
Accepted Manuscript

Work efficient parallel algorithms for large graph exploration on
emerging heterogeneous architectures

Dip Sankar Banerjee, Ashutosh Kumar, Meher Chaitanya, Shashank
Sharma,
Kishore Kothapalli

PII: S0743-7315(14)00224-X
DOI: http://dx.doi.org/10.1016/j.jpdc.2014.11.006
Reference: YJPDC 3377

To appear in: J. Parallel Distrib. Comput.

Received date: 25 March 2014
Revised date: 17 November 2014
Accepted date: 25 November 2014

Please cite this article as: D.S. Banerjee, A. Kumar, M. Chaitanya, S. Sharma, K. Kothapalli,
Work efficient parallel algorithms for large graph exploration on emerging heterogeneous
architectures, J. Parallel Distrib. Comput. (2014), http://dx.doi.org/10.1016/j.jpdc.2014.11.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jpdc.2014.11.006


Work Efficient Parallel Algorithms for Large Graph
Exploration on Emerging Heterogeneous Architectures1

Dip Sankar Banerjeea,∗, Ashutosh Kumara, Meher Chaitanyaa, Shashank Sharmaa,
Kishore Kothapallia

a International Institute of Information Technology, Hyderabad, Gachibowli, Hyderabad, India 500 032.

Abstract

Graph algorithms play a prominent role in several fields of sciences and engineering.
Notable among them are graph traversal, finding the connected components of a graph,
and computing shortest paths. There are several efficient implementations of the above
problems on a variety of modern multiprocessor architectures.

It can be noticed in recent times that the size of the graphs that correspond to real
world data sets has been increasing. Parallelism offers only a limited succor to this
situation as current parallel architectures have severe short-comings when deployed for
most graph algorithms. At the same time, these graphs are also getting very sparse in
nature. This calls for particular solution strategies aimed at processing large, sparse
graphs on modern parallel architectures.

In this paper, we introduce graph pruning as a technique that aims to reduce the
size of the graph. Certain elements of the graph can be pruned depending on the nature
of the computation. Once a solution is obtained on the pruned graph, the solution is
extended to the entire graph. Towards, this end we investigate pruning based on two
strategies that justifies their use in current real world graphs.

We apply the above technique on three fundamental graph algorithms: breadth first
search (BFS), Connected Components (CC), and All Pairs Shortest Paths (APSP). For
experimentations, we use three different sources for real world graphs. To validate our
technique, we implement our algorithms on a heterogeneous platform consisting of a
multicore CPU and a GPU. On this platform, we achieve an average of 35% improve-
ment compared to state-of-the-art solutions. Such an improvement has the potential to
speed up other applications reliant on these algorithms.

Keywords: graph algorithms, irregular computations, heterogeneous computing,
input pruning

∗Supported by Tata Consultancy Services Ltd. through the TCS Research Scholarship Program.
Email addresses: dipsankar.banerjee@reasearch.iit.ac.in (Dip Sankar Banerjee),

ashutosh.kumar@students.iit.ac.in (Ashutosh Kumar),
meher.c@reasearch.iit.ac.in (Meher Chaitanya),
shashank.sharma@students.iiit.ac.in (Shashank Sharma), kkishore@iiit.ac.in
(Kishore Kothapalli)

1. A part of this work has appeared previously in Proceedings of The 20th IEEE International Confer-
ence on High Performance Computing (HiPC), 2013

Preprint submitted to Elsevier December 22, 2014



1. Introduction

Graph algorithms find a large number of applications in engineering and scientific
domains. Prominent examples include solving problems arising in VLSI layouts, phy-
logeny reconstructions, data mining, image processing, and the like. Some of the most
commonly used graph algorithms are graph exploration algorithms such as Breadth
First Search (BFS), computing components, and finding shortest paths. As the current
real life problems often involve the analysis of massive graphs, it is often seen that
parallel solutions provide an acceptable recourse.

Parallel computing on graphs however is often very challenging because of their
irregular nature of memory accesses. This irregular nature of memory access stresses
the I/O systems of most modern parallel architectures. It is therefore not surprising that
most of the recent progress in scalable parallel graph algorithms is aimed at addressing
these challenges via innovative use of data structures, memory layouts, and SIMD
optimizations [38, 22, 41]. Recent results have been able to make efficient use of
modern parallel architectures such as the Cell BE [41], GPUs [38, 23, 22], Intel multi-
core architectures [14, 49, 3] and the like. Algorithms running of GPUs have shown
standout performance amongst these because of its massive parallelism.

Another recent development in parallel computing is the design and engineering
of heterogeneous algorithms that are aimed at heterogeneous computing platforms.
Heterogeneous computing platforms consist of tightly coupled heterogeneous devices
including CPUs and accelerator(s). One such example is a collection of a CPU coupled
with a graphics accelerator (GPU). Heterogeneous algorithms for CPU+GPU based
computational platforms have been designed for also graph breadth-first exploration
[23, 38, 20]. All of the above-cited works show an average of 2x improvement over
pure GPU algorithms.

Most of the above works in general aim at data structure and memory layout op-
timizations but largely run classical algorithms on the entire input graph. These algo-
rithms are designed for general graphs whereas the current generation graphs possess
markedly distinguishable features such as being large, sparse, and large deviation in the
vertex degrees. In Figure 1, we show some of the real-world graphs taken from [2]. As
can be seen from Figure 1, these graphs have several vertices of very low degree, often
as low as 1. For instance, in the case of the graph web-Google, 14% of the vertices
have degree 1. Table 1 lists other properties of a few real world graphs from [2].

Current parallel algorithms and their implementations [38, 20, 41, 23, 47] do not
take advantage of the above properties. For instance, in a typical implementation of
the breadth-first search algorithm, one uses a queue to store the vertices that have to
be explored next. But, a vertex v of degree 1 that is in the queue will not lead to the
discovery of any yet undiscovered vertices. So, the actions of BFS with respect to
v such as adding it to the queue, dequeue it, and then realize that there are no new
vertices that can be discovered through vertex v are all unnecessary. These actions
unfortunately can be quite expensive on most modern parallel architectures as one has
to take into account the fact that the queue is to be accessed concurrently. Similarly,
other operations such as checking of the status of a vertex, may be quite disposable.

2



Figure 1: A sample of four real world graphs from [2]. On the top-left corner is the graph internet, top-right
is the graph web-google, bottom left is the graph webbase 1M, and the bottom-right is the graph wiki-Talk.

In light of the above paragraph, we posit that new algorithms and implementation
strategies are required for efficient processing of current generation graphs on modern
multicore architectures. Such strategies should help algorithms and their implementa-
tions benefit from the properties of the graphs. In this paper, we propose input pruning
as a technique in this direction. Input pruning aims to reduce the size of the graph
by pruning away certain elements of the graph. The required computation is then per-
formed on the remaining graph. The result of this computation is then extended to the
pruned elements, if necessary.

In this paper, we apply the input pruning technique to three important graph al-
gorithms: Breadth-first search, connected components, and All-pairs-shortest-paths
(APSP). In each case, we show that pruning degree one (or pendant) nodes iteratively
can result in reducing the size of the graph on real-world datasets, by as much as 25%
in some cases. This reduction in size helps us achieve remarkable improvements in
speed for the above three workloads by an average of 35%. In addition, we also per-
form pruning based on articulation points, where we identify biconnected component
of the graph and the suitable articulation points at which the smaller components can be
pruned. We use this strategy to then perform APSP on each of the smaller components.
The results are then merged to provide the final shortest path of the actual graph. This
approach gives a 1.57x speedup over the state of the art results.

1.1. Related Work

Algorithm or implementation decisions based on the nature of the graph is an
emerging area of research. In [19],the authors propose a Distributed Leaf Pruning
(DLP) strategy that helps in achieving a significant speedup over distributed commu-
nication networks. In this work, the authors noticed that in many real life networks,
like CAIDA, the average node degree of a graph with n nodes is very close to n and
nodes with a unitary degree is typically high. So, pruning these nodes from the graph,
provided a much better performance in packet forwarding strategies over the entire
network.

3



In [40], Pattabiraman et al. show novel pruning techniques that solves the maxi-
mum clique problem on large sparse graphs. Their main idea is to prune the vertices
that strictly have fewer neighbors than the size of the maximum clique already com-
puted. These are the vertices that can be exempted from the computation as, even if a
new clique is found, its size would not be greater than the maximum one that is already
computed.

In another work by Cong et al.[16], the authors explore an experimental technique
for the computation of biconnected components on symmetric multiprocessors. To-
wards this, the authors propose a modification of the well known Tarjan’s algorithm
[45] for computing biconnected components. The authors show how to find and hence
remove non-essential edges that do not affect the biconnected components of the graph.
By removing such non-essential edges, the time taken to find the biconnected compo-
nents can reduce vastly as is shown by Cong and Bader [16]. In a more recent work
[24], the authors show a pruning based strategy for identifying the strongly connected
components (SCCs) of a directed graph. In this paper, the authors propose a trimming
technique that works on small world graphs based on their properties. It is observed
such graphs tend to possess one gaint SCC, with a size that is Θ(n), and a lot of SCCs
that have very small sizes, including SCCs with size 1, and size 2. The authors of [24]
essentially identify the small-sized SCCs quickly and ”trim” the input graph accord-
ingly. The actual algorithms is then run on the remaining graph thereby increasing the
overall performance.

