
Parallelizing Hines Matrix Solver in Neuron
Simulations on GPU

Dharma Teja Vooturi, Kishore Kothapalli

International Institute Of Information Technology - Hyderabad

Hyderabad, India

dharmateja.vooturi@research.iiit.ac.in,kkishore@iiit.ac.in

Upinder S Bhalla

National Center for Biological Sciences

Tata Institute of Fundamental Research

Bangalore, India

bhalla@ncbs.res.in

Abstract—Hines matrices arise in the simulations of mathe-
matical models describing initiation and propagation of action
potentials in a neuron. In this work, we exploit the structural
properties of Hines matrices and design a scalable, linear work,
recursive parallel algorithm for solving a system of linear
equations where the underlying matrix is a Hines matrix, using
the Exact Domain Decomposition Method (EDD). We give a
general form for representing a Hines matrix and use the general
form to prove that the intermediate matrix obtained via the EDD
has the same structural properties as that of a Hines matrix.

Using the above observation, we propose a novel decomposition
strategy called fine decomposition which is suitable for a GPU
architecture. Our algorithmic approach R-FINE-TPT based on
fine decomposition outperforms the previously known approach
in all the cases and gives a speedup of 2.5x on average for a variety
of input neuron morphologies. We further perform experiments
to understand the behaviour of R-FINE-TPT approach and show
its robustness. We also employ a machine learning technique
called linear regression to effectively guide recursion in our
algorithm.

I. INTRODUCTION

Sparse matrices and computations on sparse matrices arise

in many areas of science and engineering such as com-

putational fluid dynamics, computational neuroscience and

molecular dynamics [1]. Prominent among the computations

on sparse matrices include matrix vector multiplication, matrix

matrix multiplication, and solving a system of linear equations

where the underlying matrix of coefficients is sparse. The

importance of these computations can be gauged by the fact

that these computations are included as dwarfs in the Berkeley

report [2]. It is therefore not surprising that most modern

libraries in the parallel setting include optimized routines for

the above computations on sparse matrices [3], [4].

Several researchers have focused on improving the perfor-

mance of sparse matrix computations on a variety of mod-

ern many- and multi-core architectures. Promient examples

include [5], [6] and [7]. Wangdong et al. [5] and Matam et

al. [6] provide efficient algorithms for sparse matrix vector

multiplication and sparse matrix matrix multiplication respec-

tively on hybrid (CPU+GPU) architectures. Agullo et al. [7]

optimize direct matrix solvers for Intel KNL architectures.

In recent years, one approach that is being used to improve

the efficiency of sparse matrix computations on modern par-

allel architectures is to understand the strucure of sparsity of

the matrix and its implications to parallel algorithm design and

implementation. Examples of such instances are seen in the

work of Ramamoorthy et al. [8] for multiplying two scale-

free sparse matrices, Vooturi et al. [9] for multiplying two

quasi-band sparse matrices, Buluc et al. [10] for multiplying

two hyper-sparse matrices, and Wangdong et al. [11] for

multiplying a quasi-band sparse matrix with a dense vector.

In this paper, we investigate GPU algorithms for solving

a system of linear equations where the underlying matrix is

a sparse matrix. In particular, the sparse matrix we study is

called a Hines matrix that has the following sparsity structure.

A Hines matrix is a symmetric matrix where every row of

the matrix has only one nonzero element with a column index

bigger than the row index. Solving a system of linear equations

with the underlying matrix being a Hines matrix is denoted as

HinesSolver in the rest of the paper.

The rest of the paper is organized as follows. In Section

I-A, we give the motivation for the problem and in Section

I-B, we discuss related work and list our key contributions

in Section I-C. In Section II, we describe how a Hines

matrix is generated from the mathematical model, its structural

properties and a general form. In Section III, we describe a

linear O(N) algorithm for HinesSolver using an Exact

Domain Decomposition method(EDD) and also discuss how

to tailor our algorithm on a GPU. Results and experiments

are discussed in Section IV. Finally, we conclude and outline

future work in Section V.

A. Motivation

Neuron simulations happen in a time-step manner and

a HinesSolver is invoked in each time-step. Generally,

researchers have to run these simulations for many time-steps

to understand a particular behaviour. For example, a single

neuron simulation running for a neuron time of one minute

with 1 milli second time-step involves 60,000 HinesSolver
instances. In a given time-step, the computation apart from

a HinesSolver is reasonably parallel and is suitable for

GPU. By having HinesSolver on a GPU, simulations can

be made faster by making use of GPU hardware and avoiding

costly memory transfers from GPU to CPU at each time-step.

In case of network simulations, which involve the study of

the behavior of interconnected neurons, multiple Hines matrix

systems have to be solved at each time-step. It is possible to

map the computation of solving multiple Hines matrix systems

388

2017 IEEE 24th International Conference on High Performance Computing (HiPC)

0-7695-6326-0/17/$31.00 ©2017 IEEE
DOI 10.1109/HiPC.2017.00051

into a single big Hines matrix system, which when solved

gives solutions to the individual systems.

Further, it is not uncommon for researchers to run experi-

ments which involves changing only a single parameter while

keeping other parameters fixed. This types of experiments also

result in solving multiple Hines matrices in each time-step.

We discuss one such case in Section IV-D4, where for a set

of experiments the matrix remains the same, but the right hand

side vectors vary in a given time-step.

Hence, parallelizing HinesSolver on a GPU can

speedup neuron simulations and also enable researchers to

perform rapid experimentation.

B. Related Work

HinesSolver is studied in the sequential setting by

Hines [12]. Hines [12] proposed a modified Gauss elimination

algorithm whose runtime is O(N), where N is the number

of rows in the Hines matrix. Hines also proposed parallel

Gauss elimination algorithms for HinesSolver in [15]

and [16]. To understand these algorithms, it is helpful to

visualize a Hines matrix as a rooted tree with self-loops. These

algorithms are based on the fact that suitably selected subtrees

can be processed in parallel. However, this approach suffers

from the following drawbacks. Firstly, there is a constraint

on subtree division which limits the amount of parallelism

available. Secondly, they are designed for optimizing network

simulations on multi-core architectures, where multiple Hines

matrices of different sizes have to be solved and the ability to

break a tree allows for efficient load balancing.

