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Abstract. We focus on the problem of symmetric key distribution for
securing shared resources among large groups of users in distributed ap-
plications like cloud storage, shared databases, and collaborative editing,
among others. In such applications, resources such as data, are sensitive
in nature and it is necessary that only authorized users are allowed ac-
cess without the presence of on-line monitoring system. The de-facto
approach is to encrypt a shared resource and deploy a key distribution
mechanism, which enables only authorized users to generate the respec-
tive decryption key for the resource. The key distribution approach has
two major challenges: first, the applications are dynamic i.e., users might
join and leave arbitrarily, and second, for a large number of users, it is
required that the cryptographic technique be scalable and efficient. In
this work, we describe an approach that overcomes these challenges by
using two key techniques: first, flattening the access structure and ap-
plying efficient symmetric key distribution techniques. By flattening the
access structure, we reduce the problem to that of key distribution of
a resource among all the users sharing that resource. We consider this
smaller flattened access structure and devise a unified key distribution
technique that is sufficient for key distribution across all such structures.
Our key distribution techniques have an important feature of a public
secret and a private secret, which allows the group controller to publish
updates to the keying material using the public secret and therefore,
does not necessitate the users to be in constant communication with the
group controller. Using this model we describe two efficient key distribu-
tion techniques that scale logarithmically with the group size and also
handle group additions and removals. Furthermore, a user can be off-line
for any amount of time and need not be aware of the dynamics of the
system, which is important as it overcomes the problems posed by lossy
channels. We have performed an experimental evaluation of our scheme
against a popular existing scheme and show that they perform better for
this scheme with the same security guarantees. As our approaches are
easy to implement they are especially suitable for practical applications
where security is viewed as an overhead rather than as a necessity.



1 Introduction

Motivation. Shared resource access is common in many application domains
such as data access control in organizations, multi-level database applications
like air-travel reservations, collaborative document editing and cloud file systems
among others. The problem in such applications is to implement an efficient and
scalable security mechanism which allows users selective access to the resources
based on their privileges. This problem can be trivially solved if the environment
is static i.e., the users of the application do not change or if the privileges of the
users do not change over time. However, real-world applications are dynamic in
nature and hence, the security mechanism must be able to handle such changes
in an efficient manner without causing breaches of security. Thus, given the
pervasive nature of such applications and the sensitivity of the data, there is
a critical need to address the problem securing shared resources in real-time
dynamic applications.

Problem Overview. A trivial solution to secure access to resources is to en-
crypt each resource with a unique symmetric key. For each resource to which the
user has access, the user receives the set of decrypting keys for the resources.
The trivial solution is simple and computationally efficient but has some draw-
backs. First, the storage at the user is directly proportional to the number of
resources he can access, for R resources the user stores R keys. Second, when
a user is revoked from the system, the central authority needs to re-encrypt
all the resources known to the revoked user and distribute the new keys to the
remaining users who need them. In case of revocation, the cost of encryption
is quite high for the central authority. Moreover, the central authority needs to
communicate the changed keys individually to each of the remaining users in a
secure manner. A more serious problem is that all users may not be online to
receive the key updates. Thus, the trivial solution requires high user storage and
has considerable communication overhead if users go offline for arbitrary periods
of time.

Limitation of Prior Art. The existing approach to this problem is organize
users and the resources in a hierarchical manner and define an ordering on the
data access. For example, one such ordering is that users and data at the higher
levels of the hierarchy can access data at lower levels of the hierarchy and so
on. There have been several solutions [1-5,7,9,17,19,21,23, 28] that address
the security of data in such access hierarchies. In these approaches, the data at
level in the hierarchy is encrypted using a cryptographic key and users at higher
levels in the hierarchy can derive the lower level keys in an efficient manner.
These solutions reduce the user storage to only one cryptographic key O(1) as
the rest of the keys can be derived using this key. However, in many cases, the
hierarchies can run deep and the key derivation time is considerable. Another
major drawback in applying these solutions is that it is not trivial or possible
to identify or generate an access hierarchy using the access control list. Thus,
the main challenge in securing shared resource access is to identify the trade-off
between storage and computational complexity.



