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Abstract—Finding whether a graph is k-connected, and the
identification of its k-connected components is a fundamental
problem in graph theory. For this reason, there have been several
algorithms for this problem in both the sequential and parallel
settings. Several recent sequential and parallel algorithms for k-
connectivity rely on one or more breadth-first traversals of the
input graph.

While BFS can be made very efficient in a sequential setting,
the same cannot be said in the case of parallel environments. A
major factor in this difficulty is due to the inherent requirement
to use a shared queue, balance work among multiple threads
in every round, synchronization, and the like. Optimizing the
execution of BFS on many current parallel architectures is
therefore quite challenging. For this reason, it can be noticed
that the time spent by the current parallel graph connectivity
algorithms on BFS operations is usually a significant portion of
their overall runtime.

In this paper, we study how one can, in the context of algo-
rithms for graph connectivity, mitigate the practical inefficiency
of relying on BFS operations in parallel. Our technique suggests
that such algorithms may not require a BFS of the input graph
but actually can work with a sparse spanning subgraph of the
input graph. The incorrectness introduced by not using a BFS
spanning tree can then be offset by further post-processing steps
on suitably defined small auxiliary graphs. Our experiments on
finding the 2, and 3-connectivity of graphs on Nvidia K40c GPUs
improve the state-of-the-art on the corresponding problems by a
factor 2.2x, and 2.1x respectively.

I. INTRODUCTION

A graph G = (V,E) is said to be k-connected, for k ≥ 1, if

every pair of vertices in the graph have at least k vertex disjoint

paths between them. The k-connected components of G are its

maximal k-connected subgraphs. Finding whether a graph is

k-connected and identifying its k-connected components is a

fundamental problem with a variety of applications including

planarity testing [17], isomorphism in planar graphs [20],

network analytics [6], [15], [43], clustering [5] and data

visualization [39].

It is therefore not surprising that several researchers have

explored this problem in various settings such as sequential

algorithms [8], [11], [19], [21], [35], parallel algorithms [18],

[21], [22], [25], [30], [35], and implementations [7], [10], [32],

[34], [37], and also distributed algorithms [27]. Most of these

algorithms use graph traversal techniques to create one (or

more) spanning tree(s) and use the properties of the spanning

trees to test the k-connectivity of the graph and obtain its k
connected components.

In particular, in the parallel setting, PRAM algorithms that

require poly-logarithmic time and O(m+n) work are known

for k = 1, 2, 3, and 4 [18], [21], [25], [30], [35]. However,

in practice, the constants hidden in the big–O notation are

significantly high for k ≥ 2. Therefore, algorithms that run

faster in practice are sought after. In a remarkable result,

Cheriyan and Thurimella [8] showed that the k-connectivity

of an undirected graph can be tested by using a k · (n − 1)
sized subgraph of the graph instead of using the entire graph.

Formally, let Ti for i ≥ 1 is the BFS spanning forest of

G \
(

∪i−1

j=1
Tj

)

. Cheriyan and Thurimella show that the graph

H := ∪k
i=1

Ti is k-connected if and only if G is k-connected.

The graph H is said to be a certificate for the k-connectivity

of G. Similar results are also shown by Khuller and Scheiber

[22].

The technique of Cheriyan and Thurimella [8] did improve

the practical performance of parallel algorithms for testing the

k-connectivity of an undirected graph. Evidence for this can

be seen from the work of Bader and Cong [10], Chaitanya and

Kothapalli [7], and that of Wadwekar and Kothapalli [37] for

finding the biconnected components of a graph on symmetric

multiprocessors, multi-core CPUs, and GPUs respectively.

Much of this improvement can be attributed to the smaller

size of the certificate in terms of the number of edges in the

input graph.

However, in general, on large input graphs the time taken

to obtain the certificate via parallel BFS operations can be

a significant portion of the total run time. For instance, con-

sider Algorithm N-GPU-BiCC from [37], which we rename

as Algorithm Cert-GPU-BiCC in this paper. This algorithm

is so far the fastest known implementation for finding the

biconnected components of a graph in parallel. Algorithm

Cert-GPU-BICC performs two BFS traversals on the graph

G to obtain a certificate of size at most 2n − 2 edges for

testing the biconnectivity of G. Figure 1 shows the time spent

by Algorithm Cert-GPU-BiCC on BFS operations on a set

of eight graphs while using the GPU BFS implementation

of Merrill et al. [24]. (The GPU based BFS algorithm and

its implementation proposed by Merrill et al. [24] is the best

known so far and is also incorporated in frameworks for graph

analytics on GPUs such as gunrock [44].) As shown in Figure

1, these two BFS operations consume on average 66% of the

time spent by Algorithm Cert-GPU-BiCC. It indicates that to

design faster parallel algorithms for graph k-connectivity, one

must relook at the expensive BFS operations.