In HinesSolver, triangularizing the segments at the same

level of a tree can be done in parallel. This idea was exploited

by Roy et al. in [17] which is also based on Gauss elimination.

One of the drawbacks of this approach is that the parallel time

of the algorithm is bounded by the depth of the tree. Another

drawback is that the amount of parallelism and computation at

each level is dependent on the input and hence can introduce

signifcant load imbalance.

Some of the above problems are solved by Mascagni [13],

Larriba Pey [14] who introduced the Exact Domain Decom-

position (EDD) technique to solve matrices corresponding to

undirected graphs. EDD involves solving a domain matrix of

size equal to the number of nodes with degree greater than

two. In case of matrices corresponding to undirected graphs,

the domain matrix does not exhibit any special properties and

it was suggested to solve using any direct solver, such as Gauss

elimination.

C. Contributions

In this work, we first start by proving that the domain matrix

obtained via the exact domain decomposition method on a

Hines matrix has the same structural properties as that of a

Hines matrix. This result has three immediate benefits as listed

below.

1) It allows us to apply the exact domain decomposition

technique recursively.

2) As the recursion bottoms out, the small size of the

resulting domain matrix allows us to invoke a sequential

HinesSolver [12] in much less time.

3) It allows us to introduce a decomposition strategy called

fine decomposition which can be efficiently mapped onto

a GPU.

Using the above observations, we design an efficient parallel

algorithm and its GPU implementation to solve a system of

linear equations where the underlying matrix is a Hines matrix.

Our experimental results on an Nvidia Tesla K40c GPU over

a variety of inputs indicate that our algorithmic approach R-

FINE-TPT based on fine decomposition is 2.5x faster than

the previously known approach. We also conduct experiments

to study the effect of parameters such as amount of fineness

in R-FINE-TPT, depth of recursion, compartment resolution

and number of right hand sides in the matrix system to show

the robustness of our approach. We also employ a machine

learning technique called linear regression to find a threshold

function which helps in deciding when to stop the recursion

in our algorithm.

II. HINES MATRIX

A. The Hodgkin-Huxley Model

The Hodgkin-Huxley model is a mathematical model pro-

posed by Hodgkin and Huxley [19] to explain ionic mech-

anisms and voltage behaviour involved in the initiation and

propagation of action potentials in neurons. A non-linear

differential equation models how potential difference (Vm)

changes with respect to ion-channels, current and other proper-

ties of a neuron. To simulate the model, a neuron is discretized

spatially into multiple compartments as shown in Figure

1(a). The relationships between various compartments in a

compartmentalized neuron can then be represented as a rooted

tree as shown in Figure 1(b) where each node in the tree

corresponds to a compartment. A node Vi in the tree has a

unique parent compartment Vp and child compartments as

shown in Figure 1(c). The tree is then numbered using a

DFS numbering scheme from leaves to root. DFS numbering

ensures two things.

1) The number of a node is larger than all its children and

smaller than its parent.

2) The compartments in each branch of the neuron have

consecutive numbers.

The current balance equation of ith compartment at jth

timestep is then described according to Equation 1.

(V j
i −V j−1

i)× Ci

Δt
= (Ei−V j

i)/Rmi+(V j
p −V j

i)×Gai,p+∑
k=IonChannels(i)

Gj
i,k × (Ei,k − V j

i) + Iexti+

∑
c=children(Vi)

(V j
c − V j

i)×Gai,c (1)

where V j
i and Gj

i,k represent voltage and conductance of

ion channel k respectively for compartment i at time step j.

389

The constants Iexti, Ci, Ei, Rmi, Ei,k represent external

current, membrane capacitance, membrane resting potential,

membrane resistance and reverse potential of ion channel

k respectively for compartment i. Gat1,t2 represents radial

conductance between compartments t1 and t2. Δt is the

time interval between two time steps. The only unknowns

in Equation 1 are V j
i V j

p and {V j
c |c ∈ children(Vi)}. By

isolating them, Equation 1 can be written in a concise manner

as shown in Equation 2. For more details refer [20].

Aj
i,pV

j
p +Aj

i,iV
j
i +

∑
c=children(Vi)

Aj
i,cV

j
c = bji (2)

where

Aj
i,i =

(
Ci

Δt
+

1

Rmi
+

∑
r=neigh(i)

Gai,r+
∑

k=IonChannels(i)

Gj
i,k

)

Aj
i,p = Gai,p, ∀c∈children(Vi)A

j
i,c = Gai,c

bji =

(
Iexti+

Ei

Rmi
+V j−1

i ×Ci

Δt
+

∑
k=IonChannels(i)

Gj
i,k×Ek

)

V j
i V j

p and {V j
c |c ∈ children(Vi)} are the voltages of

ith compartment, parent compartment of Vi and child com-

partments of Vi respectively at jth time step and Aj
i,i,A

j
i,p

and {Aj
i,c|c ∈ children(Vi)} are the corresponding coef-

ficients. The current balance equations of all compartments

can then be represented in a matrix form A #»x =
#»

b , where
#»x = [V j

1 · · ·V j
N]T and

#»

b = [b1 · · · bN]T . Solving this linear

system gives the voltage values for compartments in each time-

step. Figure 2 corresponds to the structure of the matrix formed

by the current balance equations of compartmentalized neuron

in Figure 1(b). The matrices obtained from the voltage PDE

simulations fall under a class of matrices called Hines matri-

ces. A Hines matrix has the following structural properties:

1) The matrix is symmetric. [Aij = Aji]

2) In each row i, there exists only one nonzero element

with column index j such that j > i. [∃!j|(Ai,j �= 0
and j > i)]

From Equation 2, we can see that the off-diagonal elements

of A have contributions only from the radial conductance

Gat1,t2. As the radial conductance between any two com-

partments t1 and t2 is the same irrespective of order i.e,

Gat1,t2 = Gat2,t1, the matrix A is symmetric. The only non-

zero element in row i after Ai,i corresponds to the coefficient

of parent compartment of Vi.

