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ABSTRACT
In this paper we consider the problem of routing packets to a single
destination in a dynamically changing network, where both the net-
work and the packet injections are under adversarial control. Rout-
ing packets to a single destination is also known as information
gathering. Information gathering is an important communication
primitive for sensor networks. Since sensor networks have a wide
range of civilian and military applications, they have recently at-
tracted a great deal of research attention. Several communication
protocols have already been suggested for sensor networks, but not
much theoretical work has been done so far in this area. Informa-
tion gathering is an important primitive to allow an observer to col-
lect information from the sensors. Because sensors usually do not
move, they form a static topology of possible communication links,
but since sensors may frequently be in sleep mode or their commu-
nication may be disrupted by interference or obstacles, communi-
cation links may be up and down in an unpredictable way. In this
paper, we consider sensor networks forming lines or cycles of unre-
liable edges. Already these seemingly simple topologies are diffi-
cult to handle by online algorithms, and the best previously known
algorithms require by a factor of �(n) more buffer size to achieve
the same throughput as optimal routing algorithms, where n is the
size of the network. We improve this factor to O(log n) and prove
a matching lower bound that holds for all online algorithms.

Categories and Subject Descriptors
F.2.8 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Routing and layout; G.2.2
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1. INTRODUCTION
Information gathering is an important communication primitive

for sensor networks. The potential for collaborative, robust net-
works of microsensors has recently attracted a great deal of re-
search attention. Several projects have been initiated in recent years
to investigate a variety of communications research aspects in the
area of sensor networks [1, 4, 2, 3, 19]. Also, several protocols for
determining energy-efficient routes and for aggregating and send-
ing information to an observer along these routes have already been
presented and experimentally evaluated [16, 20, 17, 18, 21, 24], but
not much theoretical work has been done in this area yet. How-
ever, especially for sensor networks, where human intervention is
very limited (because sensors may be in hostile territory or concrete
walls), theoretical work is important to make sure that the commu-
nication algorithms are highly robust, i.e. they work correctly and
efficiently under any circumstances. In order to ensure correctness,
it is important to use communication methods in sensor networks
that are extremely simple (to allow a verification of their correct im-
plementation), and in order to ensure a high efficiency, these meth-
ods must be able to adapt themselves to changes in the network so
that they use the available resources as efficiently as possible.

For sensor networks, energy is a much more critical factor than
in conventional wireless networks because once sensors have been
delivered, it may be very difficult, if not impossible, to access and
recharge them. Communication is the major consumer of energy
in sensors [22]. Wireless interfaces consume energy even if they
are just listening for signals from other sensors. Hence, to keep
energy consumption at a minimum, a common strategy for sensor
networks is to use TDMA (time division multiple access) [25, 17].
Time slots for transmission are chosen among the sensors so that
there is no interference with others, and in between these time slots
the wireless interface is switched to sleep mode.

Taking this into account, we will model the infrastructure of a
sensor network as a directed graph G = (V;E) with a set of nodes
V representing the sensors and a set of edges E � V � V repre-
senting the communication links that can potentially be established
between two sensors via radio or infrared signals. Since sensors
usually do not move, G has a static topology. However, edges may
be unreliable because sensors may be in sleep mode to conserve en-
ergy, obstacles or interference with other devices may temporarily
obstruct their signals, or they may simply fail. To make sure that
our communication algorithms work well under anycircumstances,
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we will assume that the state of the edges is under adversarial con-
trol.

Protocols for sensor networks have to provide two communica-
tion modes: sensor-to-observer and observer-to-sensor communi-
cation. Sensor-to-observer communication is the by far dominating
mode. Hence, it is of highest priority to find flexible and efficient
protocols for it. A simple form of sensor-to-observer communi-
cation is called information gathering. In information gathering,
there is a single observer, and all messages injected into the net-
work have to be forwarded to it. The aim of this paper is to present
a simple, distributed protocol for information gathering that can
compete well with best possible protocols with regard to through-
put and buffer size. We will concentrate in this paper on two types
of topologies for G: lines and cycles. As will become apparent
later on in this paper, already these types of networks present seri-
ous challenges for keeping the buffer size low (at most logarithmic
in the size of the network) while achieving a high throughput.

1.1 Model
As mentioned above, we assume that we have a network G =

(V;E) of static topology but unreliable edges. All injected packets
have the same destination in G. We assume that time proceeds
in synchronous steps, every active edge can transport at most one
packet per time unit, and every packet needs one time unit to cross
an edge. The edges and the packet injections are under adversarial
control.

Given nodes with buffer size B, we allow an adversary to inject
an arbitrary number of packets and to activate (or deactivate) an ar-
bitrary set of edges in each time step as long as no packet ever has to
be deleted when using an optimal routing algorithm. That is, every
node only has to hold B packets in transit at any time, and the other
packets have been successfully delivered to the destination. For ev-
ery successful packet, a schedule(i.e. a sequence of movements
across edges over time) can be specified to reach its destination.
The number of packet deliveries achieved by an algorithm is called
its throughput.

In order to compare the performance of a best possible strategy
with our online strategies, we will use competitive analysis. We call
an online algorithm A c-competitiveif for all sequences of edge ac-
tivations and packet injections for which an optimal algorithm with
buffer size B never has to delete a packet, A with buffer size c � B
also never has to delete a packet (which implies that it asymptoti-
cally achieves the same throughput as the optimal algorithm). Cer-
tainly, c � 1, and for an online algorithm to be useful and scalable
for sensor networks, c should be as small as possible.

In the following, B will always mean the buffer size of an opti-
mal routing algorithm.