Input pruning has been used as a technique in the design of work-optimal parallel
algorithms in the PRAM model. Popular examples include the list ranking algorithm
of Anderson and Miller [4], the optimal merging algorithm [15], the optimal range
minima algorithm [42], and so on. In all of these cases, the size of the input is reduced
by a non-constant factor after which a slightly non-optimal algorithm is employed. In
a post-processing phase, the results on the reduced input is extended to obtain a result
for the entire input.

Many recent works in parallel computing have focused on graph algorithms. Few
among them include [14, 23, 48, 38, 11]. The work of Scarppaza et al. [41] demon-
strates the use of an all-to-all exchange of visited nodes information in a BFS execution
across the eight SPUs of a Cell BE. One of the first results of BFS using GPUs is the
work of Harish et al. [22]. Subsequent improvements to [22] centered around the use
of heterogeneous computing. In [23], Hong et al. use a CPU+GPU platform where the
levels of the BFS with fewer discovered nodes are processed on the CPU and levels
with large number of discovered nodes are processed on the GPU. Using such a hetero-
geneous strategy, they achieve a throughput of 0.4 Beps (Billion edges per second) on
Erdos-Renyi random graphs. These are improved further by Bader et al. [38]. Another
work on parallel BFS was presented by Beamer et al. [11], where the authors show an
improvement of upto 4.8x on real world graphs based on edge contraction. Some of
the prominent works on multicore CPUs include [14] where the primary goal is to map
the data structures to the cache hierarchy so as to improve the cache hit rates. A recent
work [20] partitions the graph so that low degree vertices are processed on the GPU
and the high degree vertices are processed on the CPU.

Finding the connected components of a graph also is an important primitive and
hence has attracted a lot of attention within the parallel computing community. Popular

4



parallel algorithms in the PRAM model include the algorithm of Shiloach and Vishkin
[43] and its variants by Greiner [21]. On GPUs, a variant of Shiloach and Vishkin
[43] is used by Soman et al. [44]. A heterogeneous execution of this algorithm on a
CPU+GPU platform with an improvement of 35% on average is shown in [9].

The all-pairs-shortest-paths (APSP) problem is yet another fundamental graph al-
gorithm with several applications. One of the earliest works on parallel shortest path
problem was proposed by Micikevicius et al. in [36]. In this work, the author proposed
a parallel implementation of the popular Floyd-Warshall algorithm on an early gener-
ation FX5900 GPU which showed speedups upto 3x over sequential CPU code. In a
more recent work [46], Venkatraman et al. proposed a blocked parallel implementation
of the APSP problem. Here, the authors showed a more cache efficient algorithm of
the problem that utilizes the cache hierarchies present in the CPUs to provide a 1.6x
to 1.9x speedup. In [28], the authors show a new APSP implementation on the GPU
where the authors utilizes the available shared memory efficiently using a G80 GPU.
They employ a transitive closure based technique whereby adapt the Floyd-Warshall
algorithm across single and multiple GPUs. This is the current known best result of
the APSP problem on GPUs. Matsumoto et al. proposed an hybrid APSP work based
on the work in [46] in [35]. Here the authors used a block based structure for the
minimization of communication overheads between CPU and GPU and is hence more
efficient. However, the work does not experiment on massive graphs.

More recent works in this direction are summarized below. Djidjev et al. [18] use
graph decomposition via Parmetis [27], compute shortest paths within the partitions
and extend the same to paths across partitions. The success of their approach depends
on two factors: the ability to find a good partition, and the ability to find paths across
partitions quickly. In their work, they work mostly with planar graphs to ensure a good
partition.

1.2. Our Results

In this paper, we focus on graph BFS, connected components, and all-pairs-shortest-
paths. For these three graph algorithms, we first show that a similar preprocessing
phase can help reduce the size of the graph by an average of 35% on a wide variety of
real-world graphs. This helps us to obtain an average of 40% speed-up compared to
the best known implementations for the above problems on similar platforms.

Our preprocessing simply involves removing pendant nodes from the graph. This is
done iteratively so that nodes on pendant paths are also removed during preprocessing.
In the post-processing phase, we show that extending the output of the computation on
the smaller graph can be done in a very straight-forward and quick manner.

In Figure 2, we show the overall improvements achieved from our implementations
on graphs from Table 1. Further results on some more graphs from the UFL Sparse
Matrix Collection [2] and on random matrices generated using the R-MAT synthetic
graph generator [13] are shown in our previous work [8].

Some of our specific contributions are as follows:

• Our results improve the state-of-the-art for graph BFS by 35%. We achieve
an average throughput of 2 billion edges per second on a wide range of data

5



 0

 10

 20

 30

 40

 50

 60

 70

 80

LiveJ

Flickr

B
aidu

W
iki

O
rkut

Patents

C
A
-road

am
azon0601

em
ailEnron

C
a-C

ondm
at

R
oadnet-TX

W
eb-Stanford

W
eb-B

erkstan

W
eb-N

otredam

P2p-G
nutella

Im
p

ro
v

e
m

e
n

t 
%

Graphs

BFS Improvement %
CC Improvement %

APSP Improvement %

Figure 2: Overall improvements due to pruning pendant nodes on the graphs from Table 1 over the previous best known results.

sets including graphs from the University of Florida collection [2], and graphs
generated using the Recursive Matrix Model (R-MAT).

• On the connected components problem, we get an average 20% improvement
over the best known result on an identical platform [9]. A small change to the
algorithm can also build a spanning tree of a graph with very little extra time.

• For computing the shortest path between all pairs of nodes, we achieve an aver-
age of 44% improvement compared to the best known result of [28] on a similar
platform.

• Using the second pruning strategy based on biconnected components we achieve
a speedup of 1.57x on an average over similar graphs.

2. A Brief Overview of our Experimental Platform

In this section, we briefly describe our hybrid computing platform. Our hybrid
platform is a coupling of the two devices described above, the Intel i7 980 and the
Nvidia GTX 580 GPU. The CPU and the GPU are connected via a PCI Express version
2.0 link. This link supports a data transfer bandwidth of 8 GB/s between the CPU and
the GPU. To program the GPU we use the CUDA API Version 4.1. The CUDA API
Version 4.1 supports asynchronous concurrent execution model so that a GPU kernel
call does not block the CPU thread that issued this call. This also means that execution
of CPU threads can overlap a GPU kernel execution.

The GTX 580 GPU is a current generation Fermi micro-architecture from NVidia
that has 16 symmetric multi-processors (SM) with each SM having 32 cores for a total
of 512 compute cores. Each compute core is clocked at 1.54 GHz. Each SM has a
hardware scheduler which schedules 32 threads at a time. This group is called a warp
and a half-warp is a group of 16 threads that execute in a SIMD fashion. Each of the

6



SNAP Graphs
Graph Description Nodes Edges Pendant

Vertices
r

amazon0601 Amazon product co-
purchasing network
[31]

403,394 3,200,490 38,121
(9.45%)

3

email-Enron Email communica-
tion network from
Enron [29]

36,692 367,662 2,069
(5.64%)

2

ca-Condmat Collaboration n/w of
Condensed Matter
[25]

23,133 186,936 3,338
(14.43%)

2

Roadnet-TX Road network of
Texas [33]

1,393,383 3,843,320 170,271
(12.22%)

4

Web-Stanford Web graph of Stan-
ford.edu [33]

281,903 2,312,497 21,819
(7.74%)

3

Web-Berkstan Web graph of Berke-
ley and Stanford [33]

685,230 7,600,595 60,506
(8.83%)

3

Web-Notredam Web graph of Notre
Dam [33]

325,729 1,497,134 33,322
(10.23%)

2

p2p-Gnutella Gnutella peer to peer
network [30]

62,586 147,892 9,738
(15.56%)

2

LiveJ Links in Live
Journal[6]

4,848,571 68,993,773 403,401
(8.3%)

4

Flickr Connection among
Flickr users [37]

2,302,925 33,140,018 488,450
(21.2%)

3

Baidu Links in Baidu Chi-
nese online encyclo-
pedia [39]

2,141,300 17,794,839 266,592
(12.4%)

5

Wiki Links in english
wikipedia [5]

15,172,740 131,166,252 1,195,612
(7.8%)

6

Orkut Connection of Orkut
users [50]

3,072,627 11,718,583 464,274
(15.1%)

4

Patents Citations among US
patents [32]

3,774,768 16,518,948 691,160
(18.3%)

2

Roadnet-CA Road network of Cal-
ifornia [34]

1,965,206 5,533,214 228,357
(11.6%)

3

Table 1: The SNAP [1] graphs used for experimentations and their properties. The column heading r in the
last column indicates the number of iterations required to remove all pendant vertices.