B. A General Form

A Hines matrix A can be represented in a general form

along with some conditions. Let R be the set of compartments

with more than one children and junction set J be a superset

of R. Dividing the matrix at rows J and columns J results in

a grid G of dimensions (S + 1) × (S + 1), where S = |J |.
Each main diagonal entry of G is a block diagonal matrix Tri

(a) Compartmentalized
neuron

(b) Neuron tree (c) Parent and children
of ith compartment

Fig. 1: Multi compartment neuron modelling.

A #»x =
#»
b Matrix system

Tri(Tr1iT r
ki
i) Block diagonal matrix with ki blocks

Trji Symmetric Tridiagonal matrix
»
Cij(

»

C1
ij ...

»

C
ki
ij) Column vector

»
Cij split into ki vectors.

J, Ji Junction array J and ith junction.
#»xi Vector #»x [Ji−1+1:Ji–1]
#»
bi Vector

#»
b [Ji−1+1:Ji–1]

xi,bi
#»x [i],

#»
b [i]

Ai,j A[i][j]
Parent[i] Column index of the only non-zero entry

after Ai,i

JunctionIndex[k] Index of junction k in junction array J

TABLE I: Notation used in general form, algorithms and proof.

with ki blocks, with each block being a symmetric tridiagonal

matrix. A non main-diagonal entry of G is a zero matrix O.

A Hines matrix A can then be represented in the form of

Equation 3. We however note that not all matrices which can

be represented in the form of Equation 3 are Hines matrices.

In Section II-C, we describe the conditions that the general

form should satisfy for it to represent only Hines matrices.

The notation used for describing general form is described in

Table I.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Tr1
#»

C1,1 O ..
#»

C1,S O
#»

CT
1,1 AJ1,J1

#»

CT
2,1 .. AJ1,JS

#»

CT
(S+1),1

O
#»

C2,1 Tr2 ..
#»

C2,S O
: : : : : :

#»

CT
1,S AJS ,J1

#»

CT
2,S .. AJS ,JS

#»

CT
S+1,S

O
#»

CS+1,1 O ..
#»

CS+1,S TrS+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Tri =

⎡
⎢⎢⎢⎢⎣
Tr1i

Tr2i
.

.

T rki
i

⎤
⎥⎥⎥⎥⎦

»

Ci,j =

⎡
⎢⎢⎢⎢⎢⎣

»

C1
i,j

»

C2
i,j

.

.
»

Cki
i,j

⎤
⎥⎥⎥⎥⎥⎦

(4)

390

Fig. 2: The general form of Hines matrix corresponding to

compartmentalized neuron in Figure 1(b) with J=[10,14].

#»x =

⎡
⎢⎢⎢⎢⎢⎢⎣

#»x 1

xJ1
#»x 2

:
xJS

#»xS+1

⎤
⎥⎥⎥⎥⎥⎥⎦

#»

b =

⎡
⎢⎢⎢⎢⎢⎢⎣

#»

b 1

bJ1
#»

b 2

:
bJS

#»

b S+1

⎤
⎥⎥⎥⎥⎥⎥⎦

[#»xi,
#»

bi] =

⎡
⎢⎢⎢⎣

»

x1
i ,

#»

b1i
»

x2
i ,

#»

b2i
:

»

xki
i ,

»

bki
i

⎤
⎥⎥⎥⎦

(5)

C. Necessary Conditions

Condition 1: For a given Trri , where 1 ≤ i ≤ S + 1 and
1 ≤ r ≤ ki, only one column vector among { # »

Cr
ij |i ≤ j ≤ S}

is non-zero with only one non-zero element at the end.
Each Trri is bounded by two rows startRow and endRow in

matrix A. As Trri is a tridiagonal matrix, the matrix element

to the right of each main diagonal element in Trri is in

itself except for endRow. From general form, we know that

Parent[endRow] has to be in junction set J . As there is only

one non-zero after each main diagonal element in a Hines

matrix, the matrix element to the right of AendRow,endRow

has to be in one of the column vectors { # »

Cr
ij |i ≤ j ≤ S}.

As the non-zero column vector is also bounded by startRow

and endRow, only the last element of that vector is non-zero.

For the matrix in Figure 2, we can see that each tridiagonal

matrix (Tr11, T r
2
1, T r

3
1, T r

1
2) has only one nonzero column

vector (
»

C1
1,2,

»

C2
1,1,

»

C3
1,1,

»

C1
2,2) to its right.

Condition 2: For a given junction Ji,
»

Cki
i,i �=

#»
0 .

Each tridiaonal matrix Trri corresponds to an unbranched

segment in the tree. For a junction node Ji, Tr
ki
i corresponds

to the segment which is numbered just before numbering

junction node Ji. From a DFS numbering scheme, we can

say that Ji=Parent[endRow(
»

Trki
i)]. So,

»

Cki
i,i becomes a

non-zero vector. For the matrix in Figure 2, both the vectors

corresponding to junctions i.e,
»

C3
1,1 and

»

C1
2,2 are non-zero.

Condition 3: If Parent[Ji] ∈ J , then (
»

C1
i+1,i)

T =
#»
0 ,

else (
»

C1
i+1,i)

T �= #»
0 and has exactly one non-zero at the first

index.
If Parent[Ji] /∈ J , then according to DFS numbering

system Parent[Ji] = Ji + 1. This means AJi,(Ji+1) �= 0.