1.2 Previous results
The study of adversarial models in communication networks was

initiated, in the context of queueing disciplines, by Borodin et al. [12].
Other work on adversarial queueing includes [6, 13, 14, 15, 23, 26].
In these papers it is assumed that the adversary has to provide a path
for every injected packet and reveals these paths to the system. The
paths have to be selected in a way that they do not overload the
system. Hence, it only remains to find the right queueing disci-
pline (such as furthest-to-go) to ensure that all of the packets can
eventually reach their destinations.

The study of adversarial models was initiated, in the context of
routing, by Awerbuch, Mansour and Shavit [11] and further refined
by [5, 8, 9, 10, 14]. In these papers the model is used that the
adversary does not reveal the paths to the system, and therefore the
routing protocol has to figure out paths for the packets by itself.

Based on work by Awerbuch and Leighton [10], Aiello et al. [5]
showed that there is a simple distributed routing protocol that keeps
the number of packets in transit bounded in a dynamic network if,
roughly speaking, in each window of time the paths selected for the
injected packets require a capacity that is below what the available
network capacities can handle in the same window of time.

Also the special case of information gathering (i.e. all packets
have the same destination) has already been studied under adver-
sarial routing models. The result by Aiello et al. [5] implies that
information gathering (in a somewhat weaker adversarial model
than considered here) can be done with competitive ratio O(n2).
Awerbuch et al. [8] consider an adversary similar in power to our
adversarial model and improved the competitive ratio to �(n). A
similar result was also shown subsequently (with a simpler proof)
by Anshelevich, Kempe, and Kleinberg [7]. For general network
topologies (i.e. the adversary can interconnect any pair of nodes), a
bound of �(n) seems to be best possible, but it was left as an open
problem whether there are algorithms for specific topologies that
achieve a much better competitive ratio.

1.3 Our results
We show that for lines and cycles there is a simple, deterministic

local-control routing algorithm that achieves a competitive ratio of
O(log n). We also present a matching lower bound showing that
any online algorithm that never has to drop a packet must have a
competitive ratio of 
(log n). Although lines and cycles seem to
be pretty simple topologies, the adversary can still make the life
for a routing protocol very hard. For example, an optimal strategy
for a given adversary may move packets back and forth to free up
space in buffers into which the adversary will inject packets in the
future. Since edges are only active at certain, adversarially selected
time steps, packets mistakenly moved by an online algorithm into
one direction may be hard to get back. Nevertheless, we show that
good online algorithms can be found for lines and cycles.

Apart from achieving a significantly better competitive ratio than
the �(n) ratio known before, we note that we use an algorithmic
approach that is different from previous approaches in the adver-
sarial routing literature, and we use an analysis different from stan-
dard analyses such as potential methods. Hence, both our algorithm
and its analysis may be of independent interest.

1.4 Organization of the paper
In Section 2 we prove matching upper and lower bounds for the

line graph, and in Section 3 we prove matching upper and lower
bounds for the cycle. The paper ends with a conclusion and some
open problems.

2. LINE GRAPH
Consider the line graph with nodes numbered from 1 to n, node

n being the destination node. In this section, we first present a
lower bound on the buffer size used by any deterministic online
routing algorithm to perform gathering in the line graph. Later, we
propose an online algorithm that achieves an upper bound matching
the lower bound up to a constant factor.

2.1 Universal Lower Bound
In this section, we present a lower bound argument that proves

that for any online routing algorithm there is an adversary that can
force the algorithm to use a buffer of size 
(log n � B) at at least
one node whereas the optimal routing algorithm uses a buffer of
size B.

THEOREM 2.1. Any deterministic online routing algorithm is

(log n) competitive on a line graph ofn nodes.
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PROOF. To simplify the proof we use an adaptive adversary.
However, the result also holds for oblivious adversaries. We con-
sider the case where B = 1. This means that in the optimal routing
algorithm there is no more than one packet at any node at any given
time. Also, assume that n0 = n � 1 is a power of 2. In the fol-
lowing the nodes in an interval [a; b] means all the nodes numbered
from a to b (i.e. including a and b).

The adversary works in rounds. In round 1, the adversary injects
one packet at each of the nodes in [1; n

0

2
]. Then the adversary acti-

vates all edges (i; j) such that j = i+1 and 1 � i � n0

2
for n0 time

steps. Thus the packet injected at node numbered i, 1 � i � n0=2,
could be moved to node numbered n0

2
+ i. It holds that either the

nodes in [1; n0=2] have at least n0=4 of the packets or the nodes
in [n

0

2
+ 1; n0] have at least n0=4 of the packets. Without loss of

generality, we shall assume that the nodes in [n
0

2
+1; n0] have more

than n0=4 packets. Hence, the average number of packets per node
is 0:5. However, in this case, the optimal algorithm will keep all
the packets in the interval [1; n

0

2
� 1]. Thus none of the packets in

the algorithm in nodes [n
0

2
+ 1; n0] are on schedule.

In round 2, the adversary works with the node set ranging from
n0=2 + 1 to n0 by first placing one packet at n0=4 of the nodes in
the interval [n0=2 + 1; 3n0=4]. Now the adversary activates edges
in a way that a packet in node numbered n0

2
+ i could be moved

to node numbered 3n0

4
+ i, 1 � i � n0

4
� 1. It now holds that

either the nodes in the interval [n
0

2
+ 1; 3n

0

4
� 1] or [ 3n

0

4
+ 1; n0]

have at least half the total packets. W.l.o.g., we shall assume that
the nodes in the interval [3n

0

4
+ 1; n0] have at least half of the total

packets. Again the adaptive adversary ensures that all the packets
in this interval are not on schedule by using a similar strategy as in
round 1. The average number of packets per node in this interval is
1.