Our Approach. From the above discussion, we note that, there is a need for a
solution that can address a generic model of data sharing. We consider one such
simple and generic model in which each resource is individually selected and
all the users who can access this resource are grouped together. This model is
natural in many applications. For applications that may have naturally defined
access hierarchies, it is trivial to transform the hierarchy into such a flattened
structure. The flat structure is well suited to model the type of sharing that
occurs, say, in secure data bases and hence, our approach is applicable to a more
general class of problems than access hierarchies.

Using the flat structure and the trivial solution described above, it is possible
to reduce the computational complexity for deriving the necessary decrypting
keys. However, this not only requires high storage at the users but also, the
revocation and addition of users is non-trivial. Instead, we use a public-space
based model where the decryption key of a resource is a function of a public
secret and a private secret. The public-space model is simple in nature and
consists of two pieces of information: public-information and private-information.
The central authority encrypts the resource by using a combination of the public
and the private information. At initialization, the central authority distributes
the corresponding private-information to each user in a secure manner. Each
user is given only the relevant private information and this information does
not change regardless of the dynamics of the group. The decryption key of each
resource is a function, F of the private-information held by all the users who
have access to this resource. The public-information consists of one or more
values evaluated over F' on the private-information held by each user. Now, the
central authority attaches the public-information to the resource as meta-data
and stores it along with the resource. By using the necessary public-information
and the stored private-information each user can locally derive the decryption
key. If any change in the membership occurs, the central authority re-computes
the public information using the private information of changed user group and
updates the resource accordingly.

Technical Challenges and Solutions. The first technical challenge is to be
able to generate the flat access structure from a given organization’s access struc-
ture. We solve this by treating the access structure as a graph, where the nodes
are associated with access levels and users, and then computing the transitive
closure of this graph for each resource. The result is the set of users sharing a
particular resource r, i.e., the access control list of r and the set of resources
accessible by a user, i.e., the capability of a user.

The second technical challenge in our approach is to devise a key distribution
scheme that does not require the user to store as many decryption keys as the
number of authorized resources. Specifically, to design an efficient construction
of the function F', that is dependant on the private-information of the users, and,
on the derivation of the decryption key by the users. To reduce the storage at
the users we use a logarithmic-keying approach where, for a set of R resources,
each user needs to store only O(log R) keys.



Now, if a user is granted access to a resource, the central authority selects a
unique subset of the keys from this pool of keys, derives the function F' and the
corresponding public-information. We design two key distribution approaches
for implementing the function F. In the first approach, the central-authority
randomly selects a secret polynomial which is of order O(log R). An arbitrary
point on this polynomial is chosen as the encrypting key for the resource and
made public. For each user, the central authority uses the keys of this user
and evaluates them on the polynomial. All the evaluated values from all the
users are published as public-information. To derive the decryption key, the
user needs to interpolate the polynomial and evaluate it at the particular point
published by the central authority. Since deriving a polynomial of order O(log R)
requires O(log R) points, each user can easily compute the polynomial using the
corresponding set of keys and the corresponding public-information.

In the second approach, the central authority computes the decryption key
as an XOR of values derived using the keys selected from the users sharing the
resource. For each user, the central authority uses the keys of this user and passes
each key through a one-way function along with a public-value P that is specific
to this user. The hashing is necessary to prevent leaking the actual values of the
keys and the public-value acts as a salt for dictionary-based attacks. Now, the
central authority XORs all the hash values from all the users. This combined
hash value is used as the encryption key after appropriate expansion or reduction
of the hash value length depending on the requirement. In order to derive this
key, from the properties of XOR, each user needs the XOR of all the hash values
contributed by the remaining users. Since, the basic key derivation operations
are one-way hashing and XOR, this scheme is very efficient and can even be
implemented in hardware.