As AJi,(Ji+1) is the first element of (
»

C1
i+1,i)

T , (
»

C1
i+1,i)

T [1]
= AJi,(Ji+1). As there can be only one non-zero element to the

right of AJi,Ji , all the elements of (
»

C1
i+1,i)

T are zero except

for the first one.

If Parent[Ji] ∈ J , then the row and column of the only

non-zero element to the right of AJi,Ji
belong to J . This

means all the row vectors to the right of AJi,Ji
are zero vectors

which includes (
»

C1
i+1,i)

T .

For matrix in Figure 2, both Parent[J1] and Parent[J2]

are not in J . Hence both
»

C1
2,1

T
and

»

C1
3,2

T
are non-zero.

Condition 4: For a given junction row Ji, all row vectors
after (

»

C1
i+1,i)

T are zero vectors.
Only one non-zero element exists after each main diagonal

element in Hines matrix. From condition 3, we know that

for a junction row Ji, it may only be part of row vector

(
»

C1
i+1,i)

T . So the rest of the row vectors after (
»

C1
i+1,i)

T are

zero vectors.

III. OUR APPROACH

A. EDD on an Undirected Graph

The Exact Domain Decomposition (EDD) method was first

employed by Mascagni [13] to solve matrices corresponding

to undirected graphs. The main idea is to create subdomains

by breaking the graph at nodes with degree greater than two.

In such a decomposition, each subdomain corresponds to a

chain graph and the matrix of the subdomain corresponds to

a tridiagonal matrix. These subdomains are solved indepen-

dently and the solutions are fused together based on subdomain

relationships to construct the final solution. Any undirected

graph can be represented in general form described in Equation

3. Thus the EDD algorithm for a matrix that can be represented

in general form can be described in Algorithm 1.

Algorithm 1 Domain decomposition method for a matrix in

general form corresponding to an undirected graph.

1: ∀i=1:S+1
»

Ri = Tri| #»b i

2: ∀i=1:S+1∀j=1:S
»

Pi,j = Tri| # »

Ci,j

3: ∀i=1:S∀j=1:S

M [i][j] = (
∑l=S+1

l=1

∑r=kl

r=1

»

Cl,i
T × # »

Pj,l)−AJi,Jj

4: ∀i=1:S Mrhs[i] = (
∑l=S+1

l=1

»

Cl,i
T × # »

Rl)− bJi

5: Mx = M |Mrhs

6: ∀i=1:S+1
#»xi =

»

Ri −
∑k=S

k=1 Mx[k]× # »

Pi,k

391

In Algorithm 1, we start by solving each Tri with multiple

right hand sides ∀1≤j≤S
»

Ci,j and
#»

bi . Subsequently, the domain

matrix M and its right hand side Mrhs are constructed using

rows at junction indices of matrix A and the tridiagonal solu-

tions computed. Solving the system (M |Mrhs) gives solutions

Mx for compartments in the junction set. The solutions for

non junction nodes are then computed using Mx and the

tridiagonal solutions. The complexity of this algorithm is

O(N ∗ S + S3), where N is the size of the matrix and S
is the number of junctions.

B. Domain Matrix in the Exact Domain Decomposition
Method

In this section, we prove that when EDD is applied on Hines

matrix, the domain matrix obtained has the same structural

properties as that of a Hines matrix.

Theorem 1. The domain matrix M has the structural prop-
erties of a Hines matrix.

Proof: We prove it by showing that the domain matrix

M satisfies the structural properties of a Hines matrix as

described in Section II.

(i) The matrix is symmetric, Mi,j = Mj,i.

From Algorithm 1, we know that any element Mi,j of the

domain matrix M can be constructed as follows:

Mi,j =

(
S+1∑
l=1

»

Cl,i
T × (Trl)

−1 × # »

Cl,j

)
−AJi,Jj

and

Mj,i =

(
S+1∑
l=1

»

Cl,j
T × (Trl)

−1 × # »

Cl,i

)
−AJj ,Ji

If R is a symmetric matrix of size N×N and p, q are column

vectors of size N , then pT ×R×q = qT ×R×p. So for a valid

l, i, and j, (
»

Cl,i
T×(Trl)

−1× # »

Cl,j) = (
»

Cl,j
T×(Trl)

−1× # »

Cl,i).
As a Hines matrix is a symmetric matrix, AJi,Jj

= AJj ,Ji
.

Hence the matrix M is symmetric.

(ii) In each row i, there exists only one nonzero element

with column index j such that j > i. [∃!j|(Mi,j �= 0andj > i)]

For a given junction row Ji, the non-zero row vectors before

and after AJiJi
can be divided into two sets Sleft and Sright

respectively. Because a Hines matrix is symmetric, Sleft can

only contribute to the main diagonal element Mi,i of the

domain matrix M . From the Conditions 3 and 4, we know that

Sright = { # »

C1
i+1,i

T } or ∅. Each element in row i of M after

main diagonal element Mi,i, j > i, can then be represented

in the following cases.

Case 1: Sright = {
»

C1
i+1,i

T }
In this case, we can see that:

Mi,j =
»

C1
i+1,i

T

× (Tr1i+1)
−1 × # »

C1
i+1,j

From condition 1, we know that for Tr1i+1, there

exists only one non-zero column vector to its right i.e,

∃!j|(# »

C1
i+1,j �=

#»
0&j > i).

Case 2: Sright = ∅

We have that Mi,j = −AJi,Jj
. From conditions 3 and 4,

we know that this can happen only if Parent[Ji] ∈ J . As

there is only one non-zero element after AJi,Ji , only one

of the elements from set {AJi,Ji+1 , AJi,Ji+2AJi,JS
} is

non-zero.

In both cases, for a given row i in the domain matrix M ,

there exists only one j such that j > i and Mi,j �= 0.