7



cores of the GPU now has a fully cached memory access via an L2 cache, 768 KB in
size. In all, the GTX 580 has a peak single precision performance of 1.5 TFLOPS.

Along with the GTX 580, we use an Intel i7 980x processor as the host device. The
980x is based on the Intel Westmere micro-architecture. This processor from the Intel
family with each core running at 3.4 GHz and with a thermal design power of 130 W.
The i7-980X has six cores and with active SMT(hyper-threading) can handle twelve
logical threads. The L3 cache has a size of 12 MB. The L1 cache size is 64 KB per
core and L2 is 256 KB. Other features of the Core i7 980 include a 32 KB instruction
and a 32 KB data L1 cache per core and the L3 cache is shared by all 6 cores.

3. Our Approach

In this section, we present a three phase technique, outlined in Algorithm 1, for
scalable parallel graph algorithms of real world graphs. In the first phase, called the
preprocessing phase, we reduce the size of the input graph by removing redundant
elements of the graph. Once the graph size reduces, the second phase involves using
existing algorithms to perform the computation on the smaller graph. In a final phase,
we then extend the result of the computation to the entire original graph via quick
post-processing, if required.

Let G be a large, sparse graph. As mentioned in Algorithm 1, let Prune(G) be a
function that can prune certain elements of G. Let G′ be the graph that remains after
Prune(G). Let A be an algorithm that can compute the desired solution. We then use
algorithm A on the graph G′. Let O′ be the output of A on G′. In a post-processing
third phase, we extend the solution O′ on G′ to a solution O of the entire graph G.

Algorithm 1 ProcessGraph(Graph (V, E))
1: /* Phase I – Prune */
2: G′ = Prune(G)
3: /* Phase II – Compute */
4: O′ = A(G′)
5: /* Phase III – Extend */
6: O = Extend(G,O′)

We note that if Phase I prunes only a constant fraction of the size of the graph, and
one uses a standard algorithm in Phase II, then the asymptotic runtime using the above
technique is still unchanged. However, even such a constant fraction reduction in size
can have a considerable impact on the experimental efficacy.

We envisage that different graph algorithms can benefit from corresponding prun-
ing processes in Phase I. Further, step 1 may also be performed iteratively. Each it-
eration may prune some nodes after which more nodes may become candidates for
pruning in the next iteration. We refer the reader to Algorithm 2 for an illustration. In
Algorithm 2, P refers to a property that vertices that are pruned will satisfy. Similarly,
the post-processing in Phase III can also be based on the problem at hand. If Phase
I is spread over multiple iterations, then Phase III may also be spread over multiple
iterations, possibly in the reverse order of iterations of Phase I.

8



Algorithm 2 Prune(Graph (V, E))
1: for i = 1 to r iterations do
2: for each vertex v ∈ G do
3: if v has property P then
4: Remove v, and all edges incident on v.
5: Store (v, i) for future re-insertion step.
6: endif
7: endfor
8: endfor

It is important to note that the property P can be evaluated quickly. This helps
keep the overall time for Phase I small. The time taken by a graph algorithm using our
technique will depend on the extent of pruning achieved in Phase I and also the time
taken in Phase I and III. As can be noticed, in most cases, there will also be a trade-off
between time taken by Phase I and III and that of Phase II. In fact, such a trade-off is
observed in the case of list ranking [9].

Some of the properties that may be of interest are the following.

• Pendant nodes: Let us call a node v in a graph G as a pendant node if the degree
of v is G is 1. For the three workloads we consider in this paper, we show that
a simple pruning based on removal of pendant nodes suffices. This is also the
pruning technique used in [19].

• Independent nodes: A subset of nodes is called as an independent set of nodes if
they are mutual non-neighbors. This has been used in list ranking algorithms [4]
and its recent heterogeneous implementation [48, 9].

• Graph partitioning: Graph partitioning calls for partitioning a graph G into a
specified number k equal partitions such that the number of edges that have end
points in different partitions is minimized. In an influential work, Karypis and
Kumar [27], introduce the coarsening-refinement approach. During the coars-
ening step, a matching of the current graph is computed and prunes matched
vertices.

• Connected Components: Graph components often provide several core prop-
erties of real world graphs. Biconnected components in undirected graphs or
strongly connected components in directed graphs can be investigated for prun-
ing and subsequent processing of the compressed graph. In a latest work [24],
the authors have shown precisely this sort of an investigation where several triv-
ial components has been trimmed from the actual graph for the computation of
strongly connected components on the remainder graph.

The above examples indicate that various properties P can have applicability to
different problems. Thus, our approach is quite general. It must be noted that all the
above examples are not implemented on modern parallel architectures. In this paper,
we show that our technique can be used on modern parallel architectures too.

9



Figure 3: The CSR format for representation.

4. Breadth First Search

Breadth First Search (BFS), is one of the most widely used graph algorithms and
finds massive applications in the domains of state space partitioning, graph partition-
ing, theorem proving, and networks. The problem statement of the BFS is: given an
undirected, unweighted graph G(V, E), and a source vertex S, compute the minimum
number of edges that are needed to reach every vertex of G from S. The optimal se-
quential solution to this problem runs in O(V + E) time [17].

The well known sequential algorithm maintains a queue where the newly discov-
ered vertices are are inserted at the rear. Current vertices are deleted from the front
of the queue and this process continues until the queue is depleted. All the newly vis-
ited vertices are constantly enqueued along the way. For representation of the graph in
the memory, we use the compact adjacency list which is more popularly known as the
compact sparse representation (CSR). An example is shown in Figure 3. In CSR, all
the adjacency lists are packed into a single large array. An array Ea is used to store the
adjacency lists where the list for vertex i + 1 immediately follows vertex i, for all the
vertices in G. An array Va, stores the starting indices of the corresponding adjacency
lists in Ea. Each of the indices of Va acts as the vertex number of of the graph. The
key advantage of using this representation is that, the graph is stored in a contiguous
memory locations and no long strides are required to go from a neighbor of a certain
vertex. This helps in reducing the memory access irregularity and hence boosts the
overall performance of the BFS implementation.

4.1. Implementation

The basic approach of our algorithm is to first perform a pruning step where pendant
vertices are removed iteratively. This is followed by an efficient parallel execution of
BFS on the CPU+GPU hybrid platform from Section 2. Finally, in a post-processing
step, the level number for vertices that were removed initially will be is computed. Our
algorithm is described in Algorithm 3.

Phase I:. The first phase of removing the pendant vertices is done entirely on the GPU
as it is a purely parallel step with no irregular memory operations involved. Hence, a
hybrid implementation of this step puts an unnecessary overhead of data transfer. We
however add the following optimizations.

10



Algorithm 3 BFS(Graph (V, E)), V ertexS
1: Call Algorithm 2
2: Perform BFS in hybrid on GPU and CPU (See Algorithm 4)
3: for i = r to 1 repeat
4: Re-insert removed nodes according to (i, v)

information previously stored.

• To reduce the time spent in Phase I, we use the CSR representation and identify
pendant vertices as follows. Consider vertices u and v numbered consecutively.
Then, u is a pendant vertex if Va[u] and Va[v] differ by 1. If vertex u is numbered
n, then the above rule has to be modified to say that Va[n] = |Ea|. See Figure
3 for an illustration where vertex 5 is a pendant vertex, and also Va[5] = 10. In
essence, threads need not read the Ea array, and also do not have uncoalesced
accesses.

• Notice that if a node v that is removed in iteration i, then its only neighbor can
now become a pendant vertex in iteration i + 1. Further, in iteration i + 1, we
need to check only such vertices w. Therefore, we mark such w in iteration i,
and do not check other vertices in iteration i+ 1. This helps in reducing the time
spent in Phase I across each iteration. For illustration, see Figure 3. If vertex 5
is removed in the first iteration, then vertex 3 is marked as a potential pendant
vertex in that iteration. Since the remaining degree of vertex 3 is now 1, also
vertex 3 can be removed in the second iteration.

Algorithm 4 PhaseII(Graph (V, E), V ertex S)
Input: A graph G(V, E) and starting vertex S
Output: Level numbers of all the vertices.

1: Set a threshold for separating the vertex set between CPU and GPU.
2: Create Gc graph for CPU and Gg for GPU.
3: Create initial FR array with S
4: while FR ! = φ
5: GPU :: Call GPU BFS((G′,S), Array FR) (Algorithm 5)
6: CPU :: Perform CPU BFS [17].
7: Check NFR array of GPU and CPU for termination
8: Set FR := NFR
9: endwhile

10: Consolidate LEVEL values

Phase II. We now present our detailed algorithm in Algorithm 5 that is used in Phase
II. Algorithm 4 is similar in spirit to the one used by Munguia et al. [38]. The label
CPU:: and GPU:: in Algorithm 4 refer to steps executed on the CPU and the GPU
respectively. The CPU and the GPU maintain array VISITED, FR, and NFR which
contain the visited vertices, the current frontier vertices, and the next frontier vertices,

11



Algorithm 5 GPU BFS (Graph (V, E), V ertex S, FR)
Input: A graph G(V, E) and starting vertex S
Output: Level numbers of all the vertices.