Key Contributions. Our major contributions are as follows. (a) We devise an
efficient key distribution approach for securing shared resource using a public-
private information model. (b) We implement our model using two efficient key
distribution approaches that only require the users to store a logarithmic number
of keys to the number of authorized resources. (¢) We show that the cost of han-
dling user dynamics is better than existing approaches without compromising se-
curity. We have used key derivation cost, user storage, size of public-information
and membership handling costs as metrics to evaluate our approaches. (d) The
generic nature of our approach shows that more key distribution protocols are
possible within this model and hence, there is further scope for expanding our
approach to newer application domains.

Organization. The paper is organized as follows. In Section 2, we describe our
system model and identify security requirements. In Section 3, we describe our
framework in detail. We analyze the security of our framework in 5. In Section 4,
we present the experimental results obtained from our framework and compare
them with existing schemes. In Section 6, we conclude the paper and describe
some future work.



2 System Model

In this section, we describe the problem background in detail and the system
model. We also state our assumptions towards solving the problem. We conclude
the section by describing some related work in this area.

2.1 Background

Applications with shared resources can be classified into two broad classes based
on user behavior: those that require all the users to be online at the time of
sharing, e.g., video conferencing and those that do not have this requirement e.g.,
secure databases, file systems. For the sake of simplicity, we denote the former
class of applications as online applications and the latter as offline applications.
For online applications, the number of shared resources and the degree of sharing
is small e.g., a group of users may subscribe to one or more multicast sessions.
This problem has been studied extensively and many good solutions have been
proposed in the literature [18,25,26]. In this work, we focus on the security of
the offline applications and propose a framework to secure such applications.

2.2 System Model

We will describe our system model in terms of an access hierarchy and show
how it can be transformed into a more general model. We assume that a cen-
tral authority (CA) is in charge of access control, defines the access hierar-
chy and performs the key management tasks. The application has a set of
m resources R = {Ry,Ra,..., Ry} in a resource store and a set of n users
U = {ug,u2,...,u,}. The users are arranged in an access hierarchy where the
access relationships are specified by the central authority. Formally, an access
hierarchy of users is a partial order on the users so that u; < w; if and only
if u; has access to every object that u; has apart from the objects that u; can
access on its own. The users (and the resources) are grouped into security classes
SC,8C,,...,8C, such that SC; < SC; if i < j i.e., users belonging to class
SC; can access all resources that are accessible to users belonging to class SC;
and of other classes lower than SC;. A user u; is allowed to access a subset
S; € R of resources. Moreover, if user u; is above w; in the hierarchy, then u; is
allowed to access all the resources in S; U S;. It is natural to view the hierarchy
as a partial order (U, <). We say that when user u; < u;, user u; is allowed all
the privileges associated with user u; apart from what u; has on his own. Such
a hierarchy is best represented using its Hasse diagram which can be modeled
as a directed graph G = (V, E), where, V represents the users and E represent
the access relationships. The resulting graph is acyclic in nature i.e., directed
acyclic graph (DAG). We call this graph as the access hierarchy graph. We note
that, in current literature, some special topologies of the hierarchy graph such
as a tree [15,20], graphs of a certain partial order dimension [2] are studied for
simplicity. For any node u € G and R € Sy, let d(u, R) refer to the length of a
shortest (directed) path from u to a node v € G because of which u can access



the object R. Let d(u) = maxgeg, d(u, R). The depth of a hierarchy graph G,
denoted d(G), is defined as max,cy (q) d(u).

Normally, in an access graph all the users at the higher levels can access all the
lower level resources. However, there are some special cases of access hierarchies
where the users at the higher layers are restricted from access all the lower level
resources. This restriction is specified in terms of the depth of the hierarchy they
can access and hence, such hierarchies are called limited-depth hierarchies. In
the case of a mechanism that works for a limited depth hierarchy, we say that
each vertex in the graph is associated with a number £(v) that indicates that v
is allowed to access resources that can be reached by a (directed) path of length
at most £(v). For a user u, we denote by cap(u) the set of resources that u can
access. Similarly, for a resource r, we denote by acl(r) the set of users u such
that r € cap(u). We extend this notation naturally when dealing with sets of
users and resources.