The large time spent by BFS operations can be attributed

to the fact that a BFS traversal requires assigning vertices

to levels such that for i ≥ 0, the shortest hop distance

from the source of the BFS to any node in level i is i.
Arriving at such an assignment in parallel requires expensive



algorithmic/programming constructs such as synchronization,

concurrent data structures, and work balancing among threads.

It must be noted that certificate based algorithms for graph

k-connectivity are efficient only after obtaining the necessary

certificate using k BFS traversals. The above situation inspires

us to design parallel graph k-connectivity algorithms that

mitigate the inefficiencies of BFS operations. Therefore, we

suggest designing parallel algorithms that do not perform BFS

operations on large graphs. One way of achieving this goal is

to trade-off the cost of obtaining the certificate to its accuracy.

Fig. 1: Figure shows the percentage time spent by Algorithm

Cert-GPU-BiCC (cf. [37]) on BFS operations.

In this paper, we show that by using novel strategies we

can avoid performing BFS on the input graph G. Instead, we

use a sparse spanning subgraph H ′ of the input graph. It must

be noted that as H ′ may not be an accurate certificate for the

k-connectivity of G, the k-connectivity of H ′ may not provide

an answer to the k-connectivity of G immediately. To make up

for this inaccuracy, we include additional steps on an auxiliary

graph F created out of G and the k-connectivity information

obtained from H ′. The auxiliary graph F is constructed such

that G is k-connected if and only if F is k-connected. The

sizes of H ′ and F are usually smaller compared to that of G
resulting in a low overall run time.

We implement our approach for testing the 2, and 3-

connectivity and obtaining the 2, and 3-connected components

of a graph on Nvidia GPUs. Our results are summarized in

the following.

• For testing the 2-connectivity and obtaining the bicon-

nected components of a graph our approach results in a

speedup of 2.2x over [37] on a variety of real-world [40]

and random graphs.

• We provide the first known GPU based algorithms for

testing 3-connectivity of a graph and finding the 3-

connected components of a graph.

• For testing 3-connectivity and obtaining the 3-connected

components of a graph our approach results in a speedup

of 2.1x over a corresponding certificate-based approach

implemented in this paper.

Note that in the case of 3-connectivity, the certificate based

approach of Cheriyan and Thurimella [8] involves three BFS

traversals. So, one naturally expects a higher speedup for our

approach on 3-connectivity. However that is not to be case

as the graphs we use have a large number of 3-connected

components resulting in more time spent in finding the 3-

connectivity and the 3-connected components of F .

We believe that our technique has applications to other

graph problems where one can algorithmically replace struc-

tures that are expensive to compute with simple to obtain and

possibly inaccurate structures followed by a post-processing

step. Our work therefore opens the possibility of reinterpreting

important steps in parallel graph algorithms so as to make them

more efficient in practice.

A. Related Work

Due to its varied applications, testing graph k-connectivity

has been a problem of immense research interest. Early

PRAM algorithms for testing the connectivity of a graph were

proposed by Hirschberg et al. [18] and Shiloach and Vishkin

[30]. The algorithm of Shiloach and Vishkin is shown to

run in O(log n) time using O(n + m) work in the PRAM

model. Several experimental studies on finding the connected

components of a graph are based on this algorithm [16],

[31], [33]. In a recent work, Sutton et al. [34] argue that

the Shiloach and Vishkin algorithm [30] can be applied on

an O(n) edge spanning subgraph of the input graph. The

connected components of the subgraph can be used to find

the connected components of the original graph by using the

algorithm of Shiloach and Vishkin [30]. Our work in this paper

seems to provide a good reason for the speedup achieved by

Sutton et al. and extends their work for 2- and 3-connectivity.