1: tid=threadID
2: Initialize LEVEL[S]=1;
3: Set NFR to NULL
4: Calculate range in FR based on size of Eg and threads
5: Find start and stop of index of vertices from range
6: for i = start to stop
7: VISITED[i]=1
8: for i ∈ all neighbors of i do
9: if(VISITED[i] == FALSE)

10: LEVEL[i]=LEVEL[i]+1;
11: Add i to NFR;
12: endif
13: endfor
14: endfor

respectively. The arrays VISITED is shared between the two devices so that the status
of a vertex can be polled whenever required. The array LEVEL is used to store the
number of edges in a shortest path from s to every other vertex in the graph. This array
is maintained locally at both the CPU and the GPU and is merged at the end of each
iteration. An iteration corresponds to exploring all the vertices in the current frontier,
given by the FR array. Once either the CPU or the GPU checks that the NFR array that
it is maintaining is already explored by the other device. The execution stops and the
LEVEL array is transferred from the GPU to the CPU.

The entire algorithm executes until the current FR array is not empty, that is all the
vertices has been visited. To this end, both the CPU and the GPU work in a synchronous
manner to perform the exploration. The GPU does a thread based partitioning of the
adjacency list Ea. The CPU on the other hand does a more coarse grained execution
on the Ec portion using the same algorithm using all the threads available to it with
simultaneous multithreading. The GPU BFS part maintains a frontier array FR, which
is the queue where it continually deletes elements from and also maintains a NFR
which is the next frontier to be visited. Both the CPU and the GPU maintains this
NFR information locally so as to minimize the communication overheads. To further
minimize the cost of communication, we transfer the NFR in an asynchronous manner
so that maximum amount of overlap can be achieved with the communication and the
devices stay idle for the minimum amount of time. After each iteration, both the CPU
and the GPU communicates this NFR array and sets it as its current FR if it has not
been already visited by the other device. When the BFS algorithm on both CPU and
the GPU terminates, the two devices consolidates their LEVEL arrays.

The consolidation of the LEVEL arrays created in both CPU and GPU is done us-
ing the information that is kept during the partitioning the edge set between the two
processors. It is to be kept in mind that we employ static partitioning for the purpose of

12



Figure 4: An example run of our algorithm on the graph in part (a). Part (b) is the graph obtained after
removing pendant nodes, (c) shows the result of Phase II, and (d) shows the result of Phase III.

our execution. Static partitioning of work is a popular technique which is broadly used
in several libraries like ScaLapack [12]. The technique is primarily aimed at creating
independent sub tasks so that they can be efficiently processed with minimum over-
heads associated with communication and synchronization. For our purposes, when
we partition the edge set between the CPU and the GPU, we also keep track of the
set of cross-edges between the two processors. We define cross-edges as the set of
edges which has one vertex on one processor and the other vertex on the other. This
way, when the LEVEL arrays are consolidating the values, the cross-edges provides
the point of connection. We can very easily identify the vertex from the LEVEL array
obtained from the GPU, which has connection to the CPU LEVEL array. This way,
starting with that unique vertex (or vertices), we can simply add an extra level to all the
values currently existing on the CPU side LEVEL array to get the consolidated levels.

Phase III. In Phase III of the algorithm, we re-insert the vertices that were removed
in Phase I as follows. Let v be a vertex removed in iteration i of Phase I, and let w
be the only neighbor of v prior to its removal. Then, the LEVEL number of v is set
to be one more than the LEVEL number of w. Further, nodes removed in iteration i
are processed before those removed in iteration i − 1. It can be seen easily that our
approach does not affect the correctness of a breadth-first traversal. An example run of
our algorithm is presented in Figure 4 for the graph from Figure 3.

4.2. Results

In this section, we present the results of our implementation. We compare the
results with those of [38]. The results of [38] are the currently reported best results for
graph breadth first search on identical platforms.

The earlier results on the R-MAT datasets and the datasets obtained from the Uni-
versity of Florida Sparse Matrix Collection has been reported in [8]. To analyze the
results we obtain we perform two further experiments. We study the percentage im-
provement of our implementation as a function of the percentage of nodes that Phase
I can remove. The results of this experiment are shown in Figure 5 for three sample

13



graphs: Baidu, Orkut and Patents from the SNAP dataset. Figure 5 indicates that sig-
nificant performance gains can be achieved even as a small percentage of vertices are
pruned from the input graph. The improvement can be attributed to the lesser number
of operations required in our implementation as pruned vertices do not enter/exit ar-
rays FR, VISITED, and NFR. As we can notice, there is a significant improvement in
performance which is achieved as a result of pendants pruning from the input graphs.
Another thing that can be noticed from the experimentations on the SNAP graphs is
that due to the smaller size of graphs actually used to perform BFS, there is a higher
amount of scalability that can be achieved. This is due to the fact that along with a re-
duction in work complexity, there is a significant reduction in the space complexity too
that is obtained as a result of pruning. Pruning helps in better use of the FR, VISITED
and NFR data structures. Higher scalability is also achieved in a similar fashion while
experimenting on the other work loads too which are discussed in the future sections.

Figure 6 shows the results of the above experiment on the Baidu graph from the [1]
dataset. This figure shows the trade-off between the number of iterations of Phase I and
the overall runtime. As we have also noticed earlier, that Phase I time decreases over
successive iterations. This can be attributed to the vertex removal technique which we
have proposed in [8]. Hence, similar results are observed in case of the SNAP datasets
as well. In Figure 6, we can observe the Phase I time on the right Y-axis and can note
how the overall time plateaus out after five iterations. Hence, it is worthwhile to stop
the removal of the pendant vertices after a certain small threshold.

 5

 10

 15

 20

 25

 30

 35

 40

 2  4  6  8  10  12  14  16  18

Im
p
ro

v
e
m

e
n
t 
(%

)

% Nodes removed

Baidu
Orkut

Patents

Figure 5: Percentage improvement for SNAP
graphs Baidu, Orkut and Patents.

 0

 10

 20

 30

 40

 50

 60

 1  2  3  4  5  6  7
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

T
o

ta
l 
T

im
e

 (
m

s
)

P
h

a
s
e

 I
 T

im
e

 (
m

s
)

Iterations

Total
Phase I

Figure 6: Trade-off in BFS between Phase I and
the overall runtime of BFS for Baidu graph from
SNAP.

5. Connected Components

Finding the connected components of a graph is of fundamental importance to
graph algorithms. Given a graph G = (V,E), the problem is to find a partitioning
of V into disjoint sets V1, V2, · · · , so that vertices u and v are in the same set if and
only if there is a path between u and v in G. Well known sequential algorithms such

14



as the Depth First Search algorithm (DFS) [17] run in O(n + m) time. Several ef-
ficient parallel algorithms in the PRAM model have been proposed. Popular among
them are the algorithms of Shiloach and Vishkin [43], and the algorithm of Greiner et
al. [21]. However, because of the irregular nature of operations involved, this work-
load is often difficult to implement on most modern parallel architectures. Efficient
implementations of the Shiloach and Vishkin algorithm are known to exist for a variety
of parallel architectures including symmetric multiprocessors [7], Cray and CM2 [21],
GPUs [44], and also on CPU+GPU systems [9].

In this section, we apply techniques from Section 3 and show that highly efficient
hybrid algorithms can be designed for this workload on the CPU+GPU hybrid platform
described in Section 2. Our solution can be broadly outlined in the following steps and
follows the algorithm used in [9].

5.1. Implementation

Algorithm 6 Connected Components(Graph (V, E))
Input: A graph G(V, E). Here |V | = n.
Output: Labels of each vertex identifying its component.

1: Call Algorithm 2
2: Initialize LEVEL[S]=1;
3: Set a threshold t.
4: CPU :: ncpu = nt

100
5: CPU :: Partition E into Ecpu and Egpu where Ecpu is the edges corresponding

to ncpu nodes and Egpu is the rest.
6: Find connected components of the graphG(V −ncpu, Egpu) on the GPU using the

Shiloach-Vishkin algorithm [43], and the connected components ofG(ncpu, Ecpu)
on the CPU using DFS. The graphG[ncpu] is further divided into c equal partitions
where c is the number of threads run on the CPU.

7: Use the cross-edges recorded during the partition phase to compute the final com-
ponents.

8: Re-insert the edges removed in Step 1.

The main steps of our implementation is outlined in Algorithm 6. In Step 1 of
Algorithm 6, we prune the pendant nodes in the given graph iteratively. This is done
by the sequence of steps as outlined in Algorithm 2.

In the next steps, we partition the graph according to a predetermined threshold t.
The optimal value of t is later on determined experimentally. We divide the edges of
the graph so that the first t% is in one partition and the rest in the other. We allocate the
smaller partition to the CPU and the other to the GPU. The partitioning strategy that we
follow is can be defined as a case of MIMD data parallelism where different functions
are applied to the different data sets. This is because the algorithm that is well suited
for the CPU can be different from that of the GPU. We use the GPU friendly Shiloach-
Vishkin (SV) algorithm [43] for the GPU computation and DFS on the individual CPU
cores.