2.3 Related Work

One approach to reduce the storage at the users is to use key derivation tech-
niques [1-3,5,9,17,19,21,28] for access hierarchies. A key derivation technique
can be briefly described as follows: a user belonging to a class SC; is given
some secret information and if any, public parameters. The resources belonging
to a particular security class, SC; are encrypted using a secret key SK;. Now,
if a user, belonging to SC}, wishes to access the resources of some other class
SC; < S0, then, the user can use his secret information and any available pub-
lic parameters to derive the decrypting key for the lower security class. In their
seminal work, Akl and Taylor [1] proposed a scheme where keys are based on
products of prime numbers. The scheme works on the underlying difficulty of
finding factors for large prime numbers. As the prime numbers may get larger
and hence, operations become more expensive, MacKinnon et. al. [17] relaxed
the setting to not use prime numbers. However, the process of generating the
required keys is still difficult. An improvement to these schemes is suggested
by Chang and Buchrer [5] but relies on integer modulo exponentiation which is
a costly operation. Other schemes using multiplicative properties of the mod-
ulo function are reported in e.g., [19]. Several efficient schemes which rely on
key derivation mechanisms using symmetric cryptographic primitives, for ex-
ample hash functions, are reported in the literature [3, 14, 16,20, 27]. Schemes
from [20,27] do not adapt well to dynamism and require expensive updates to
handle dynamism.

In [3], the authors describe an efficient key derivation scheme based on one-
way hash functions where each class is given a key and it can derive a key of
classes lower to it in the hierarchy using its own key along with some public
information. However, we note that the cost of deriving a key can be directly
proportional to the depth of the access graph. The dynamic access control prob-
lems such as addition/deletion of edges, addition/deletion of a class are also
handled in an efficient manner by updating only the public information - a fea-
ture that was not available in earlier schemes. They also presented techniques to



minimize the key derivation time at the expense of user storage [2]. The idea is
to add some extra edges and extra nodes called dummy nodes based on the di-
mension of a poset. However, as pointed out in [2], the computational complexity
of finding the dimension of a given poset diagram is not known. Our approach
provides a key derivation scheme which on an average performs comparable or
better to [2,3].

In [6,11], the authors describe a scheme that combines techniques from dis-
crete logarithms and polynomial interpolation. However, the user storage cost is
high and support for dynamic operations requires costly polynomial interpola-
tion. In [28], the authors present a scheme using polynomials over finite fields.
However, the degree of the polynomial kept secret with the object store is very
high. Key derivation also involves computations with such large degree polyno-
mials and takes time proportional to the depth of access. Moreover, the cost of
rekeying under dynamic updates is quite high. In [9], the authors attempt a uni-
fication of most of the existing schemes. This is done by identifying the central
attributes of the schemes such as: node based, direct key based, and iterative.

Once database is treated as a service [13], it is easy to envision that database
operations can be outsourced bringing in a host of security issues. In [10,24], the
authors apply the key derivation approach of [3] to secure databases. However,
to be able to use the key derivation schemes to problems like secure databases
the access hierarchy needs to be built up-front. A virtual hierarchy of users is
created and the scheme of [3] is used. But, as noted in [10,24], the computational
cost of generating this virtual hierarchy can be quite high.

The key short-coming of the key derivation techniques is that applying these
solutions is difficult if the access hierarchy is not available upfront or is not
explicitly specified. Such a scenario occurs in secure data bases or in access con-
trol matrices, which implies that, in order to be able to use the key derivation
techniques, the access hierarchy structure needs to be constructed for these ap-
plications. Although, techniques for constructing access hierarchies [10,24] have
been proposed, these are expensive and place additional pre-processing overhead
on the system. The main advantage of the key derivation schemes is that the
user storage is minimal O(1). However, the computational complexity in key
derivation scheme is proportional to the depth of hierarchy which can be O(N)
where N is the number of application users. Thus, the key derivation techniques
reduce the storage complexity but increase the computation required to derive
the required keys.