C. An O(N) Linear Algorithm for HinesSolver

In this section, we describe an O(N) algorithm for

HinesSolver using EDD, where N is the total number

of compartments. If R is the set of compartments with more

than one child, then a junction set J is a superset of R. Let

S be the number of compartments in a junction set J . Our

algorithm comprises of four stages.

1) Solve independent tri-diagonal systems.

2) Generate the domain matrix.

3) Solve the domain matrix system (M |Mrhs).

4) Construct the final solution (#»x).

Analysis: In Steps 3,6,7, and 10 of Algorithm 2, inde-

pendent tridiagonal systems are being solved. The cumulative

size of the tridiagonal systems from Step-3 is bounded by

N and that of Steps 6,7, and 10 is bounded by 2N . So

Stage-1 involves solving tridiagonal systems with cumulative

size bounded by 3N . As a tridiagonal system can be solved

in linear time, the complexity of Stage-1 is O(N). The

complexity for computing both the main diagonal of M and

right hand side Mrhs is O(
∑i=S

i=1 ni), where ni is the number

of neighbours of compartment Ji. It can be seen from Step-

16 that the complexity for computing non-zero off diagonal

element of M is O(1). As (
∑i=S

i=1 ni < 2N) and the domain

matrix M has only 2(S − 1) non-zero off diagonal elements,

the complexity of Stage-2 is O(N + S). As a Hines matrix

can be solved in linear time [12], the complexity for solving

domain matrix in Stage-3 is O(S). Stage-4 has the same loop

structure as that of Stage-1. In places where a tri-diagonal

system is solved, vector scaling and addition is performed.

Hence the complexity of Stage-4 is O(N). The complexity of

Stages 1-4 are O(N), O(N+S), O(S) and O(N) respectively.

As the number of junctions S cannot exceed N , the complexity

of our algorithm is O(N).

D. EDD for HinesSolver on GPU

In this section, we show how HinesSolver can be

efficiently mapped onto a GPU architecture using EDD. In

Section III-C, we showed that the complexity of our algorithm

is O(N), irrespective of the number of junction compartments.

We use this fact and propose a decomposition strategy called

392

Algorithm 2 O(N) algorithm for HinesSolverusing EDD.

1: #Stage-1 Solve tridiagonal systems.
2: for i=1:S do
3: Qi = Tr1i+1|

»

C1
i+1,i

4: for r=1:ki do
5: col = JunctionIndex[Parent[endRow(Trri)]]

6: P r
i = Trri |

»

Cr
i,col

7: Rr
i = Trri |

#»

bri
8: end for
9: end for

10: R1
S+1 = Tr1S+1|

»

b1S+1 // End case

11:

12: #Stage-2 Constructing the domain matrix.
13: for i=1:S do
14: M [i][i] += (C1

i+1,i[1] ·Qi[1]−AJi,Ji
)

15: col = JunctionIndex[Parent[endRow(Tr1i+1)]]

16: M [i][col] = (C1
i+1,i[1] · P 1

i+1[1]−AJi,Jcol
)

17: Mrhs[i] += (C1
i+1,i[1] ·R1

i+1[1]− bJi
)

18: for r=1:ki do
19: col = JunctionIndex[Parent[endRow(Trri)]]

20: M [col][col] +=
»

Cr
i,col[|

»

Cr
i,col|] · P r

i [|
»

Cr
i,col|]

21: Mrhs[col] +=
»

Cr
i,col[|

»

Cr
i,col|] ·Rr

i [|
»

Cr
i,col|]

22: end for
23: end for
24:

25: #Stage-3 Find solutions at junctions
26: Mx = M |Mrhs

27:

28: #Stage-4 Construct #»x .
29: for i=1:S do
30:

»

x1
i+1 -= Mx[i]×Qi

31: for r=1:ki do
32: col = JunctionIndex[Parent[endRow(Trri)]]

33:
»
xr
i -= Mx[col]× P r

i

34:
»
xr
i += Rr

i

35: end for
36: end for

fine decomposition.

Minimal Decomposition(Jmd): Compartments with more

than one children are chosen as junctions.

Fine Decomposition(Jfd): The goal of this decomposition is

to have equal size tridiagonal systems to solve in Stage-1.

In order to achieve that, we break each branch of the tree

into K sized chains and include last compartment of each

chain in junction set Jfd. Apart from these compartments, Jfd
includes all compartments which have more than one children

i.e, junction set Jmd.

An example of minimal decomposition and fine decompo-

sition with K = 4 for a given tree are shown in Figures 3(a)

and 3(b) respectively. Hollow nodes in Figures 3(a) and 3(b)

correspond to junction compartments.

Algorithm 3 describes the recursive algorithm for

HinesSolver using the Exact Domain Decomposition

(a) Minimal Decomposition (b) Fine Decomposition with
K=4

Fig. 3: Decomposition strategies.

Fig. 4: Recursive application of fine decomposition with K=3

method.

1) Stage-1: In this stage, the computation involves solving

many tridiagonal systems. This computation can be performed

using two approaches TRSV and TPT.

TRSV: Making all junction rows and junctions columns of

matrix A zero, except for main diagonal elements results in

a tridiagonal matrix T . Figure 5 shows the tridiagonal matrix

T obtained from the Hines matrix shown in Figure 2. From

Stage-1 of Algorithm 2, we know that each tridiagonal Trri
has to be solved with at least two and at most three right hand

sides. We position them accordingly as shown in Figure 2 and

use an optimized tridiagonal solver from NVIDIA’s CUDA

library CuSparse [4] to solve tridiagonal matrix T with three

right hand sides.

TPT: In this approach, we map each thread to solve an

independent tridiagonal system. In minimal decomposition,

independent tridiagonal systems that have to be solved in

Stage-1 are big and have lot of variance in size. So using

TPT approach for solving tridiagonal systems suffers from less

parallelism, higher load imbalance and more amount of work

per thread. TRSV approach hides these to some extent and

takes advantage of optimized library function for tridiagonal

solver. This compatibility leads to MIN-TRSV approach.