The first PRAM algorithm for finding the 2-connected

components of a graph in parallel is given by Tarjan and

Vishkin [28]. This algorithm reduces the problem of finding

the 2-connected components of a given graph to finding the

connected components of an auxiliary graph. The construction

of the auxiliary graph is shown to be in O(log n) time using

O(m+n) processors. It is identified by Bader and Cong [10]

that the process of constructing the auxiliary graph is however

quite slow in practice. Bader and Cong [10] proceed to use a

formulation akin to that of Cheriyan and Thurimella [8] and

show a speed-up of up to 2x on a variety of graphs on multi-

core CPUs. More recently, Slota and Madduri [32] proposed

that one can test the biconnectivity of a graph by performing

multiple BFS traversals on multi-core CPUs. This result has

been subsequently improved by Chaitanya and Kothapalli [7].

The approach of Chaitanya and Kothapalli [7] is then adapted

to work on GPUs by Wadwekar and Kothapalli [37].

Ramachandran and Vishkin [28], and Miller and Ra-

machandran [25] present PRAM algorithms for finding the

3-connected components of a graph G. Their algorithms make

use of the ear decomposition of a graph and define an auxiliary

graph for every ear of G. These auxiliary graphs are then used

to check the 3-connectivity of G followed by finding the 3-

connected components of G. These algorithms [25], [28] can

be recast to use the result of Cheriyan and Thurimella [8].

Vishkin and Edwards [13], [14] study parallel implementations



of 2- and 3-connectivity algorithms on the XMT architecture

[36] and compare how these XMT implementations scale with

increasing number of cores.

The inherent difficulty of efficiently performing a BFS

traversal of a graph led to several researchers identifying

numerous algorithmic and data structure optimizations on

various modern architectures. Some of these include the di-

rection optimizing BFS by Beamer et al. [2], cache- and data

structure optimizations by Chhugani et al. [9] fine-grained

task management based approach on GPUs by Merrill et al.

[24], and graph decomposition based methods by Buluç et al.

[4]. Some of these BFS implementations are now included

in GPU based graph processing frameworks such as gunrock

[44]. Despite these advances, we notice in our study that BFS

traversals still consume a significant portion of the run time

of parallel graph connectivity algorithms.

B. Organization of the Paper

The rest of the paper is organized as follows. Section II

presents our technique in brief. Sections III and IV discuss

our approach applied to the problem of 2, and 3-connectivity

respectively. The paper then ends with concluding remarks in

Section V.

II. AN OVERVIEW OF OUR APPROACH

Several recent studies on parallel graph algorithms have

explored varied techniques to improve their practical efficiency

on multi-core and accelerator based architectures. Many such

studies use well-known graph computations such as traver-

sals, spanning trees, and edge/vertex decompositions as a

subroutine. These algorithms can be summarized as follows.

From the input graph G, one obtains a structural subgraph

H such that computation on G can be translated or reduced

to computations on H followed by additional post-processing

steps as required. An example of this can be seen in the work

of [12], [26] where a reduced graph that shrinks all vertices

of degree two is used as the graph H .

The above mentioned approach of computing on a subgraph

H often helps if H is of a smaller size than G. The benefits

however will be limited if identifying H is expensive possibly

due to strict structural guarantees required on H . As can

be noticed from Figure 1, a large portion of time spent in

obtaining H indicates scope for revisiting the approach.

In this direction, we propose to consider the algorithmic

implication of replacing H with a suitable, easy to create

structure H ′ such that the computation can be done on H ′

instead of H . In case the result of the computation on H ′ does

not provide a correct result for the required computation on

G, additional steps may be required depending on the nature

of the problem. However, in these additional post-processing

steps, the size of the problem is expected to be much smaller

than the size of the original graph resulting in the cost of

post-processing being small.

The approach can be seen to have three stages. In Stage I,

we obtain a subgraph H ′ of G. Stage II performs computation

on H ′. An optional Stage III introduces a post-processing

step, if required. The technique as presented above allows

for multiple possibilities at all stages. In Stage I, H ′ can be

obtained by (i) uniformly sampling the input graph G, (ii)

by relaxing the structural properties required of H , (iii) using

importance sampling, and the like. In Stage II, the computation

on H ′ is chosen based on the input problem. Depending on

the choices exercised in Stage I and Stage II, we consider

the question of whether the output of Stage II can lead to

the required output on the original graph. If the output of

Stage II is insufficient to arrive at the final answer, we consider

Stage III as the post-processing stage. In Stage III also, the

computation required depends on the nature of the problem

and the utility of H ′. Stage III, depending on the problem can

use possibilities such as iterating, and augmenting the result,

and constructing an auxiliary graph for suitable computation.

Fig. 2: Figure that illustrates our technique in comparison to

other approaches towards practical parallel graph algorithms.