The above procedure continues with round k starting with a set
of n0

2k�1
nodes having at least (k�1)�n

0

2k
packets. In round k the ad-

versary injects an additional n0

2k
packets and offers a corresponding

number of edges. At the end of the round k, at least k�n

2k+1
packets

are in n0

2k
nodes. Thus, at least one node has a height of at least

k=2.
Since after each round the number of nodes that the adversary

works with reduces by a factor of 2 there can be at most log n0 such
rounds at the end of which there is a node of height at least logn

0

2
.

Note that during this whole procedure, the optimal algorithm has
only one packet at any node. If at the end of any round there is a
node of height more than log n0

2
then the adversary can stop after

that round.

It can also be shown that for randomized online routing algo-
rithms the adversary creates with a probability of success at least 1

n

a node with a height of log n � B.

2.2 Algorithm
Before presenting the algorithm, we introduce some notation.

Each node has a buffer to store packets and each buffer has slots
numbered consecutively starting from 1. Each slot can store one
packet. A layer is a consecutive set of B + 1 slots. The layers are
numbered consecutively starting from 0. The slots 1 to B + 1 be-
long in layer 0 and i �(B+1)+1 to (i+1) �(B+1) belong to layer
i, for i > 0. The direction of the layer is the direction in which
packets can be moved by the algorithm in that layer. Thus, in a
Always-Go-Right layer packets can only move to the right and in a
Always-Go-Left layer packets can only move to the left. The algo-

rithm maintains layers that are alternating in direction starting with
layer 0 being a Always-Go-Right layer. Thus, all even numbered
layers are Always-Go-Right layers and all odd numbered layers are
Always-Go-Left layers.

The position of a packet is defined as follows.

DEFINITION 2.2 (POSITION). The current position (i.e. node)
of a packetP in the algorithm is denoted by POSALG(P ). The cur-
rent position of a packetP in the optimal algorithm is denoted by
POSOPT(P ).

When there is no confusion about whether a packet P is a packet
in the optimal algorithm or the online algorithm, we simply refer to
its position as POS(P ). The height of a packet and the height of a
node are defined below.

DEFINITION 2.3 (HEIGHT OF A PACKET). The height of a packet
P in the algorithm, denoted byh(P ), is the number of the slot at
which it is currently stored.

DEFINITION 2.4 (HEIGHT OF A NODE). The height of a node
u in the algorithm, denoted byh(u), is the highest slot number at
which a packet is currently stored atu.

DEFINITION 2.5 (ALG�i). ALG�i is the set of all packets
P in the algorithm such thath(P ) > i � (B + 1). We also denote
jALG�ij byn�i .

We also denote the set of packets in the optimal algorithm as OPT.
A monotonic mapping is defined as follows.

DEFINITION 2.6 (MONOTONIC MAPPING). For two packet sets
P;P 0, a mappingf : P ! P0 is calledleft monotonic (resp.right
monotonic) if for all P 2 P, POS(P ) is to theleft(right) of or the
same as POS(f(P )). When the direction of monotonicity is clear
from the context we simply say thatf is monotonic.

In the analysis, we provide a mapping from packets in the al-
gorithm to packets in the optimal algorithm and the mapping is
defined as follows.

DEFINITION 2.7 (f�i;OPT�i). f�i is a mapping from ALG�i
to OPT that is monotonic in the direction of layeri. We define
OPT�i = fP 0 2 OPT : for someP 2 ALG�i; f�i(P ) = P 0g.
Thus we can think off�i as a mapping from ALG�i to OPT�i.

Now we present Algorithm A for performing routing in the line
graph.

Algorithm A
1. For every time step and every active edge (u; v)
2. if there exists a layer l with the direction same as the

direction of (u; v) so that u has at least 1 packet in l and
v has at most B packets in l then

3. move a packet in layer l from u to v
4. For every time step at every node u
5. Accept incoming packets and injected packets and store

them at lowest empty slots available currently.
End Algorithm

Thus, in algorithm A not only the highest packet available but also
a packet from any of the layers below may be moved from node u to
v. It can be observed that only allowing to move the highest avail-
able packet may even result in algorithm A having an unbounded
number of packets. It is the ability of algorithm A to treat all pack-
ets as “movable” that results in a significant decrease in buffer size
requirements. As stated in the following fact, packets however can-
not move from a layer l to a layer l0 > l.

FACT 2.8. Starting from the time a packetP was injected, the
number of the layer to whichP belongs to cannot increase.
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2.3 Proof
In this section, we show that algorithm A has a competitive ratio

of O(log n). This is achieved by first arriving at an upper bound on
the number of packets in the system at any time. Then we define a
legal state for the system and show that the state of the system will
stay legal for every time step. Using the legal state, we then show
that for nodes to have packets in higher layers there must be many
more nodes with packets in the lower layers. This allows to bound
the maximum buffer space used by the algorithm.

In the following lemma we first derive an upper bound on the
number of packets in the system at any given time.

LEMMA 2.9. The total number of packets in the system at any
time is at mostn � B.

PROOF. The proof is done by showing that at every time step,
there is an injective and a right monotonic mapping f�0 from ALG�0

to OPT�0. At t = 0, the mapping exists trivially. Let f�0 exist till
time t. We consider all actions that the algorithm can perform dur-
ing time t+1. Let us look at active edges at time t+1 one at a time
and observe the actions of the algorithm and the optimal algorithm
along the same active edge. Let us call the active edge as u! v.