From this discussion, we note that, there is a possibility of trade-off between
the user storage and the complexity of key derivation. Given these shortcom-
ings, we note that, it is relatively easier to consider a hierarchy and flatten it
before deploying any key distribution techniques. Flattening of a hierarchy sim-
ply means that we consider each resource individually and group all the users
sharing that resource. Using this approach, we will be able to address those sce-
narios where the hierarchies are not readily available, which is the case in most
practical user-level databases. Also, special hierarchies like, limited-depth hier-
archies where resources given to a user fall between two levels of the hierarchy,



can also be addressed with a flattened hierarchy. Next, we describe our approach
by which the access hierarchy graph is flattened thereby eliminating the need for
the expensive pre-processing step. To secure the flat access structure, we describe
storage efficient key distribution techniques that are based on the public-private
model, which means that the decryption key of a resource is a function of some
public information and the user’s secret information.

3 Our Approach

In this section we describe the proposed framework for shared resource access.
In Section 3.1, we describe our approach for flattening of the access hierarchy
of a given organization. In Section 3.2, we describe our basic key distribution
approach for securing resources known to a single user using the storage efficient
logarithmic keying approach. In Section 3.3, we enhance our basic key distribu-
tion using Shamir’s secret sharing technique and describe the solution to securing
all resources shared by the users.

3.1 Flattening Access Hierarchies

The process of flattening the hierarchy can be seen as computing the transitive
closure of the graph G. There are several algorithms for computing the transitive
closure of a given directed graph [8]. Given the graph G, the transitive closure
of G, denoted G*, has at most n? edges if the graph G has n vertices. The
central authority thus first computes the graph G*. Note that, the process for
computing transitive closure changes only slightly for limited depth hierarchies
as the depth of each user is noted before computing the closure. The outcome
of computing the transitive closure is that for every user u, cap(u) is known and
similarly for every resource r, acl(r) is known.

3.2 Logarithmic Keying for Securing Single Owner Resources

Logarithmic keying refers to schemes that require users to store a logarithmic
number of keys and achieve some security functionality. Such schemes have been
in vogue [12,25] for reducing the cost of rekeying in secure group communication.
In [12,25], the authors show that for N users 2log N keys at the group controller
are sufficient to achieve the desired functionality. The key distribution is as
follows: each user is assigned a log N-bit identifier. Using this identifier, the
group controller assigns to this user a unique log N sized subset from its pool of
keys. In our scheme, we use a similar key distribution with some modifications
to suit our requirements.

Now, to secure single owner resources with the logarithmic keying technique,
each user stores atmost O(logm) symmetric keys where m is the number of
resources to which he has access to. To encrypt a resource, the user selects
a unique subset of keys from this subset, computes an XOR of the keys and
uses this value to encrypt the resource. To enable sharing of resources, each



user who has access to the resource needs the decrypting key. We use Shamir’s
secret sharing approach to encode the encrypting (symmetric) key of the shared
resource. The encrypting key can be locally computed using a subset of the
O(logm) keys held by each user and using some public information. This public
information can be stored in the resource store as resource meta-data.

We note that, the above key distribution approach can be generalized. Instead
of choosing a fixed size subset of keys based on the binary identifier, the central
authority can choose a unique but smaller subset of keys for each resource. Thus,
the key distribution can be now stated as follows. The central authority generates
a unique pool of keys for each user. From this pool of keys, for each cap(u), the
central authority selects a unique subset of keys to encrypt the resource. Since
the subset of keys is unique by construction, no two resources will be encrypted
with the same key. Moreover, it is clear the the pool of keys cannot be more than
O(2logm) as it can be trivially shown that the number of subsets of size k i.e.,
(2 lol’f ), for some k < logm, is greater than m, where k can be appropriately
chosen using Stirling’s approximation [8].