In fine decomposition, each independent tridiagonal system

393

Fig. 5: Mapping Stage-1 computation to tridiagonal

solver(TRSV) with three right hand sides in MIN-TRSV.

in Stage-1 is almost of same size and has equal compute. So

using the TPT approach, one can take advantage of the SIMD

architecture of a GPU. This compatibility leads to R-FINE-

TPT approach.

2) Stage-2: In this stage, we construct the domain matrix

system (M,Mrhs). As there is no dependency among the

non-zero elements of the domain matrix system, they can be

constructed in parallel.

3) Stage-3: In this stage, we have a choice to run the algo-

rithm recursively to solve domain matrix system (M |Mrhs). In

the R-FINE-TPT approach, we run the algorithm recursively

and stop when using a GPU is no longer efficient. In case

of MIN-TRSV, we do not run the algorithm recursively. The

reason is that the tree corresponding to domain matrix when

minimal decomposition is applied has no vertices of degree

two. Applying any decomposition recursively on that tree will

not reduce the size of domain matrix size significantly. So in

the MIN-TRSV approach, the runtime is less when we do not

recurse.

4) Stage-4: Stage-4 involves constructing final solution #»x .

As there is no dependency among elements of #»x , each element

of #»x can be constructed in parallel.

E. Implementation Details

Hines matrix A of size N is stored using two arrays, parent

array P of size N and data array D of size 2N . P [i] stores

the column index of the only nonzero after A[i][i]. As A
is symmetric, we only store the nonzero values of upper

triangular matrix in a row major fashion in D. By storing

in the row major fashion, we get better memory coalescing

while accessing a tridiagonal matrix Trji in Stage-1. We used

buffer arrays to avoid replication of tridiagonal matrices in

the computations of Stage-1. We employed NVIDIA’s CUDA

Occupancy Calculator tool to configure thread block sizes in

CUDA kernels.

Algorithm 3 Recursive algorithm for HinesSolver using

Exact Domain Decomposition method.

R-EDD(A,
#»

b , decomposition, num-rhs)

{
if decomposition == MIN then

Use minimal decomposition with TRSV approach to

solve tridiagonal systems in Stage-1.

else if decomposition == FINE then
Use fine decomposition with TPT approach to solve

tridiagonal systems in Stage-1.

end if
Stage2: Construct domain matrix system (M , Mrhs)

if decomposition == FINE and

Threshold(rows(M),num-rhs) == False then
Mx = R-EDD(M , Mrhs, decomposition, num-rhs)

else
Transfer (M ,Mrhs) to CPU.

Solve Domain system Mx = M/Mrhs on CPU.

Transfer Mx to GPU.

end if
Stage-4: Construct #»x
return #»x
}

IV. RESULTS AND ANALYSIS

A. Platform

We use an Nvidia Tesla K40c GPU for all our experiments.

It is mounted on an Intel i7-4790K CPU with 32GB RAM. The

K40c has a total of 2880 cores organized in 15 SMx, with each

core clocked at 745 MHz. It provides a peak double precision

floating point performance of 1.43 Tflops and single precision

floating point performance of 4.29 TFlops. Each SM also has

a 64KB configurable cache to exploit data locality.

B. Dataset

All input Hines matrices come from neuron morphologies

taken from www.neuromorpho.org [21]. We choose our

dataset in such a way that they come from different parts of

brain and has variation in size and the number of junctions.

Some details of the chosen morphologies are shown in Table

II. We group the dataset into three categories small (7K-11K),

medium (29K-35K), and large (80K-120K) neurons based on

size of the matrix.

C. Results

We compare our R-FINE-TPT approach with the MIN-

TRSV approach which is based on minimal decomposition

strategy suggested by Mascagni in [13]. These approaches

differ in the decomposition strategy used for finding junctions

and the computation strategy used to solve tridiagonal systems

in Stage-1. All operations are carried out in double precision.

From the results in Figure 6, it can be observed that R-FINE-

TPT is faster than MIN-TRSV for all classes of input. It has

to be noted that we achieve a speedup of 2x on EC5 neuron,

394

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

E
C

5-
60

92
02

-2

R
at

-n
gf

A
lv

ar
ez

sk
in

A
12

-1
8-

2r

L3
95

-L
C

N

M
A

34
9-

dS
A

C

H
IC

A
P

3

14
-t

ra
ce

d

al
ph

aM
N

4

ce
ll-

36
-t

ra
ce

 1

 2

 3

 4

 5

 6

T
im

e(
m

s)

S
pe

ed
up

R-FINE-TPT
MIN-TRSV

speedup

Fig. 6: Results on input dataset

Neuron Compartments Junctions Branches
EC5-609202-2 123248 1321 2259

Rat-ngf-11-11-04 114193 468 941
Alvarez-Control-Cell-1 84254 185 370

skinA12-18-2r 82110 3287 6183
L395-LCN 35630 787 1554

MA349-dSAC 35190 1838 3483
HICAP3 29159 119 242
14-traced 11193 546 1042

alphaMN4 9231 69 151
cell-36-trace 7881 97 184

TABLE II: Details of neuron morphologies

which is the neuron with highest number of compartments

than any other neuron in the repository [21].

The reason for the good performance of R-FINE-TPT over

MIN-TRSV is that in R-FINE-TPT there is more parallelism,

less work per thread, and negligible load imbalance. Whereas

in case of MIN-TRSV, threads have to coordinate among

themselves to solve one big tridiagonal system with three right

hand sides. This requirement for coordination results in poor

performance when compared to R-FINE-TPT.

D. Further experiments

In this section, we perform two sets of experiments. One

set of expeirments study the impact parameters such as K
in the fine decomposition, depth D in the recursion, and

varying the number of right hand sides on the runtime of the

algorithm. The second set of experiments are aimed at coming

up with guidelines to choose appropriate values for K and D
automatically based on empirical data. For some experiments

we use linear neuron as our model. In linear neuron, there

is only one branch and all the compartments have only one

child.