� Both the algorithm and optimal algorithm move a packet: Let
the algorithm move packet Pa while the optimal algorithm
moved packet Po. If u is to the right of v, then f�0(Pa) is
still monotonic. But if a packet P 0 exists in the algorithm
with POS(P 0) = u and f�0(P

0) = Po, by the movement
of Po to v the monotonicity is violated for P 0. The mono-
tonicity can be restored by swapping f�0(Pa) and f�0(P 0).
On the other hand, if u is to the left of v, the movement of
Pa might violate the monotonicity for Pa. Since the algo-
rithm moved a packet from u to the left of u it implies that
h(u) > B + 1 at time t. Thus, there exists a packet P 0 with
POS(P 0) = u and POS(f�0(P 0)) 6= u. We can hence swap
f�0(Pa) and f�0(P 0).

� Only the algorithm moves a packet: In this case, if the move-
ment is to the right, then the mapping is monotonic after time
t + 1. But if the algorithm moved a packet Pa to the left of
its current position, then it follows that h(u) > B + 1 at
time t and as in the previous case, we can swap f�0(Pa) and
f�0(P

0) where POS(P 0) = u and POS(f�0(P 0)) 6= u.

� Only the optimal algorithm moves a packet: If the move-
ment of the optimal algorithm is to the left, then monotonic-
ity would still hold after time t+ 1. However, if the optimal
algorithm moved to the right then monotonicity could be vi-
olated for the packet P in the algorithm with POS(P ) = u
and f�0(P ) = Po. In this case, the algorithm failed to
move any packet because there did not exist a layer l from
which to move the packet. This implies that h(v) � B + 1.
Since only B packets in the algorithm that are at v can have
their optimal packet also at v, we can find a packet P 0 with
POS(P 0) = v and POS(f�0(P 0)) 6= v. We then swap
f�0(P ) and f�0(P 0) thereby restoring monotonicity.

If during time t + 1 the adversary injects a packet P at node u,
we set f�0(P ) = P . This always ensures monotonicity of f�0
and also that f�0 is injective since the mapping is provided for
all packets in ALG�0. To obtain the upper bound stated in the
lemma, we observe that the optimal algorithm can store at most
n �B packets at any time.

From Lemma 2.9, we obtain that n�0 � n �B. We now define a
legal state as follows.

DEFINITION 2.10 (LEGAL STATE). A system is said to be in
a legal state if it satisfies

1. Monotonicity: For alli � 0, f�i is injective and monotonic,
and

2. Subset: For alli � 0, OPT�i+1 � OPT�i.

One may ask if a legal state as defined above can be maintained
at all times when using OPT�0 = OPT. However, in this case the
legal state cannot be maintained at all times. Starting with time
t = 0, the adversary can inject B packets in nodes [n=2; n) and
offer edges to the nodes [1; n=2) thereby moving all the optimal
packets to the nodes [1; n=2). Now the adversary can inject further
B packets at nodes [n=2; 3n=4) and for nB

4
time steps activate all

edges (i; j) such that j = i+ 1; n=4 � i � n� 1. This results in
f�1 being undefined for the packets in the layer 1 of our algorithm
and also OPT�1 might no longer be a subset of OPT�0. To rectify
this situation, we view the destination node n as being a virtual
set of further n nodes with a buffer size of B + 1 at each of them.
These artificially “kept alive” packets will serve to bring the system
back to a legal state. We therefore define OPT�0 to be the set of all
packets in the optimal algorithm plus the “kept alive” packets.

To prove that the system can always be maintained in a legal
state, possibly using the artificial packets, we prove the following
Lemma.

LEMMA 2.11. If the system is in a legal state at the beginning
of time stept, then it remains in a legal state at the end of time step
t.

PROOF. To prove the Lemma we consider all the possible ac-
tions that can happen during time step t. During time step t, the
adversary can inject new packet(s) or activate edges. The edges
activated are classified by using the following definition.

DEFINITION 2.12. A nodeu is said to belong to layeri if node
u has packets in layeri and no packets in layer greater thani.

An edge u ! v is called a crossing edgeif u and v belong
to different layers, otherwise it is called a non-crossing edge. An
edge u ! v is called a schedule edgeif it is in the schedule of
some packet P in the optimal algorithm, otherwise it is called a
non-schedule edge.

Thus, edges activated by the adversary can be classified depend-
ing on whether the edge is a crossing/non-crossing edge, schedule/non-
schedule edge and whether the direction of edge is in the direction
or opposite to the direction of the layer to which u belongs. In each
of these 8 cases we show that the legal state can always be main-
tained after time step t. For the purpose of the proof, we look at the
activated edges during time step t one at a time and let the active
edge be u! v.

Whenever the system fails to be in a legal state, we perform local
modifications to restore the legal state. These modifications, called
the Virtual Movement Strategyand Element Replacement Strategy,
are explained below.

Virtual Movement Strategy
This strategy acts as a subroutine in our proof. A call of the form
VM(v; P; k) means that for packet P at a node u the mapping f�k
is not monotonic and hence needs to be corrected by using packets
in layer k of node v. The caller also ensures that v has B+1 pack-
ets in layer k. This situation as shown in Figure 1(a) is a violation
of the legal state as it does not represent a monotonic f�k mapping.
However, we can bring the system back to a legal state as follows.
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Figure 1: Figure (a) shows a system not in a legal state and (b) shows the correction performed using Virtual Movement Strategy to
bring the system back to a legal state.