Reducing Storage Further. In the key derivation techniques [1-3,5,9,
17,19, 21, 28] the user needs to store only one key, albeit, the cost of deriving
the decryption key involves higher computation. We note that, the logarithmic
keying can be replaced with a scheme which requires the user to store only one
master key K. The scheme is as follows: to encrypt a resource R; with identifier
ID; the central authority computes the encrypting keys as, Kr, = Hy(ID;)
where H denotes a secure one-way hash function. Since the user has the master
key K, he can compute the encrypting key by performing one secure one-way
hash computation. However, we note that, in the logarithmic keying scheme the
user needs to perform log m XOR operations where m is the size of the resources.
It can be seen that this computation is much faster than one secure hash com-
putation even when m is as large as 2'2. Hence, this illustrates that reducing
storage invariably increases the computation required for key derivation. From
this discussion, we observe that, the logarithmic keying scheme reduces the key
derivation overhead by increasing the storage complexity only slightly.

3.3 Securing All Shared Resources

The logarithmic keying approach works if a single user is only accessing the
resources. To secure shared resources we apply Shamir’s secret sharing scheme
coupled with the logarithmic keying approach. We encrypt the resource using a
secret that can be generated locally by the individual subsets of keys held by
the users. Our final solution has two main steps.

Step 1: Key Distribution Notice that for each user w, it holds that |cap(u)| <
m. To provide keys for the resources, the central authority, using the scheme de-
scribed in Section ?7, picks 2 log m keys uniformly and independently at random
from the field F. Note that for all practical purposes, it can be assumed that
the set of keys chosen for each user are all distinct. These 2logm keys form the
master keys for each user. For each user u and for every resource r € cap(u), the



central authority then allocates different subsets of size logm keys chosen inde-
pendently and uniformly at random from the set of master keys at u. These are
denoted as Sy, = { K, 1, K 5.+, K o4, } and are called as the keys of resource
r at user u. The central authority thus has |acl(r)| - logm keys for resource r.
Step 2 : Key Management Given the key distribution from Step 1, we now
apply ideas from Shamir’s influential paper [22] to complete the solution. The
central authority chooses a polynomial f,. of degree logm for resource r and
uses this to encode the encrypting key for the resource. The encrypting key
k(r) of the resource r is computed as follows. The CA chooses a point on the
polynomial f,., say p(r), and computes f.(p(r)) and publishes (p(r), fr(p(r))).
The decryption key k(r) is set to f,-(0), and the polynomial f,(.) is kept secret
by the CA. Now, the CA implements a log m—out of-|acl(r)| - logm threshold
secret sharing scheme to enable a user to interpolate this polynomial. To this
end, for each user u € acl(r), the CA evaluates f, at each of the keys in S7.
These values are then made public. To access a resource r, a user u uses the
subset S, for r along with the public information, i.e., evaluations of f,.(.) on
the key set S, for resource r to interpolate the polynomial f,(.). Finally, the
user evaluates this polynomial at f,(0) to recover the encrypting key k().

Storage and Computational Complexity. The storage complexity of each
user is O(logm) and that of the central authority is O(n.logm) where n is the
total number of users. We denote the average degree of resource sharing by m,.,
i.e., on an average m, users share a particular resource. Given this information,
the public information required per shared resource is given by m, logm. The
complexity of interpolating a polynomial of degree log m, for extracting the en-
crypted key, is O(log2 m) operations using the well-known Lagrange’s method.
We note that, the main advantage of our scheme is the small degree of the poly-
nomial compared to other schemes [6,11,28] based on polynomial interpolation.

Our framework allows for efficient updates to handle changes to the user set,
changes to the hierarchy, and changes to the resource set. We now describe the
operations required to address each of these events.

Addition of an user Suppose that the new user u along with a list of objects he
can access is given. Let R, denote the set of resources for which acl(r) changes.
The central authority chooses the set of master keys for u independently and
uniformly at random from the field F. For each resource r € cap(u), the CA
also picks the subsets of keys S]. Now, for every resource r € R,, the central
authority evaluates the polynomial f,.() at the points in S, for every new member
v € acl(r) and makes these evaluations public. No change to the polynomial or
the key k(r) of the object is required. Unlike other schemes, adding a user is very
easy in our framework as only a few more evaluation of polynomials are required.
We note that, adding a user in an access hierarchy can be easily modeled in our
approach by considering the incremental transitive closure.

