall the integral multicast routing strategy in Sec-
tion 5.2. Consider any multicast problem that fulfills rule 1 or rule
2. Using the proof of Theorem 5.1, one can easily show that for
any node u in the Pagoda, c1a(u) = c1b(u) = c1c(u) = O(ε)
and c2(u) = O(ε). Hence, the expected total amount of demand
traversing u is O(εb(u)). Since any single demand through u can
be at most εb(u)/ log n (demands from or to a node v will always
traverse only nodes w with b(w) ≥ b(v)), and the flows for dif-
ferent servers follow paths chosen independently at random, it fol-
lows from the well-known Chernoff bounds that the total amount
of demand traversing u is also O(ε) with high probability. Hence,
making the constant ε small enough, the admission rules 1 and 2
will work correctly with high probability.

Notice that also a combination of rules 1 and 2 is allowed.

5.4 Multicasting in a dynamic setting:
virtual homes

Our multicast tree approach above has several problems. First,
it requires to know the position of the server in the Pagoda to join
a stream from it, and second, it requires to update the multicast
stream each time the server or a client moves. Fortunately, this
problem has an easy solution: For every node v, let h(v) ∈ [0, 1)2

be chosen independenton its position in the Pagoda. For example,

178

h(v) may depend on v’s IP address. Then v can treat the node
closest to h(v) two DXNs above v as its personal virtual homethat
only has to move if v leaves its current DXN.

Suppose that every node continuously informs its virtual home
about its current position and that virtual home responsibilities are
exchanged whenever nodes exchange positions. Then v only has to
update its connection to the multicast stream if it leaves its current
DXN. However, when using the short-cut edges, such an update
can be done in constant time so that the disruption of service to
v is kept at a minimum. While frequent switches between DXNs
could cause frequent update operations, a lazy virtual home update
strategy can be used to easily solve this problem.

A third problem with dynamic conditions is that intermediate
nodes may change their requested bandwidth. We can use active
bandwidth restrictions to ensure that the previous invariant contin-
ues to hold, so that routing is still valid. Since the invariant con-
tinues to hold, congestion remains low and the admission control
theorems remain true.

Acknowledgements.The authors thank Qian Li for her earlier
contributions to this work.

6. REFERENCES
[1] I. Abraham, B. Awerbuch, Y. Azar, Y. Bartal, D. Malkhi, and

E. Pavlov. A generic scheme for building overlay networks in
adversarial scenarios. In IPDPS 2003.

[2] M. Adler, E. Halperin, R. Karp, and V. Vazirani. A stochastic
process on the hypercube with applications to peer-to-peer
systems. In STOC 2003.

[3] J. Aspnes and G. Shah. Skip graphs. In SODA 2003.
[4] B. Awerbuch and C. Scheideler. The Hyperring: A

deterministic data structure for distributed environments. In
SODA 2004.

[5] S. Banerjee and B. Bhattacharjee and C. Kommareddy.
Scalable Application Layer Multicast. Techical Report,
UMIACS-TR 2002-53 and CS-TR 4373, University of
Maryland, 2002.

[6] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralized application-level
multicast infrastructure. IEEE Journal on Selected Areas in
communications, 2002.

[7] M. Castro, M.B. Jones, A.-M. Kermarrec, A. Rowstron,
M. Theimer, H. Wang, and A. Wolman. An evaluation of
scalable application-level multicast built using peer-to-peer
overlay network. In Infocom 2003.

[8] E. W. Dijkstra. Self stabilization in spite of distributed
control. Communications of the ACM, 17:643–644, 1974.

[9] H. Deshpande and M. Bawa and H. Garcia-Molina.
Streaming Live Media over a Peer-to-Peer Network.
Technical Report 2001-31, Stanford University, 2001.

[10] J. R. Douceur. The Sybil attack. In IPTPS 2002.
[11] N. J. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and

A. Wolman. Skipnet: A scalable overlay network with
practical locality properties. In USITS 2003.

[12] J. Jannotti and D. Gifford and K. Johnson and F. Kaashoek
and J. O’Toole. Overcast: Reliable multicasting with an
overlay network. In OSDI 2000.

[13] M. F. Kaashoek and D. R. Karger. Koorde: A simple
degree-optimal distributed hash table. In IPTPS 2003.

[14] Kazaa. Kazaa home page. http://www.kazaa.com/, 2003.
[15] K. Lakshminarayanan, A. Rao, I. Stoica, and S. Shenker.

Flexible and Robust Large Scale Multicast Using I3. UCB
Technical Report No. UCB/CSD-02-1187, May 2002.

[16] D.H. Lawrie. Access and alignment of data in an array
processor. IEEE Transactions on Computers, vol. C-24,
no.12, pages 1145-1155, 1975.

[17] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh.
Graph-Theoretic Analysis of Structured Peer-to-Peer
Systems: Routing Distances and Fault Resilience. In
SIGCOMM 2003.

[18] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable
and dynamic emulation of the butterfly. In PODC 2002.

[19] M. Naor and U. Wieder. Novel architectures for P2P
applications: the continuous-discrete approach. In SPAA
2003.

[20] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz,
M. Schlosser, I. Brunkhorst, and A. Lser. Super-peer-based
routing and clustering strategies for RDF-based peer-to-peer
networks. In Int. World Wide Web Conference, 2003.

[21] A. Ranade. How to emulate shared memory. J. of Computer
and System Sciences, 42:307–326, 1990.

[22] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
SIGCOMM 2001.

[23] S. Ratnasamy, M. Handley, R.M. Karp, and S. Shenker.
Application-level multicast using content-addressable
networks. In Networked Group Communication, pages 1429,
2001.

[24] C. Riley and C. Scheideler. Guaranteed broadcasting using
SPON: Supervised P2P overlay network. In 2004
International Zürich Seminar on Communications.

[25] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems. In IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), 2001.

[26] C. Scheideler. Universal Routing Strategies for
Interconnection Networks. Lecture Notes in Computer
Science 1390. Spinger, 1998.

[27] M. Srivatsa, B. Gedik, and L. Liu. Scaling unstructured
peer-to-peer networks with multi-tier capacity-aware overlay
topologies. See http://www.cc.gatech.edu/∼mudhakar/.

[28] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
Internet indirection infrastructure. In SIGCOMM 2002.

[29] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In SIGCOMM 2001.

[30] B. Traversat, A. Arora, M. Abdelaziz, M. Duigou,
C. Haywood, J.-C. Hugly, E. Pouyoul, and B. Yeager. Project
JXTA 2.0 Super-Peer Virtual Network.Sun Microsystems,
May 2003.

[31] B. Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and
routing. UCB Technical Report UCB/CSD-01-1141, 2001.

[32] B. Yang, H. Garcia-Molina. Designing a super-peer network.
In ICDE 2003.

[33] Y. Zhu, H. Wang and Y. Hu. A super-peer based lookup in
highly structured peer-to-peer networks. In PDCS 2003.

[34] S.Q. Zhuang, B.Y. Zhao, A.D. Joseph, R.H. Katz, and
J.D. Kubiatowicz. Bayeux: An architecture for scalable and
fault tolerant wide-area data dissemination. In NOSSDAV
2001.

179