Select a packet P 0 with POS(P 0) = v and POS(f�k(P 0)) 6= v, i.e.
the position is only to the left(right) of v if the direction of layer k
is a Always-Go-Right (Always-Go-Left ). The caller ensures that
such a packet P 0 exists at node v in layer k. Now we swap the map-
pings for packets P and P 0 as shown in Figure 1(b) thus bringing
the system back to a legal state.

The strategy is called Virtual Movement Strategy because one
can think of renaming P and P 0 after the swapping thereby moving
P 0 virtually. So P and P 0 exchange their roles. We note that that
Virtual Movement Strategy does not change any OPT�j . It is only
the mapping in f�k that was changed to restore monotonicity.

Element Replacement Strategy
Suppose that during some time step, the algorithm moves a packet
P from a layer i to a layer j � i � 1. Then we release the f�k
mappings of P for i � k < j. Suppose for some k; i � k <
j; f�k(P ) = Ok 6= f�k�1(P ) = Ok�1 and for some packet
P 0, f�k(P 0) = Ok�1 before the movement of P by algorithm A.
After the movement of P , OPT�k�1 6� OPT�k because Ok�1 2
OPT�k and Ok�1 =2 OPT�k�1. This violates the subset rule of the
legal state. This situation is shown in Figure 2(a) where the label on
the arc indicates the layer at which the mapping is made. To bring
the system back to a legal state, we simply set f�k(P 0) = Ok as
shown in Figure 2(b). With this adjustment OPT�k now becomes
OPT�k � fOk�1g and OPT�k�1 becomes OPT�k�1 � fOk�1g.
Thus after the time step t also, it holds that OPT�k � OPT�k�1.

The strategy is called Element Replacement Strategy because we
ensure that OPT�k and OPT�k�1 lose the same element, Ok�1.

Below, we look at each of the 8 different categories of active
edges and use the Virtual Movement and Element Replacement
strategies to bring the system back to a legal state. First we look
at edges that are not leading to the destination. The actions of the
algorithm on edges from node n � 1 to node n are treated sepa-
rately.

1. Non-crossing Edges

a. Schedule Edges

i. In the direction of the layer:

In this case, the algorithm moves a packet Pa from u to v
while the optimal algorithm moves a packet Po from u to
v. Let u and v belong to layer i. If for Pa it happens that
f�k with k < i and layer k opposite in the direction of
layer i is no longer monotonic, this can be restored by call-
ing VM(u; Pa; k). If there exists a packet P in the algorithm
with POS(P ) = u and f�k(P ) = Po at a layer k that is in
the same direction as that of i, then f�k is no longer mono-
tonic. If k < i, calling VM(v; P; k) would again make f�k
monotonic. If k = i, we can swap f�i(P ) with f�i(Pa) to
restore monotonicity of f�k. Since there are no changes to
OPT�j for any j � 0, the subset property holds after time
step t.

ii. Opposite to the direction of the layer:

In this case, the algorithm cannot move any packet from u to
v. Let u; v belong to layer i. Let the optimal algorithm move
packet Po. If there exists a packet P in the algorithm with
POS(P ) = u, f�k(P ) = Po where the direction of layer k
is opposite to the direction of layer i, then f�k is no longer
monotonic. This is corrected by using VM(v; P; k). Further,
since at any layer j � 0, OPT�j did not undergo any change,
the subset property holds after time step t.

b. Non-schedule Edges

i. In the direction of the layer:

In this case, the optimal algorithm does not perform any
packet movements. Let the algorithm move packet Pa from
u in layer i. In any layer k that is in the same direction as that
of i, the OPT�k mapping is still valid. In layers k; k < i that
are in the opposite direction of layer i, f�k(Pa) might not be
monotonic. Here we call VM(u; Pa; k) to regain monotonic-
ity. Observe that in layer k node u has B + 1 packets and
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Figure 2: The figure on the left shows the existing mapping and the sets OPT�k and OPT�k�1 might lose different elements thereby
violating the subset property. The figure on the right shows the new mappings where the sets OPT�k and OPT�k�1 lose the same
element Ok�1. The packets in the optimal algorithm are shown below the line graph for convenience.

hence the call to VM is valid. There would be no changes
in OPT�j for any i � 0 and hence the subset property holds
after time step t. If the algorithm does not move any packet
then, the state of the system will also be legal after time step
t.

ii. Opposite to the direction of the layer:

In this case, neither algorithm A or the optimal algorithm
perform any movement of packets and hence the state of the
system remains legal after time step t.

2. Crossing Edges

a. Schedule Edges

i. In the direction of the layer:

In this case, the algorithm moves a packet Pa from u to v
from layer i to layer j, j � i � 1. The optimal algorithm
moves a packet Po from u to v. If the packet P that is
mapped to Po is at u, i.e. POS(P ) = u, then we first swap
f�k(P ) with f�k(Pa). This ensures that when the algorithm
moves the packet Pa and the optimal algorithm moves the
packet Po, there would be no violations to the monotonicity
rule. By induction hypothesis, if POS(P ) 6= u before time
step t then the movement of Po would not result in any vi-
olations to monotonicity. We can now release the mappings
of Pa for all layers k; j < k � i. This might violate the
subset rule. To restore this, we use the Element Replacement
Strategy. Using the two strategies as needed, we bring the
system back to a legal state after time step t.

ii. Opposite to the direction of the layer:

In this case also, both the algorithm and the optimal algo-
rithm move a packet from u to v. Let the algorithm move
packet Pa from layer i to layer j; j � i � 1. To correct any
violations to monotonicity, we use a similar approach as in

case (2a.i) above. We now release the mappings of Pa for
layers k; j < k � i. If for any such layer k the subset rule
is violated as OPT�k and OPT�k�1 might lose a different
element, we use the Element Replacement Strategy to ensure
that after time step t also OPT�k � OPT�k�1. For any layer
k � j, OPT�k has no change. Thus, after the above mod-
ifications, the system remains in a legal state after time step
t.

b. Non-Schedule Edges

i. In the direction of the layer:

In this case, the optimal algorithm does not move any packet
but the algorithm moves a packet Pa from layer i to layer
j. If the monotonicity rule is violated for Pa at a layer k
opposite to the direction of layer i, we call VM(u; Pa; k) to
correct the violation. Note that k � j and hence the call
to VM would succeed. Similarly, for layers k; j < k �
i, the subset rule might be violated as we drop the OPT�k
mapping for the packet Pa. This situation is restored using
the Element Replacement Strategy. For any layer k � j
OPT�k does not change. Thus, after the above modifications
the system can be brought back to a legal state after time step
t.

ii. Opposite to the direction of the layer:

Let the node u belong to layer i and v belong to layer j. In
this case, the algorithm moves a packet Pa whereas the opti-
mal algorithm does not move any packet. The only violations
to monotonicity can occur in layers k, with k � j being in
the same direction as layer i. This can be fixed by using
VM(u; Pa; k). Since in layer j, u has already B+1 packets,
the call to VM succeeds. At this point, we can release the
mappings of Pa in all layers k; j < k � i. This might result
in violations to the subset rule which can be corrected using
the Element Replacement Strategy.
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Thus in all the cases, the system remains in a legal state after time
step t. The above cases, however, do not follow immediately when
the movement is to the destination node. These are considered
below. The movements to the destination can occur because of a
schedule edge or a non-schedule edge. In the following we let d be
the destination node and u be the node before the destination node.

1. Schedule edge movements to the destination: In this case,
if h(u) > 0 then, the algorithm moves a packet Pa. The
optimal algorithm moves a packet Po. We do not have to
maintain the mappings for Pa any longer. Also, if Pa is
mapped to an artificial packet then we can release that map-
ping. Because Po is moved, for packets P in the algorithm
with f�k(P ) = Po for some Always-Go-Left layer k to re-
store monotonicity, we proceed as follows. If k = 1, then
we keep the packet Po artificially alive at the destination. If
k > 1 then we can replace f�k(P ) with f�1(P ). At this
point we can release all the mappings of Pa. and any vi-
olations of the subset rule can be again corrected using the
Element Replacement Strategy.

Now consider the situation that h(u) = 0. In this case, as
only the optimal algorithm moves a packet Po, it might hap-
pen that for some packet P in an Always-Go-Left layer k,
f�k(P ) = Po. We can restore the mappings as done earlier
by using the mapping at layer 1 and keeping Po artificially
alive if k = 1.

2. Non-schedule movements to the destination: In this case the
algorithm moves a packet Pa from u to d if h(u) > 0. At
this point we can release the mappings of Pa and correct any
violations of the subset rule using the Element Replacement
Strategy. The optimal algorithm does not move any packet
from u in this case.

Apart from activating edges, during time step t the adversary
might inject new packets. For every new packet injected at a node
u, we simply store the incoming packet P in the lowest available
empty slot. If node u belongs to layer i, we set f�k(P ) = P for
all layers k � i.

Using lemma 2.11, we prove the following lemma.

LEMMA 2.13. The system remains in a legal state for all time
steps t � 0.

PROOF. At t = 0, the state of the system is trivially legal and
we can use Lemma 2.11 inductively.

From the definition of the legal state, the Corollary below holds.

COROLLARY 2.14. For any i � 0, jALG�ij � jOPT�ij.

PROOF. Since the system stays in a legal state at all times, it im-
plies that the mapping from ALG�i to OPT�i is injective. Hence,
it must hold that jALG�ij � jOPT�ij.

Let wi be the number of nodes that have packets in all the B+1
slots of layer i. Let li = jPOS(ALG�i)j. The following Lemma
derives an upper bound on wi.

LEMMA 2.15. wi+1 �
wi�2

2
.

PROOF. Consider layer i + 1. By definition, wi+1 nodes have
B + 1 packets each in layer i + 1. Also, these wi+1 nodes have
B+1 packets in layer i. Hence ALG�i has at least 2wi+1 �(B+1)
packets. Hence,

2wi+1 � (B + 1) � jALG�ij � jOPT�ij (1)

The second inequality follows from Corollary 2.14.
Since the system is in a legal state, because of the monotonicity

and the subset properties it holds that the optimal packets in OPT�i
can have positions only in the nodes where ALG�i�1 have posi-
tions at. See also Figure 3. Thus, POS(OPT�i) � POS(ALG�i�1).
Also the optimal algorithm has a buffer size of only B at each node.
Hence, for i > 0

jOPT�ij � li�1 �B (2)

Equation (3) below follows from the definition of li and wi.

li � wi�1 (3)

Combining Equations (1), (2) and (3), the Lemma follows.

Using Lemma 2.15, the maximum number of layers that algo-
rithm A uses can be bounded as in the Theorem below.

THEOREM 2.16. The maximum number of layers Algorithm A
needs to maintain is at most 3 � (log n+ 1).

PROOF. For any i > 1, layer i + 1 comes into existence only
after layer i has wi � 1. Since wi � wi�3=2, and w0 � 2n, we
have that w3(log n+1) � 1 and that bounds the maximum number
of layers that Algorithm A needs.