15



Figure 7: An example run of our algorithm on the graph in part (a). Part (b) is the graph obtained after
removing pendant nodes, (c) shows the result of Phase II, and (d) shows the result of Phase III.

GPU and CPU Optimizations : The Shiloach–Vishkin [43] algorithm is a well
suited algorithm for parallel implementation. However, we need to make some addi-
tional optimizations in order to make it more efficient for the hybrid platform. Some
of the major bottlenecks that we address are that of the atomics, memory latencies and
reducing divergence. Towards implementing these modifications for the GPU, we per-
form the SV algorithm in three steps. In the first step, called the hooking step, we hook
subtrees of the graph whose root has a lower label to a tree with a higher label when-
ever there is an edge uv such that u and v are in different subtrees. In the second step,
we do pointer jumping where by we shrink the existing trees to a rooted star so that
the nodes are present only at two levels: either at the root level or at the leaf level. In
the final step we perform edge hiding. In this step, we stop processing the edges of the
smaller sub trees once their hooking step is over. This reduces the thread divergence to
a great extent and also reduces data movement. More details of these optimizations are
described in [44].

For finding the connected components of the graph Gi for 1 ≤ i ≤ c on the ith
core of the CPU, we use the standard DFS algorithm [17]. This is motivated by the fact
that since the available parallelism on the CPU is small, highly data parallel algorithms
do not make a good fit. Further, each CPU core can run independently minimizing any
overheads in synchronization and communication. The output of this step is that each
CPU core labels the components identified uniquely.

In the final step, Step of Algorithm 6, the following post-processing is done. For
a pendant vertex v removed in the ith iteration, let w be the only neighbor of v. Then
the vertex v is said to belong to the component that w belongs to. In the above, we
process vertices in the opposite order of their removal in Step 1. An example run of
our algorithm is presented in Figure 7 for the graph from Figure 3.

5.2. Results

In this section, we present the results of our implementation. We compare the
results with those of [9]. The results of [9] are currently the best reported results for
finding the connected components of a given graph on a CPU+GPU platform.

16



As in the case of BFS, results on the graphs obtained from R-MAT and UFL repos-
itory has been already discussed in [8]. Similar to the BFS implementation, we also
study the the percentage improvement of our implementation as a function of the per-
centage of nodes that Phase I can remove. The results of this experiment are shown in
Figure 8 for the graphs Baidu, Orkut and Patents from the SNAP dataset. As mentioned
earlier, we adopt the Shiloach-Vishkin [43] algorithm for the GPU implementation.
The several steps of the algorithm has been mostly discussed in a previous work [9].
Due to the pruning mechanism, we are working on a graph which has a significantly
lesser number of edges. This gives a big advantage from the point of thread divergence
which our implementation [9] takes advantage of. Additionally, memory irregularities
involved in the step of hooking of smaller subtrees is significantly reduced.

Finally, we also study the trade-off between the number of iterations of Phase I and
the overall runtime. This study is motivated by similar reasons as explained in Section
4.2. Figure 9 shows the results of the above experiment for the graph Baidu from the
dataset of [1]. It can be noticed that the overall time taken decreases over iterations of
Phase I and plateaus off at about five iterations for the graph under consideration. The
time for Phase I is shown on the right-side Y-axis of Figure 9.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2  4  6  8  10  12  14  16  18

Im
p
ro

v
e
m

e
n
t 
(%

)

% Nodes removed

Baidu
Orkut

Patents

Figure 8: Percentage improvement of Connected
Components for SNAP graphs Baidu, Orkut and
Patents.

 0

 20

 40

 60

 80

 100

 120

 1  2  3  4  5  6  7
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

T
o

ta
l 
T

im
e

 (
m

s
)

P
h

a
s
e

 I
 T

im
e

 (
m

s
)

Iterations

Total
Phase I

Figure 9: Trade-off in CC computation between
Phase I and the total time for Baidu graph from
SNAP.

6. All Pairs Shortest Paths

In graph theory, finding shortest paths in a weighted graph is a fundamental and
well researched problem. The problem seeks to find the shortest path between any
two vertices of the graph such that the sum of the weights of the constituent edges
is minimized. The All-Pairs-Shortest-Paths (APSP) problem is a generalization where
one seeks to find the shortest path between every pair of vertices in the graph. The most
popular solution of the APSP problem is the Floyd-Warshall algorithm which has a
O(V 3) running time and a O(V 2) space complexity. As the Floyd-Warshall algorithm
is generally not well suited for sparse graphs, there are special algorithms designed for

17



sparse graphs [26]. On GPUs, there are very few reported implementations. Notable
among these are those of Harish et al. [22], Katz et al. [28], and [46]. In Harish et
al. [22], the problem is solved by running a parallel Dijkstra’s algorithm [17]. This is
shown to be better for sparse graphs.

6.1. Implementation

In this case too, we still prune the pendant nodes in the graph iteratively. Notice
that for a pendant vertex v with w as its only neighbor, the shortest path from v to any
other vertex u will always pass through w. Therefore, pendant vertices can be safely
removed from the graph in the pruning step and the required shortest paths can be
easily computed. For instance, for the graph in Figure 3, the shortest path from vertex
5 to vertex 4 has to necessarily go through the only neighbor of vertex 5, that is vertex
3. Further, if vertex 3 is removed in the second iteration of Phase I, then the shortest
path from vertex 3 to any other vertex has to necessarily go through its only remaining
neighbor, i.e., vertex 1. Hence, in the first phase we prune the pendant vertices. We
remove all the pendant vertices of graph G and obtain G′ over a few iterations along
with the book keeping of removed nodes along with their iteration number.

In this implementation, we again use the compacted edge representation, and a sep-
arate weight array is maintained. The weight functionW on the edges associates a ran-
dom weight with each edge. As is done in [22], we run a single-source-shortest-paths
(SSSP) algorithm from each vertex in graph G(V,E,W ). A parallel implementation
of Dijkstra’s algorithm [17] is used to solve SSSP. The basic step is to select a vertex
and update it’s neighbors depending upon the minimum cost. Shared memory is used
to prefetch all the neighbors of a certain node while it is being processed. The entire
execution happens only on the GPU for ease of comparison. (There are no hybrid im-
plementations of APSP reported). The computation is spread across two GPU kernels
so as to avoid read/write inconsistencies. We refer the reader to [22] for more details
of the implementation. An example run of our algorithm is presented in Figure 10 for
the graph from Figure 3.

6.2. Results

In this section, we present the results of our implementation. We compare our im-
plementation results with those of [28]. The results of [28] are the currently reported
best results for finding the connected components of a given graph on identical plat-
forms.

Our previous experimentations on the graphs obtained from R-MAT and the UFL
collection has been reported in [8]. In lines of the experiments carried out in the previ-
ous implementations of BFS and CC, we also study the percentage improvement of our
APSP implementation as a function of the percentage of nodes that Phase I can remove.
The results of this experiment are shown in Figure 11 on the graphs Baidu, Orkut and
Patents from the SNAP dataset. While there are not many irregular operations in the
APSP implementation on a GPU, the workload is still computationally heavy. This
can be observed from the total improvements from Figure 2. We can see that we get
a speedup of 44% on an average. Hence, pruning even a small fraction of the nodes
results can potentially decrease the runtime by a large percentage.

18



Figure 10: An example run of our algorithm on the graph in part (a). Part (b) is the graph obtained after
removing pendant nodes, (c) shows the result of Phase II, and (d) shows the result of Phase III.

Finally, we also study the trade-off between the number of iterations of Phase I and
the overall runtime. This study is motivated by similar reasons as explained in Section
4.2. Figure 12 shows the results of the above experiment on the graph Baidu from
SNAP the dataset. It can be noticed that the overall time taken decreases over iterations
of Phase I and plateaus off at about six iterations for the graph under consideration. The
time for Phase I is shown on the right-side Y-axis of Figure 12.

 10

 20

 30

 40

 50

 60

 2  4  6  8  10  12  14  16  18

Im
p
ro

v
e
m

e
n
t 
(%

)

% Nodes removed

Baidu
Orkut

Patents

Figure 11: Percentage improvement of APSP for
SNAP graphs Baidu, Orkut and Patents.

 0

 10

 20

 30

 40

 50

 60

 1  2  3  4  5  6  7
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

T
o

ta
l 
T

im
e

 (
s
)

P
h

a
s
e

 I
 T

im
e

 (
m

s
)

Iterations

Total
Phase I

Figure 12: Trade-off in APSP between Phase I
and the total time for Baidu graph from SNAP.

7. Pruning Based on Bridges and Articulation Points

In this section we introduce a pruning technique that prunes bridges of the graph.
Recall that a bridge in a graph G is an edge whose removal disconnects G. Similarly,
an articulation point in a graph G is a vertex whose removal disconnects the graph.

19



u
y

(b)

x v

x
v

u
(a)

Figure 13: Figure (a) shows how to extend shortest paths between nodes u and v across biconnected compo-
nents connected by an articulation point x. Figure (b) shows such an extension when an multiple biconnected
components separate the two nodes u and v. Each biconnected component is shown with different color.