1) Varying K in Fine Decomposition: In this experiment,

we study how varying K in fine decomposition affects overall

runtime and runtime of individual stages in R-FINE-TPT. To

understand the behaviour, we take a linear neuron of size 100K

as the input. For a linear neuron with N compartments, there

are roughly N/K junctions and 3N/K tridiagonal systems of

size (K − 1) to be solved in Stage-1. As we increase K,

number of threads to be launched i.e, 3N/K decreases in

Stage-1 and work per thread i.e, solving tridiagonal of size

(K − 1) increases. Having few threads with more work is not

good for GPU and it can be observed in run time of Stage-1 in

Figure 7. As K increases, running time of Stage-1 increases.

Stage-3 of EDD involves time for recursive call T (N/K). It

decreases with increase in K and it can be observed in Figure

7. Threads launched in Stage-2 and Stage-4 are very light and

changing K has little impact on their runtime. The overall

runtime decreases to a certain K and then increases. For our

input linear neuron of size 100K the best performance is at

K = 3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 3 4 5 6 7 8 9 10
T

im
e(

m
s)

K in Fine Decomposition.

R-FINE-TPT
Stage-1
Stage-3
Stage-2
Stage-4

Fig. 7: Impact of varying K on R-FINE-TPT approach.

2) Varying the Depth of Recursion, D: In this experiment,

we study the effect of recursion depth D on the R-FINE-TPT

approach. From Figure 8, we can see that as we increase D,

the speedup increases to a certain point and decreases from

then on. This is due to the fact that at inflexion point it is

better to solve the matrix on a CPU rather than running the

algorithm recursively. For large neurons, the inflection point is

at D = 3 and the average size of the domain matrix at D = 3
is 1800. For such small matrices, it is faster to solve it on a

CPU despite the cost of memory transfers. As long as we have

bigger matrices to solve at each level, it is beneficial to run

the algorithm recursively.

3) Varying Resolution: In compartmental modelling, each

branch of the neuron is divided into multiple compartments.

More accurate simulations are possible by increasing the

number of compartments into which a branch is divided. The

morphology file contains a particular compartmentalization

of a neuron. In this experiment, we obtain a P -resolution

morphology by breaking an original compartment in the

morphology into P compartments. If the input morphology has

N compartments, P -resolution morphology contains P × N
compartments. From Figure 9, we can see that R-FINE-

TPT performs better than MIN-TRSV for all resolutions. The

primary reason for this is that using fine decomposition enables

us to have computation in Stage-1 divided in to many threads

with very little work. This coupled with recursion is the reason

for better performance compared to MIN-TRSV.

395

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 3 4 5

S
pe

ed
U

p

Recursion level(D)

Small
Medium

Large

Fig. 8: Impact of varying recursion depth D on speedup.

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 32 64 128

T
im

e(
m

s)

P-resolution

Large-MIN-TRSV
Large-R-FINE-TPT
Medium-MIN-TRSV

Medium-R-FINE-TPT
Small-MIN-TRSV

Small-R-FINE-TPT

Fig. 9: Impact of varying resolution on R-FINE-TPT and MIN-

TRSV approaches.

4) Varying Right Hand Sides: Voltage behaviour studies

have a lot of parameters to tinker with. For example, in

Equation 2, having different values of external compartment

current (Iexti) effects only right hand side of the matrix

system. Now, it is possible to do multiple simulations for

different values of Iexti at once. This is advantageous because

it suffices to factorize the tridiagonal matrices in Stage-1 only

once and use the factorizations for all right hand sides. In this

experiment, we see how R-FINE-TPT behaves with change in

the number of right hand sides. From Figure 10, it can be seen

that speedup increases with respect to number of right hand

sides for all classes of neurons.

5) Determining the Threshold Function: In this experiment,

we find a boolean threshold function for deciding when to stop

the recursion in Algorithm 3. The threshold function depends

on two parameters: the size of the matrix, N , and the number

of right hand sides, R. We have to break the recursion at a

stage where using CPU is better than using GPU. So, we run

an experiment to find out the largest matrix size at which CPU

is better than GPU for each value of R. From Figure 11, we

can see that the data is following 1/x behaviour. Hence we

modeled the function as (N = a0/R + a1) and used linear

regression to find constants a0 and a1 at which the error is

minimum. Threshold function thus obtained from the above

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

5 10 15 20 25 30 35 40 45 50

S
pe

ed
U

p

Number of right hand sides

Small
Medium

Large

Fig. 10: Impact of varying right hand sides on speedup.

technique is (N − (5245/R) − 40 ≤ 0). The actual value in

case of R = 1 is 3500 and it is recommended to use threshold

function (N ≤ 3500) when using R = 1.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 20 30 40 50 60 70

S
iz

e
of

 th
e

m
at

rix
(N

)

Number of right hand sides(R)

Threshold value
N-5245/M - 40 = 0

Fig. 11: Threshold function for matrix with multiple right hand

sides

6) Choosing K in Fine Decomposition: In this experiment,

we provide insights for choosing best value for K in fine

decomposition when R = 1. The choice of K depends on the

size of the matrix N and the K values chosen for matrices

less than size N . For linear neurons of size N > 3500, we

ran our algorithm for different values of K and chose the

K which gave the best runtime. We find best K values for

all matrix sizes constructively. Hence, in the lower levels of

recursion, we use the computed best K values. From Figure

12, we can see that the variance of K is high for small values

of N . For larger values of N , where recursion depth is greater

than one, the best value of K remains constant at three. One

interesting thing to observe is that for neurons around size

20000, it is possible to go down two levels in the recursion

but the best K value is the one that recurses only once. To

get good performance, maintain a look up table for smaller

matrices and use K = 3 for larger matrices.