Revoking a User In this case, the central authority has to essentially change
the polynomial for each of the affected resources. For every such resource, r, the
CA chooses a different polynomial of degree logm and recomputes the public



information public for each user in aclr. The CA need not change p(r), or the
keys of the users but only has to change the encryption key of r.

Addition of an Authorization This corresponds to adding a resource r to
cap(u) for a user u. The CA associates a subset of keys S7, evaluates f, at the
points (keys) in S7, and the resulting values are made public.

Revoking an Authorization In this case, only one resource is affected. To
handle this change, the central authority chooses a different polynomial and
proceeds as in the previous case.

Addition of a Resource We now consider the case when a new resource r
is added to the resource store. In this case, let us assume that acl(r) is also
provided. For each user u in acl(r), the CA associates the set S}, and informs u
of the same. The CA then chooses a polynomial f,.(.) and computes the required
public information.

Extensions to Limited-Depth Hierarchies. Note that the above frame-
work can work seamlessly for limited-depth hierarchies. Instead of finding the
transitive closure of the access graph, we simply find the graph H such that
(u,v) € E(H) if and only if dg(u, v) < d(u) and apply our approach.

4 Experimental Results

We performed three experiments. First, we compared the average number of
operations required in our proposed framework against the scheme described
in [3]. We refer to the scheme from [3] as Atallah’s scheme. Second, to evaluate
the efficiency of our framework in various settings, we describe a profiling of
organizations. We evaluated our framework on each of these profiles. Finally, we
compared the storage overhead of the proposed framework with that of Atallah’s
scheme. Implementation was in C++ on a general purpose Linux PC.

Comparison of Operations. We experimented with the number of users
ranging from n = 100 and n = 1000. As we need to generate access graphs Atal-
lah’s scheme, we used random graphs with a diameter between logn and 2logn.
We used the transitive closure of the same graphs for evaluating our framework.
The number of resources varies from 100 to 1000. To measure the average cost
of accessing a shared resource, we computed the cost of accessing random re-
sources at randomly chosen users using our framework and Atallah’s scheme. For
Atallah’s scheme, we used SHA-1 as the chosen hash function as the derivation
function. To move away from the specifics of the different implementation, the
cost was measured by the average number of operations performed to derive the
key of a randomly chosen resource. For our framework, the number of operations
required to interpolate a set of points was measured. The results were averaged
over 25 trials. In Figure 1(a), we show the results of the experimentation. We can
see that on an average our framework requires a smaller number of operations
as the size of the system grows.

Profiling and Efficiency of the Framework. We describe a practical profiling
of different organizations that enable us to evaluate our framework in diverse
settings. We note that our profiling can be used to evaluate other key derivation
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Fig. 1. Figure (a) shows comparison of computational cost of the our scheme with the
scheme of Atallah et. al. [3]. Figure (b) shows the profiling results of our proposed
scheme.

techniques as well. Our profiling is based on the distribution of users across the
organizational hierarchy. The profiling is as follows: Bottom — heavy, Top —
heavy, Middle — heavy, and Uniform. The Bottom — heavy model corresponds
to an organizational structure where there are a lot of users at the lower levels
of the hierarchy. Similarly, a Top — heavy model consists of more users at the
top of the hierarchy; a Middle — heavy model consists of more users in the
middle of the hierarchy. In the Uniform model, the users are equally spread
across the organization. Note that, most organizations fall in these categories and
hence, can be easily modeled by these profiles. We experimented on user sizes,
n = 2'9 and n = 2'6. In Figure 1(b), we show the results of the experiments. For
example, the line corresponding to, T, log m=10, means that the average number
of operations were measure for a Top — heavy organization for n = 2'9 users.
In the figure, B stands for Bottom — heavy and M stands for Middle — heavy.
We can clearly see the variation in the number of operations. In the case of a
Top— heavy hierarchy where the degree of sharing is typically small, the number
of operations even for 2'6 users is around 200. This can be contrasted with a
Bottom — heavy hierarchy with a bigger degree of sharing. In this case, the
number of operations increase but still is under 250. Predictably, the lines for
the Middle — heavy fall in between the Top and Bottom — heavy cases.