Bridges and articulation points can be used to partition the edges of the graph G into
maxmial 2-connected subgraphs that are also called as the biconnected components
(BCCs) of G.

For the case of All-Pairs-Shortest-Paths, such a decomposition into BCCs can be
extremely helpful. As shown in Figure 13(a), for vertices u and v in distinct bicon-
nected components separated by an articulation point x, the shortest path from u to v
can be constructed as the shortest path from u to x, and the shortest path from x to v.
Similar rules can be designed for nodes in two distinct biconnected components that
are separated by multiple biconnected components as shown in a preliminary fashion
in Figure 13(b).

Further, such a decomposition based on BCCs is also relevant since real-world
graphs are sparse and tend to have many biconnected components. Figure 14 shows
evidence for the same for the graph ”internet” from the dataset of [10]. Notice from
Figure 14, that there is one BCC with about 100 K edges in this graph. The remaining
3K BCCs are of varying sizes. The graph has 182 K edges, which means that the largest
BCC has 56% of the entire edges of the graph. Further, there are several BCCs with
sizes varying between 2 to 250 as indicated in the pie-chart in Figure 14. Since one is
now solving the problem in each BCC followed by post-processing, it is seen that there
will be performance gains also.

7.1. Our Approach for APSP

Based on the observations from Section 2, we propose Algorithm 7 for APSP.

7.1.1. Phase I: Prune Bridges and Articulation Points
In Phase I, we identify the bridges and the articulation points of the input graph G

and use them to partition the edges ofG into biconnected components, each of which is
maximally 2-connected. To identify the bridges and the articulation points, we use the
standard sequential algorithm of Tarjan [17]. We note that as the actual computation
takes lot more time than the identification of bridges and articulation points, we do not

20



101856, 1 

1, 62430 

1 

10 

100 

1000 

10000 

100000 

1 10 100 1000 10000 100000 1000000 

B
C

C
 C

o
u

n
t 

BCC Size 

56%	
  
34%	
  

10%	
   101856	
  

1	
  

<250	
  

Figure 14: Histogram of BCC sizes for one sample graph. The figure on the right shows the same data in a
pie chart. The sizes of the BCCs are clustered into 3 groups: 101856, 1, and < 250.

Algorithm 7 APSP(G)
1: PruneBridges(G) /* Phase I*/
2: for i = 1 to k in parallel /* Phase II*/ do
3: APSP(Gi)
4: end for
5: for each pair of distinct vertices u, v in parallel /* Phase III*/ do
6: if u and v are in different BCCs of G1 then
7: Compute the shortest uv-path
8: end if
9: end for

parallelize the computation in this phase. As we will see in Figure 16, the time spent
in this phase is often under 3% of the overall time on average.

We also note that unlike earlier sections, we do not remove the pendant nodes
before identifying the bridges. It can be seen that edges with one end point as a pendant
node also will be identified as bridges. So, we need not explicitly remove the pendant
nodes in this phase.

7.1.2. Phase II: Paths Between Nodes within Same BCCs
In this phase, we also use CPU and GPU parallelism. On the CPU and the GPU,

we run multiple independent iteration of Dijkstra’s algorithm on each of the BCCs
obtained in Phase I. We let the GPU start processing the BCC with the largest size. The
CPU starts with the BCC of the smallest size. We implemented Dijkstra’s algorithm
on the CPU using the heap data structure. On the GPU, we use the program developed
by Harish et al. [22]. The computation in this phase is similar to the computation in
Section 6.1.

7.1.3. Phase III: Paths Between Nodes Across Two BCCs
The computation in Phase III involves the following steps. Let us define the graph

H as the block graph of G. In H , there is a node for each BCC of G. Two nodes s

21



Graph name Articulation #BCCs Largest BCC
Points (in % of edges)

amazon0601 12,542 13331 71%
email-Enron 1,391 12, 093 89%
ca-CondMat 2,906 3, 343 92%
Roadnet-TX 259,925 293, 694 82%
Web-Stanford 16,337 29, 470 72%
Web-Berkstan 25,468 63,968 77%
Web-Notredame 21,780 167, 543 55%
p2p-Gnutella31 12,254 9, 326 82%
LiveJ 7,237 125,231 65%
Flickr 46,059 456,144 72%
Baidu 20,694 84,528 49%
Wiki 5,847 1,769,165 74%
Orkut 112,289 332,184 51%
Patents 250,073 678,954 81%
Roadnet-CA 327,864 381, 366 56%

Table 2: List of sparse graphs that we use in our experiments.

and t in H are neighbors if and only if the BCCs of G corresponding to s and t share
an articulation point in G. Notice that H as defined above is not necessarily a tree.
(Consider a star graph of 3 edges. Each edge is in a distinct BCC. The block graph
would be a cycle of 3 nodes.)

For each pair of distinct vertices s and t in H , we find the sequence of articulation
points that the BCCs of G corresponding to s and t share. We can visualize this also as
a (shortest) paths problem on H . In the second step, we have to compute the shortest
path between every pair of nodes in G that lie in separate BCCs of G as follows.

Let Ci and Cj be two distinct biconnected components of G. We let u, v be any
two nodes in G with u ∈ Ci and v ∈ Cj . Let nodes s and t represent the components
Ci and Cj in H . Suppose that the shortest path between s and t in H is of length 1. In
this case, let x be the articulation point that Ci and Cj share inG. The shortest uv-path
in G can be obtained by joining the shortest path between u and x from Ci and the
shortest path from x to v in Cj .

The above can be extended to handle the case when the shortest path between nodes
corresponding to C and C ′ in H has a length more than 1. In this case too, the shortest
uv-path can be obtained as follows. Let P = C1 = x0x1 · · ·xr = C2 be the shortest
path in H between C1 and C2. Let (xi−1xi) = 〈ai, ci−1, ci〉 for i = 1, 2, · · · , r. Then,
the shortest uv-path in G is obtained by concatenation of the shortest paths between u
to a1, a2, a3 · · · , and ai, v.

Since articulation points in G belong to possibly multiple BCCs, we need to apply
the above computation to only every pair of distinct nodes that lie in separate BCCs.

22



 0

 0.5

 1

 1.5

 2

 2.5

A
m

a
z
o
n
0
6
0
1

W
e
b
b
a
s
e

w
e
b
G

o
o
g
le

E
m

a
il
-E

n
ro

n

c
a
-C

o
n
d
M

a
t

in
te

rn
e
t

ro
a
d
n
e
t-

T
X

ro
a
d
n
e
t-

C
A

w
e
b
-S

ta
n
fo

rd

w
e
b
-N

o
tr

e
d
a
m

e

w
e
b
-B

e
rk

s
ta

n

p
2
p
-G

n
u
te

ll
a
3
1

L
iv

e
J

F
li
c
k
r

B
a
id

u

W
ik

i

O
rk

u
t

P
a
te

n
ts

A
v
e
ra

g
e

S
p

e
e

d
u

p
 o

v
e

r 
H

y
b

ri
d

 A
P

S
P

Graph Instance

HybridAPSP/BCC

Figure 15: Comparing the overall performance improvement of our approach with respect to a baseline
implementation. The Y-axis shows the ratio of the time taken by the baseline to our implementation. The
last point on the X-axis is the average of the dataset.

7.2. Experimental Results
In Table 2, we show the graphs that we consider in our experiments along with the

number of BCCs that these graphs have and the size of the largest BCC. It can be ob-
served that the graphs chosen for our experiments have a large number of biconnected
components and also that the size of the largest biconnected component ranges between
50% to 90% of the edges. Thus, our dataset is fairly rich in its variety. We study the
results of our approach by conducting the following experiments.

7.3. Overall Improvement
We consider the overall improvement obtained by our approach compared to the

current best known implementation for APSP on the same platform. On the graphs
from Table 2, we show the relative improvement of our approach compared to an het-
erogeneous implementation which is presented in Section 6.2. The results are shown
in Figure 15. In Figure 15, the text Hybrid APSP refers to the baseline implementation
as described above, and the text BCC refers to our implementation of Algorithm 7.

As can be observed, our approach offers an average improvement of 1.57x com-
pared to the baseline implementation. The overall results are shown in Figure 15. The
improvement can be noticed even in cases where the graph has a giant biconnected
component, of the order of 80% of the overall edges. A giant BCC does not hinder
our program as we utilize data parallelism to find the shortest paths between pairs of
vertices within the giant BCC. Further, as we use both the CPU and the GPU, once
the CPU finishes working on the small BCCs, we are able to achieve work balance
between the CPU and the GPU.

23



 0

 20

 40

 60

 80

 100

 120

am
az

on
06

01

em
ai
lE

nr
on

C
a-

C
on

dm
at

R
oa

dn
et

-T
X

W
eb

-S
ta

nf
or

d

W
eb

-B
er

ks
ta

n

W
eb

-N
ot

re
da

m

P2p
-G

nu
te

lla

Li
ve

J

Flic
kr

Bai
du

W
ik
i

O
rk

ut

Pat
en

ts

R
oa

dn
et

-C
A

P
e
rc

e
n
ta

g
e
 T

im
e

 (
%

)

Matrix Instance

Phase I Phase II Phase III

Figure 16: Profile of time taken across various phases of Algorithm 7.