Theorem 2.16 gives an upper bound on the height of any node
in the algorithm. It follows from the proof of Lemma 2.13 that
throughput of the algorithm A is greater than or equal to that of the
optimal algorithm.

Thus we arrive at the following Theorem.

THEOREM 2.17. Algorithm A is O(log n)–competitive.

3. CYCLE GRAPH
For the cycle graph, let the nodes be numbered consecutively

from 1 to n with node n being the destination node. As for the case
of line graph, we show that any deterministic online algorithm for
gathering in the cycle graph has a lower bound of 
(log n � B) on
the buffer size.

LEMMA 3.1. Any deterministic online routing algorithm is
(log n)
competitive on a cycle graph of n nodes.

PROOF. The proof uses similar techniques as in Theorem 2.1
and is omitted here.

If one considers randomized online algorithms also, then the adver-
sary creates with a probability of success at least 1

n
a node of height


(log n �B).

3.1 Algorithm
In the algorithm, nodes have buffers that can store packets and

each buffer has slots numbered consecutively starting from 1. A
layer is a consecutive set of B + 1 slots where each slot can store
one packet. As in the case of the line graph, the algorithm main-
tains layers that alternate direction between clockwise and counter-
clockwise as shown in Figure 4, starting from a clockwise layer.

The definition of the height of a packet P and the height of a
node is the same as defined earlier. We also define ALG�i and
POSALG() and POSOPT() in a similar way. Since in a cycle graph
there is no consistent notion of left or right, we define a distance
measure as follows.
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Figure 4: Figure showing the alternating clockwise and
counter-clockwise layers.

DEFINITION 3.2 (DISTANCE). For a node u, distcw(u) is the
length of the path from u to n in the clockwise direction. Similarly,
distccw (u) is the length of the path from u to n in the counter-
clockwise direction.

Similar to left(right) monotonic mapping we define clockwise
(counter-clockwise) monotonic mapping as follows.

DEFINITION 3.3 (MONOTONIC MAPPING). Given two pack-
et sets P;P 0, a mapping f : P ! P0 is called clockwise(resp.
counter-clockwise)-monotonic if for all P 2 P , distcw(P ) �
distcw(f(P )). (resp. distccw(P ) � distccw(f(P )).

We define f�i : ALG�i ! OPT�i as a monotonic mapping in
the direction of layer i. Now we present Algorithm B for perform-
ing gathering in a cycle graph.

Algorithm B
1. For every time step and every edge (u; v) from u to v
2. if there exists a layer l with the direction same

as the direction of (u; v) and u has at least 1

packet in l and v has at most B packets in l
3. move a packet from u to v
4. For every time step at every node u
5. Accept incoming and injected packets and store them at

lowest available empty slots currently.
End Algorithm

Similar to the case of line graph, algorithm B also can move not
only the highest available packet but also a packet from any height.
It can be observed that allowing only the highest available packet
to move may result in the system having unbounded number of
packets. Fact 2.8 also holds in the case of Algorithm B. In the next
subsection we show that algorithm B has an upper bound and also
a lower bound of O(log n) on the competitive ratio.

3.2 Proof
The proof needs some extra tricks. In contrast to Lemma 2.9 the

number of packets in the algorithm is not bounded by the number
of packets in the optimal algorithm.

We first show an upper bound on the number of packets that can
be in the system at any time. Then, we define a legal state for
the system and show that the system will stay in a legal state at
any time. We use the legal state to show that algorithm B has a
competitive ratio of O(log n).

LEMMA 3.4. The total number of packets in the system at any
time is at most 2n � (B + 1).

PROOF. Let OPT denote the set of packets in the optimal al-
gorithm. The set OPT can be divided into two disjoint subsets
OPTcw and OPTccw where OPTcw(resp. OPTccw) contains the
set of optimal packets that are delivered to the destination through
the clockwise direction (resp. counter-clockwise direction). Note
that OPT = OPTcw [ OPTccw. Similarly, the set of packets in the
algorithm, ALG, can also be divided into two disjoint subsets Acw

and Accw . We provide two mappings fcw : Acw ! OPTcw and
fccw : Accw ! OPTccw with the following properties.

� Both fcw and fccw are injective and monotonic in clockwise
and counter-clockwise directions respectively.

� 8P 2 Accw; h(p) > (B + 1)
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� 8P 2 ALG, if h(p) > (B+1) then P 2 Acw or P 2 Accw.

If fcw and fccw satisfy the above properties then they are also
called valid. Since it is not possible to provide the mapping for
all packets in ALG�0 we classify packets in ALG�0 as leaders and
losers as defined below. We say that a packet P in the algorithm is
a leader if it belongs to either Acw or Accw and a loser otherwise.
The validity of the mappings also imply that for any packet P that
is a loser, h(P ) � B + 1.

Claim 3.5 shows that the mappings defined above can be main-
tained validly at all times. Since loser packets are restricted to only
the first layer in the algorithm and the mappings are injective,

jALGj � jAcwj+ jAccwj+ n � (B + 1)

� jOPTcwj+ jOPTccwj+ n � (B + 1)

� jOPTj+ n � (B + 1)

� 2n � (B + 1)

Hence the proof.

CLAIM 3.5. For all time steps t and over any sequence of packet
injections and edge activations �, the mappings fcw and fccw can
be maintained validly.

PROOF SKETCH. To simplify the presentation, we can think of all
packets in Acw and OPTcw that are mapped under fcw are colored
blue and packets in Accw and OPTccw are colored green. During
all time steps, we maintain the mappings valid by showing that blue
packets get mapped to blue packets and green packets get mapped
to green packets. The proof is thus done by induction on time steps
t. At t = 0, the mappings are trivially valid. Assume that map-
pings are valid till time t� 1. At time t, we compare all the actions
of the algorithm with those of the optimal algorithm. Any viola-
tions to the validity of the mappings are then restored using local
modifications.