396

 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0

 1
00

00

 2
00

00

 3
00

00

 4
00

00

 5
00

00

 6
00

00

 7
00

00

 8
00

00

 9
00

00

 1
00

00
0

B
es

t K
 v

al
ue

Matrix size(N)

Best K

Fig. 12: Best value of K in Fine Decomposition

V. CONCLUSIONS AND FUTURE WORK

In scientific simulations based on ordinay and partial differ-

ential equations, matrix solvers are almost always a bottleneck

and making them faster reduces simulation time considerably.

In this paper, we have demonstrated that embracing the se-

mantics of matrices into parallel algorithm design helps in

designing efficient parallel solvers. The general form given

for Hines matrices in this paper provides a framework for

proving more results on Hines matrices. On the software

front, we will consolidate our algorithms into a CUDA library

which can then be used by neuron simulator frameworks

such as NEURON [22], MOOSE (Multiscale Object-Oriented

Simulation Environment) [23] and others.

In voltage PDE simulation of a neuron, only main-diagonal

of the matrix and right hand side vector changes in every time-

step. It would be interesting to see if any numerical method

can take advantage of this and in turn lead to efficient parallel

algorithms.

REFERENCES

[1] University of Florida (2011) UF sparse matrix collec-
tion.Available at:(http://www.cise.ufl.edu/research/sparse /ma-
trices/groups.html).

[2] Asanovic, Krste, et al. The landscape of parallel computing
research: A view from berkeley. Vol. 2. Technical Report
UCB/EECS-2006-183, EECS Department, University of Cali-
fornia, Berkeley, 2006.

[3] Intel Math Kernel Library, https://software.intel.com/en-
us/articles/intel-mkl/.

[4] Nvidia sparse matrix library(cuSPARSE), http://developer.
nvidia.com/cusparse.

[5] Wangdong Yang, Kenli Li, and Keqin Li. A hybrid computing
method of SpMV on CPU-GPU heterogeneous computing sys-
tems, in Proc. of Journal of Parallel and Distributed Computing
(2017), volume 104, 49-60.

[6] Kiran Kumar Matam, Siva Rama Krishna Bharadwaj, and
Kishore Kothapalli. Sparse Matrix Matrix Multiplication on
Hybrid CPU+GPU Platforms, in Proc. of 19th Annual Inter-
national Conference on High Performance Computing (HiPC),
Pune, India, 2012, 1-10.

[7] Emmanuel Agullo, Alfredo Buttari, Mikko Byckling, Abdou
Guermouche, Ian Masliah. Achieving high-performance with

a sparse direct solver on Intel KNL. [Research Report] RR-
9035, Inria Bordeaux Sud-Ouest; CNRS-IRIT; Intel corpora-
tion; Universit of Bordeaux. 2017, pp. 15.

[8] Kiran Raj Ramamoorthy, Dip Sankar, Kannan Srinathan and
Kishore Kothapalli, A Novel Heterogeneous Algorithm for
Multiplying Scale-Free Sparse Matrices, in Proc. of IPDPS
Workshops, 2016, 637-646.

[9] Dharma Teja Vooturi and Kishore Kothapalli, Parallel Algo-
rithm for Quasi-Band Matrix-Matrix Multiplication, in Proc.
of Parallel Processing and Applied Mathematics 2015, 106-
115.

[10] Aydin Buluc and John Gilbert. Challenges and advances in
parallel sparse matrix-matrix multiplication. In Proc. ICPP
2008, 503-510.

[11] Wangdong Yang, Kenli Li, Yan Liu, Lin Shi and Lanjun Wan.
Optimization of quasi-diagonal matrix-vector multiplication on
GPU. International Journal On High Performance Computing
Applications, Vol. 28(2) 2014, 183-195.

[12] Michael Hines. Efficient computation of branched nerve equa-
tions. International journal of bio-medical computing 15.1
(1984): 69-76.

[13] Michael Mascagni. A parallelizing algorithm for computing
solutions to arbitrarily branched cable neuron models. Journal
of Neuroscience Methods 1990, vol 36, 105-114.

[14] Osep-Lluis Larriba-Pey, Michael Mascagni, Angel Jorba, Juan
J. Navarro. An Analysis of the Parallel Computation of Arbi-
trarily Branched Cable Neuron Models. In PPSC 1995, (373-
378).

[15] Michael L. Hines, Hubert Eichner and Felix Schurmann.
Neuron splitting in compute-bound parallel network simula-
tions enables runtime scaling with twice as many processors.
Journal of Computational Neuroscience. 2008;25(1):203-210.
doi:10.1007/s10827-007-0073-3.

[16] Michael L. Hines, Henry Markram and Felix Schurmann.
Fully implicit parallel simulation of single neurons. Journal
of computational neuroscience 25.3 (2008): 439-448.

[17] Ben-Shalom, Roy, Gilad Liberman, and Alon Korngreen. Ac-
celerating compartmental modeling on a graphical processing
unit. Frontiers in neuroinformatics 7 (2013): 4.

[18] Harold S. Stone. An efficient parallel algorithm for the solution
of a tridiagonal linear system of equations. JACM 1973, 20:27-
38.

[19] Hodgkin AL, Huxley AF. A quantitative description of mem-
brane current and its application to conduction and excitation
in nerve. The Journal of Physiology. 1952;117(4):500-544.

[20] James M. Bowe, Beeman David. Compartmental modeling,
The Book of GENESIS: Exploring Realistic Neural Models
with the GEneral NEural SImulation System. 1998, New York:
Springer-Verlag, 7-16.

[21] Ascoli A. Giorgio, Duncan E. Donohue, and Maryam Halavi.
”NeuroMorpho. Org: A central resource for neuronal mor-
phologies.” Journal of Neuroscience 27.35 (2007): 9247-9251.

[22] NEURON (https://www.neuron.yale.edu/neuron/).
[23] MOOSE(Multiscale Object-Oriented Simulation Environment)

neuron simulator, (https://moose.ncbs.res.in).

397