7.4. Profiling

We now study the percentage of time our implementation spends across the various
phases of our algorithm described in Algorithm 7. This study will also help in justifying
some of our choices during the implementation. We refer to the time taken by Phase
I of Algorithm 7 as the preprocessing time, the time taken by Phase II of Algorithm
7 as the compute time, and the rest of the time as the post-processing time. The post-
processing time therefore includes the time taken to find the shortest paths in the block
graph H and also the time taken to find shortest paths between pairs of vertices in
different BCCs of G.

The results of this study are shown in Figure 16. As can be seen, the time taken for
preprocessing is really a small fraction of the overall time. (The Yaxis in Figure 16 uses
a logarithmic scale.) Thus, the choice of using the sequential algorithm of Tarjan [17]
to find the bridges and articulation points is justified. In all cases, finding the shortest
paths between pairs of vertices in each BCC consumes the largest amount of time.

8. Conclusions

In this paper, we have proposed graph pruning as a technique to speed-up large
graph algorithms on modern parallel architectures. We applied the technique to three
important problems in graphs. Our results indicate that the technique is quite useful,
especially for large sparse graphs. We received good speedups in all the workloads
that we experimented with. This result clearly proves the need to perform data centric
pre-processing and modifications that can lead to huge benefits.

In the applications we studied in this paper, we needed to prune the pendant ver-
tices. We also studied an application where one can prune bridges and articulation
points that induce partitions in the graph. In future, we wish to study further properties
that will lead to the discovery of other pruning strategies.

24



From the implementations side, we wish to explore the possible ways of designing
better hybrid algorithms which will span not only a single CPU+GPU platform but will
have multiple CPUs and GPUs connected together.

9. References

[1] Stanford network analysis project. http://snap.stanford.edu/.

[2] The University of Florida Sparse Matrix Collection.
http://www.cise.ufl.edu/research/sparse/matrices/.

[3] AGARWAL, V., PASETTO, F. P. D., AND BADER, D. A. Scalable graph explo-
ration on multicore processors. In Proc. of ACM SC (10), p. 111.

[4] ANDERSON, R. J., AND MILLER, G. L. A Simple Randomized Parallel Algo-
rithm for List-Ranking. Information Processing Letters 33, 5 (1990), 269–273.

[5] AUER, S., BIZER, C., KOBILAROV, G., LEHMANN, J., CYGANIAK, R., AND

IVES, Z. DBpedia: A Nucleus for a Web of Open Data. In Proceedings of the
6th International The Semantic Web and 2Nd Asian Conference on Asian Seman-
tic Web Conference (Berlin, Heidelberg, 2007), ISWC’07/ASWC’07, Springer-
Verlag, pp. 722–735.

[6] BACKSTROM, L., HUTTENLOCHER, D., KLEINBERG, J., AND LAN, X. Group
Formation in Large Social Networks: Membership, Growth, and Evolution. In
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (New York, NY, USA, 2006), KDD ’06, ACM,
pp. 44–54.

[7] BADER, D. A., AND CONG, G. A fast, parallel spanning tree algorithm for
symmetric multiprocessors (SMPs). Journal of Parallel and Distributed Comput-
ing 65, 9 (2005), 994 – 1006.

[8] BANERJEE, D., SHARMA, S., AND KOTHAPALLI, K. Work efficient parallel
algorithms for large graph exploration. In 20th International Conference on High
Performance Computing (HiPC), 2013 (Dec 2013), pp. 433–442.

[9] BANERJEE, D. S., AND KOTHAPALLI, K. Hybrid Algorithms for List Rank-
ing and Graph Connected Components. In Proc. of 18th Annual International
Conference on High Performance Computing (HiPC) (2011).

[10] BATAGELJ, V., AND MRVAR, A. Pajek network: connectivity of internet routers.

[11] BEAMER, S., ASANOVIĆ, K., AND PATTERSON, D. Direction-optimizing
Breadth-first Search. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (Los Alamitos, CA,
USA, 2012), SC ’12, IEEE Computer Society Press, pp. 12:1–12:10.

25



[12] BLACKFORD, L. S., CHOI, J., CLEARY, A., D’AZEUEDO, E., DEMMEL, J.,
DHILLON, I., HAMMARLING, S., HENRY, G., PETITET, A., STANLEY, K.,
WALKER, D., AND WHALEY, R. C. ScaLAPACK user’s guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1997.

[13] CHAKRABARTI, D AND ZHAN,Y AND FALOUTSOS,C. R-MAT: A recursive
model for graph mining. In Proceedings of 2004 SIAM International Conference
on Data Mining, SDM ’04.

[14] CHHUGANI, J., SATISH, N., KIM, C., SEWALL, J., AND DUBEY, P. Fast and
Efficient Graph Traversal Algorithm for CPUs: Maximizing Single-Node Effi-
ciency. In Parallel Distributed Processing Symposium (IPDPS), 2012 IEEE 26th
International (2012), pp. 378–389.

[15] COLE, R. Parallel merge sort. SIAM J. Comput. 17, 4 (Aug. 1988), 770–785.

[16] CONG, G., AND BADER, D. A. An Experimental Study of Parallel Biconnected
Components Algorithms on Symmetric Multiprocessors (SMPs). In Proceedings
of the 19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’05) - Papers - Volume 01 (Washington, DC, USA, 2005), IPDPS ’05,
IEEE Computer Society, pp. 45.2–.

[17] CORMEN, T., LEISERSON, C., RIVEST, R., AND STEIN, C. Introduction to
algorithms, 2001.

[18] DJIDJEV, H., THULASIDASAN, S., CHAPUIS, G., ANDONOV, R., AND LAVE-
NIER, D. Efficient multi-gpu computation of all-pairs shortest paths. In Proc. of
IEEE IPDPS (2014). To Appear.

[19] DANGELO, G., DEMIDIO, M., FRIGIONI, D., AND MAURIZIO, V. A speed-up
technique for distributed shortest paths computation. In Computational Science
and Its Applications-ICCSA 2011. 2011, pp. 578–593.

[20] GHARAIBEH, A., COSTA, L. B., SANTOS-NETO, E., AND RIPEANU, M. On
Graphs, GPUs, and Blind Dating: A Workload to Processor Matchmaking Quest.
In Proceedings of the 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing (Washington, DC, USA, 2013), IPDPS ’13, IEEE Com-
puter Society, pp. 851–862.

[21] GREINER, J. A comparison of parallel algorithms for connected components.
In Proceedings of the sixth annual ACM symposium on Parallel algorithms and
architectures (1994), SPAA ’94, ACM, pp. 16–25.

[22] HARISH, P., AND NARAYANAN, P. J. Accelerating Large Graph Algorithms on
the GPU using CUDA. In Proc. of HiPC (2007).

[23] HONG, S., OGUNTEBI, T., AND OLUKOTUN, K. Efficient parallel graph explo-
ration for multi-core CPU and GPU. In IEEE Parallel Architectures and Compi-
lation Techniques (PACT) (2011).

26



[24] HONG, S., RODIA, N. C., AND OLUKOTUN, K. On Fast Parallel Detection of
Strongly Connected Components (SCC) in Small-world Graphs. In Proceedings
of SC13: International Conference for High Performance Computing, Network-
ing, Storage and Analysis (New York, NY, USA, 2013), SC ’13, ACM, pp. 92:1–
92:11.

[25] J. LESKOVEC, J. KLEINBERG, C. F. Graph evolution: Densification and shrink-
ing diameters. ACM Transactions on Knowledge Discovery from Data (ACM
TKDD) 1, 1 (2007).

[26] JOHNSON, D. B. Efficient algorithms for shortest paths in sparse networks. J.
ACM 24, 1 (Jan. 1977), 1–13.

[27] KARYPIS, G., AND KUMAR, V. Parallel multilevel k-way partitioning scheme
for irregular graphs. In Proceedings of the 1996 ACM/IEEE conference on Super-
computing (Washington, DC, USA, 1996), Supercomputing ’96, IEEE Computer
Society.

[28] KATZ, G. J., AND KIDER, JR, J. T. All-pairs shortest-paths for large graphs
on the GPU. In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS
Symposium on Graphics Hardware (2008), GH ’08, Eurographics Association,
pp. 47–55.

[29] LESKOVEC, J. Email communication network from enron.

[30] LESKOVEC, J. Gnutella peer to peer network.

[31] LESKOVEC, J., ADAMIC, L. A., AND HUBERMAN, B. A. The Dynamics of
Viral Marketing. ACM Trans. Web 1, 1 (May 2007).

[32] LESKOVEC, J., KLEINBERG, J., AND FALOUTSOS, C. Graphs over Time: Den-
sification Laws, Shrinking Diameters and Possible Explanations. In Proceedings
of the Eleventh ACM SIGKDD International Conference on Knowledge Discov-
ery in Data Mining (New York, NY, USA, 2005), KDD ’05, ACM, pp. 177–187.