Consider edge activations during time step t. All the edges that
are activated by the adversary can be classified into 8 categories as
in the proof of Lemma 2.11. For each of the cases, we show that the
mappings remain valid. In the following, we look at active edges
one at a time and u! v represents the active edge. In this sketch,
we look at just one case. The treatment for the other cases is similar
and omitted here.

Non-crossing, schedule edge in the direction of the layer:

We have several cases to consider. Let u and v belong to layer 0. In
this case, let the optimal algorithm move packet P0 and algorithm
B move packet Pa. Since we need not provide fccw mapping for
packets in layer 0, we need to look at violations to validity of fcw .
fcw will not be valid if there is a packet P in the algorithm with
POS(P ) = u; fcw(P ) = Po. This can be easily corrected by
swapping fcw(P ) with fcw(Pa). In the case that the algorithm did
not move any packet, this implies that h(v) = B+1 and hence we
can always find a packet P 0 with POS(P 0) = v; POS(fcw(P 0)) 6=
v and swap fcw(P ) with fcw(P 0).

If u and v belong to a layer greater than 0, let the algorithm move
packet Pa and the optimal algorithm move packet Po. If Pa and Po
are of the same color, then we can make any required corrections
as in the above. On the other hand, if Pa and Po are of different
color, we proceed as follows. W.l.o.g, let Pa be a green packet
and Po be a blue packet and the layer that u and v belong is in the
clockwise direction. If in the algorithm there are no blue packets
at u, then from all the green packets at u there must be at least one
green packet P 0 with POS(fccw(P 0)) 6= u. Hence we can swap
fccw(P ) with fccw(P

0) to make the mapping valid. If there is at

least one blue packet P1 at u, then we swap the colors of P1 and
Pa and then swap fcw(P1) and fccw(Pa). Also, the movement of
Po might violate the validity of the fcw mapping and in this case
we look at if there are any blue packets in the algorithm at node v
or not and in each case correct the violation.

In all the other cases also, we perform similar corrections. The
modification used are to find a packet and swap the mappings or
if this is not possible, find a differently colored packet and swap
colors and the mappings. Also, for movements to destination since
the mappings are monotonic whenever an optimal packet reaches
the destination a packet in the algorithm would also reach the des-
tination at that times step or earlier.

Apart from edge activations, we need to consider packet injec-
tions. For a packet injected at node u during time step t, we set
fcw(P ) = P and if h(u) > B + 1 , we also set fccw(P ) = P .
Thus the mappings can be maintained validly after time step t also.

The similarity with the proof of Lemma 2.9 can be observed in
the sense that in a line graph there is only one path to destination
for any packet and hence maintaining one monotonic mapping f�0
suffices to obtain an upper bound on the number of packets in the
system. But for the case of the cycle graph, there are two possible
paths to destination(through the clockwise and counter-clockwise
directions) and hence we needed to maintain a monotonic mapping
in both the directions.

We now define a legal state for the system.

DEFINITION 3.6 (LEGAL STATE). A system is said to be in a
legal state if it satisfies:

1. Monotonicity: For all i � 0, f�i is injective and monotonic,
and

2. Subset: For all i � 0, OPT�i+1 � OPT�i.

But it can be observed that the legal state as defined above cannot
be maintained at all times. Since there are two paths to the desti-
nation from any node u, the adversary can inject packets at a node
and while the optimal algorithm delivers them to the destination
in the direction opposite to that of the current layer. This violates
the injective property and monotonicity of the mapping as well as
the subset rule. To correct this situation, similar to the case of line
graph, we view the destination node n as a set of 2n virtual nodes
each having a buffer of size B + 1. For these virtual nodes, we de-
fine distcw as well as distccw to be n. Packets reaching these virtual
nodes are kept alive artificially. And we define OPT�0;OPT�1 as
set of all optimal packets in the system and the kept alive packets.
Thus we have that jOPTj � n � B and jOPT�0j � 3n � (B + 1).
These artificially “kept alive” will serve to bring the system back to
a legal state.

To prove that the system can always be maintained in a legal
state, we prove the following lemma.

LEMMA 3.7. For any sequence of packet injections and edge
activations, Algorithm B guarantees that the system in a legal state
for all time steps.

PROOF SKETCH. We start with classifying the active edges de-
pending on whether the edge is crossing/non-crossing and whether
the edge is schedule/non-schedule. This classification results in 8
classes of edges as in proof of Lemma 2.11. For each of the above
cases, using strategies similar to Virtual Movement Strategy and
Element Replacement Strategy we show that if the state of the sys-
tem is legal before a time step t, then the state of the system is legal
after time step t also. For packets injected during any time step t
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we can easily provide the monotonic mappings that satisfy the re-
quirements of the legal state. Observing that at t = 0, the system
is in a legal state trivially, a simple induction on time would then
prove the lemma.

From the above discussion and techniques similar to proof of
Lemma 2.15, the following theorem follows.

THEOREM 3.8. Algorithm B achieves a competitive ratio of
4 log n.

4. CONCLUSION
We demonstrated in this paper that highly competitive routing

algorithms can be designed for adversarial systems based on lines
and cycles. It would be interesting to investigate also other topolo-
gies, such as trees, meshes, etc. Also, it would be interesting to
study how to handle a moving observer or several observers. We
expect the sensor network area to be full of many exciting future
problems in the area of routing theory.
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