Storage Comparison. In Figure 2, we show the public storage of our scheme
against Atallah’s scheme. For small hierarchies, our scheme requires a higher
amount of public storage. But as the number of users increase, the public storage
in our scheme is comparable to that Atallah’s scheme. We note that, public-
storage is necessary in such applications as it serves to reduce the amount of
secure communication between the CA and the users.

5 Security Analysis of Our Framework

5.1 Soundness

Notice that as each resource is associated with an access polynomial which works
along the lines of Shamir’s secret sharing scheme, any valid user can always access
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Fig. 2. The average public storage required in Atallah’s scheme [3] and our scheme.

a resource. This holds because, the user needs to simply associate a subset of
keys for the required resource from the keys in his key ring. Since the user knows
the public information required to interpolate the resource polynomial, the user
can access the resource.

5.2 Completeness and Collusion Resistance

Any scheme for shared resource access has to guarantee that a group of malicious
users cannot pool up their secrets (keys) and derive access to any resource that
they cannot otherwise access. If a solution is resistant to any group of up to
k colluding users, then we call the solution to be k-collusion resistance. The
parameter k is often called as the degree of collusion resistance of the solution.
In the following, we show that our scheme is collusion resistant to a degree n
where n is the number of users in the system.

To make the presentation formal, we need to define some notions. We follow
the model introduced by Atallah et. al. [3]. We look at adversaries that can
actively corrupt any node. When a node is corrupted by an adversary, it is
possible for the adversary to get all the keys owned by the corrupted node. We
also assume that keys assigned to the users are chosen uniformly at random from
all possible keys in the field F.

We let the adversary know the access graph G and its transitive closure. In
effect, the adversary knows cap(u) for every user u and acl(r) for every resource
r. For a given set C' of corrupted nodes, let cap(C) = Uyeccap(u). Let us fix
any resource r ¢ cap(C) and the goal of the adversary is to access 7. For this
purpose, imagine an oracle O that knows the keys for k(r) for r. The adversary
creates a key (or a set of keys) k(r') and presents it to O. The adversary is
successful (wins) if k(r) = k(r).

While our description above uses an adaptive adversary, it can be noted that
the power of an adaptive adversary is same as that of a static adversary. So in
the rest of the presentation, we work with a static adversary. We call the above
adversary as A.



From the above description, it is clear that the advantage of the adversary
A is tied to the ability to come up with the right polynomial. However, as
stated in Shamir’s paper [22], even if one point is not known it is difficult in the
information theoretic sense to know the polynomial. In our case, the adversary A
is not aware of any single point completely. It can know only the images but not
the pre-images. For each of the possible 2 € F for each of the pre-images, A can
construct a polynomial. All these | F|'°8™ polynomials are equally likely to be the
correct polynomial for resource r. Hence, A cannot win with any non-negligible
probability as |F| is large enough.

6 Conclusion and Future Work

In this paper, we presented a generic framework for securing shared resource
access. We showed that our framework can be used for a general class of problems
like access hierarchies and database security. Our framework used a logarithmic
keying technique coupled with Shamir’s secret sharing approach to reduce the
computational complexity of encrypting and decrypting resources considerably.
We also provided a profiling of organizations and evaluated our framework in
these scenarios. The simplicity of our framework and our experimental results
show that our framework can be easily deployed in practice.

We note that, however, our framework is meant for scenarios where there
are many shared resources. Applications such as secure group communications
have a limited number of shared resources with real-time requirements. Our
framework can place considerable overhead in such applications and hence, would
not be efficient. We are currently working on reducing the public storage in our
framework and also, on the practical deployment of our framework in various
applications.
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