[33] LESKOVEC, J., LANG, K., DASGUPTA, A., AND MAHONEY, M. Community
structure in large networks: Natural cluster sizes and the absence of large well-
defined clusters.

[34] LESKOVEC, J., LANG, K. J., DASGUPTA, A., AND MAHONEY, M. W. Com-
munity Structure in Large Networks: Natural Cluster Sizes and the Absence of
Large Well-Defined Clusters. Internet Mathematics 6, 1 (2009), 29–123.

[35] MATSUMOTO, K., NAKASATO, N., AND SEDUKHIN, S. Blocked All-Pairs
Shortest Paths Algorithm for Hybrid CPU-GPU System. In 2011 IEEE 13th In-
ternational Conference on High Performance Computing and Communications
(HPCC) (2011), pp. 145–152.

[36] MICIKEVICIUS, P. General Parallel Computation on Commodity Graphics Hard-
ware: Case Study with the All-Pairs Shortest Paths Problem. In PDPTA’04
(2004), pp. 1359–1365.

27



[37] MISLOVE, A., KOPPULA, H. S., GUMMADI, K. P., DRUSCHEL, P., AND BHAT-
TACHARJEE, B. Growth of the Flickr Social Network. In Proceedings of the First
Workshop on Online Social Networks (New York, NY, USA, 2008), WOSN ’08,
ACM, pp. 25–30.

[38] MUNGUIA, L.-M., BADER, D. A., AND AYGUADÉ, E. Task-based parallel
breadth-first search in heterogeneous environments. In HiPC (2012), pp. 1–10.

[39] NIU, X., SUN, X., WANG, H., RONG, S., QI, G., AND YU, Y. Zhishi.Me:
Weaving Chinese Linking Open Data. In Proceedings of the 10th International
Conference on The Semantic Web - Volume Part II (Berlin, Heidelberg, 2011),
ISWC’11, Springer-Verlag, pp. 205–220.

[40] PATTABIRAMAN, B., PATWARY, M., GEBREMEDHIN, A., LIAO, W.-K., AND

CHOUDHARY, A. Fast Algorithms for the Maximum Clique Problem on Mas-
sive Sparse Graphs. In Algorithms and Models for the Web Graph, A. Bonato,
M. Mitzenmacher, and P. Praat, Eds., vol. 8305 of Lecture Notes in Computer
Science. Springer International Publishing, 2013, pp. 156–169.

[41] SCARPAZZA, D. P., VILLA, O., AND PETRINI, F. Efficient Breadth-First Search
on the Cell/BE Processor. IEEE Trans. Parallel Distrib. Syst. 19, 10 (2008),
1381–1395.

[42] SCHIEBER, B., AND VISHKIN, U. On finding lowest common ancestors: sim-
plification and parallelization. SIAM J. Comput. 17, 6 (Dec. 1988), 1253–1262.

[43] SHILOACH, Y., AND VISHKIN, U. An O(log n) Parallel Connectivity Algorithm.
J. Algorithms (1982), 57–67.

[44] SOMAN, J., KOTHAPALLI, K., AND NARAYANAN, P. Some GPU Algorithms
for Graph Connected Components and Spanning Tree. In Parallel Processing
Letters (2010), vol. 20, pp. 325–339.

[45] TARJAN, R. E., AND VAN LEEUWEN, J. Worst-case Analysis of Set Union
Algorithms. J. ACM 31, 2 (Mar. 1984), 245–281.

[46] VENKATARAMAN, G., SAHNI, S., AND MUKHOPADHYAYA, S. A blocked all-
pairs shortest-paths algorithm. J. Exp. Algorithmics 8 (Dec. 2003).

[47] VILLA, O., SCARPAZZA, D., PETRINI, F., AND PEINADOR, J. Challenges in
mapping graph exploration algorithms on advanced multi-core processors. In
Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE Inter-
national (2007), pp. 1–10.

[48] WEI, Z., AND JAJA, J. Optimization of linked list prefix computations on mul-
tithreaded gpus using cuda. In The 24th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS) (April 2010).

[49] XIA, Y., AND PRASANNA, V. K. Topologically Adaptive Parallel Breadth Frst
Search on Multicore-Processors. In in Proc. PDCS (2009).

28



[50] YANG, J., AND LESKOVEC, J. Defining and Evaluating Network Communities
Based on Ground-truth. In Proceedings of the ACM SIGKDD Workshop on Min-
ing Data Semantics (New York, NY, USA, 2012), MDS ’12, ACM, pp. 3:1–3:8.

Appendix-1

Absolute Performance Results For Each Implementation.
Graph BFS CC APSP

(MTEPS) (ms) (ms)
Our Time From [38] Our Time From [9] Our Time BCC Pruning From [28]

amazon0601 1065 863 48.54 65.19 390.10 300.43 568.38
email-Enron 780 706 5.54 7.55 2.80 1.96 4.33
ca-Condmat 654 548 1.13 1.59 2.71 1.63 4.07
Roadnet-TX 1077 842 45.56 67.33 1980.23 1500.23 3167.15
Web-Stanford 1008 889 31.76 45.51 175.49 73.13 246.09
Web-Berkstan 884 771 107.56 151.09 774.28 430.12 1126.90
Web-Notredam 913 782 17.56 22.90 61.80 40.13 87.41
p2p-Gnutella 320 269 1.85 2.76 1.37 0.91 2.13
LiveJ 4125 3117 1013.44 1540.42 89508.16 62593.12 130281.28
Flickr 3356 2612 487.85 697.76 38058.77 31453.43 57975.69
Baidu 2255 1631 206.45 371.60 23896.09 13654.31 35471.45
Wiki 3867 3216 1941.12 2818.08 2445298.81 1153442.74 3314993.52
Orkut 2154 1700 183.22 375.69 24116.97 12431.34 40462.25
Patents 2231 1579 243.34 462.99 27220.96 14874.84 43372.24
Roadnet-CA 1173 854 52.23 85.94 5406.23 5300.23 8830.11

Table 3: The absolute results from our experiments on the graphs from Table 1. The metric MTEPS refers
to Million Traversed Edges per Second, which is used for reporting results on graph traversals.

29



Author Bios 

Dip Sankar Banerjee: 

Dip Sankar Banerjee is presently a PhD student at the
International  Institute  of  Information  Technology,
Hyderabad, India where he is affiliated to the Center for
Security  Theory  and  Algorithmic  Research.  Prior  to
joining the doctoral he pursued his undergraduate studies
in computer science engineering from the West Bengal
University  of  Technology,  India.  His research interests
are  broadly  in  parallel  algorithms,  massive  graph
analysis,  multicore  and manycore  computing and high
performance computing. 

Meher Chaitanya:
Meher Chaitanya is currently a MS by research student
at  the International Institute of Information Technology,
Hyderabad, India where he is affiliated to the Center for
Security Theory and Algorithmic Research. Prior to this
he was a a software engineer at Nvidia. He completed
his Mtech in Computer  Science Engineering from the
same institute. His current areas of research are studying
various ways of separating graphs, and their cost-benefit
analysis with respect to problems such as shortest paths,
and betweenness centrality.

Ashutosh Kumar:
Ashutosh  Kumar  did  his  undergraduate  studies  in
Computer  Science  and  Engineering  from  IIIT
Hyderabad  and  is  currently  working  as  a  Software
Development  Engineer  at  Microsoft.  His  research
interestes  are  on  secure  communication  protocols  in
adversarial  distributed    networks  and  in  parallel
algorithms.



Shashank Sharma:

Shashank Sharma is currently a Masters student at the
International  Institute  of  Information  Technology,
Hyderabad, India where he is affiliated to the Center for
Security Theory and Algorithmic Research. Prior to this
he  completed  his  undergraduate  degree  in  Computer
Science Engineering from the same institute. His major
research  interests  are  in  parallel  computing,  GPU
computing and graph theory.

Kishore Kothapalli: 

Kishore Kothapalli is presently an Associate Professor at
the  International  Institute  of  Information  Technology,
Hyderabad, where he is working since 2006. Prior to that,
he  obtained  his  doctoral  degree  in  Computer  Science
from  the  Johns  Hopkins  University,  USA,  and  his
Master's  degree  in  Computer  Science  from  Indian
Institute  of  Technology,  Kanpur.  His  current  research
interests  are  in  parallel  algorithms  for  problems  on
graphs, sparse matrices, and the like. He is also interested
in data structures for geometric problems. 



Work Efficient Parallel Algorithms for Large Graph Exploration on Emerging 
Heterogeneous Architectures. 

• Processing real world graphs in an efficient manner through input pruning.
• Two  different  pruning  strategies  based  on  1-degree  nodes  and  articulation

points.
• Improvements upto 35% or 1.57x over current best known results.
• Experimental evaluation of algorithms proposed on several real world graphs. 
• Heterogeneous  multicore  implementation  provides  better  performance

efficiency. 