The top path (colored red) represents direct computation that

is usually expensive. The middle path indicates preprocessing

via strict structural subgraphs or constructs that are sometimes

expensive to create. The bottom path (colored green) corre-

sponds to the less expensive approach proposed in this paper.

We note that as H ′ and H are expected to be of similar

size, the time taken for computing on H and H ′ will not

differ significantly. Hence, for our technique to be useful in

practice, the cost of Stages I and III should be lesser than the

cost of obtaining H from G. Figure 2 illustrates the idea of

our approach. In Figure 2, we also list some of the possibilities

at each stage of the approach. The particular choice used in

this paper is shown in bold text in Figure 2.

In this paper, we apply our approach to test the k-

connectivity and find the k-connected components of an undi-

rected graph G for k = 2 and k = 3. Cheriyan and Thurimella

[8] show that a subgraph H can be constructed as a certificate

for G via k BFS traversals. (The k-connectivity of H offers

a quick way to test the k-connectivity of G.) As obtaining H
via multiple BFS traversals of the input graph can consume a

significant portion of the overall run time (cf. Figure 1), we

show that our approach can be helpful in arriving at faster

parallel algorithms for graph k-connectivity.

III. APPLICATION TO 2-CONNECTIVITY

Recall from graph theory that a graph G is said to be

biconnected, or 2-connected, if every pair of vertices v, w ∈
V (G) have at least two vertex disjoint paths between them.



The maximal 2-connected subgraphs of G are called as the

biconnected components of G. A vertex v of G is called an

articulation point if the removal of v from G disconnects G.

An edge vw of G is called a bridge if removing vw from G
disconnects G.

On GPUs, the only known algorithm for this problem is

presented recently in [37]. Algorithm GPU-BiCC from [37]

argues that in a parallel setting, finding the bridges of a

graph G is much easier compared to finding the articulation

points. Based on this observation, the algorithm first identifies

the bridges of G and separates G into its 2-edge-connected

components. (The 2-edge-connected components of G are its

maximal subgraphs such that every pair of vertices in each

subgraph have at least two edge disjoint paths between them).

To identify the articulation points in each 2-edge-connected

component Gi of G, Algorithm GPU-BiCC builds an auxiliary

graph G′

i such that bridges of G′

i can be used to locate the

articulation points of Gi, and hence those of G. This infor-

mation is then used to subsequently identify the biconnected

components of G. For further details, we refer the reader to

[37]. Algorithm GPU-BiCC is 4x faster compared to other

parallel approaches [7], [32]. On dense graphs, Algorithm

Cert-GPU-BiCC from [37] uses the certificate as defined by

Cheriyan and Thurimella [8] to obtain a further 2x speedup

on Algorithm GPU-BiCC.

A. Our Approach

As mentioned in the previous section, one can take H as

the subgraph formed by taking the union of a BFS tree T of

G and the BFS spanning tree of G \ T . This certificate H
will have n vertices and at most 2(n − 1) edges. However,

as Figure 1 shows, obtaining H is an expensive step, taking

an average of 66% of the total time of Algorithm Cert-GPU-

BiCC. We therefore use our approach as outlined in Section

II by replacing H with a suitable H ′.

To this end, we start with H ′ as a kn sized spanning sub-

graph of G for an appropriately chosen constant k and proceed

to find the biconnected components of H ′. As H ′ may miss

including certain edges critical to answer the biconnectivity of

G, H ′ is not a certificate for biconnectivity of G. Nevertheless,

the biconnected components of H ′ can be used to create an

auxiliary graph F . Each vertex in F roughly corresponds to a

biconnected component of H ′ and edges of F represent edges

between these components. The edges of G \H ′ are used to

add additional edges to F so that F acts as a valid certificate

for the biconnectivity of G. As H ′ is of comparable size to H
and the size of F is expected to be small, our approach can

help reduce the time spent in BFS operations. More formal

details of our approach are presented in the following.

1) Our Algorithm: Algorithm Sample-GPU-BiCC for find-

ing the biconnected components (BCCs) of a connected graph

G is listed as Algorithm 1. An example of Algorithm 1 is

shown in Figure 3. Each of the steps of the algorithm are

explained below.

• Step 1 – Obtain subgraph H ′ from G: Recall that H ′ is a

kn sized subgraph of G. We identify H ′ by viewing the

edges of G as an edge list and including every m/knth

Fig. 3: An example run of Algorithm Sample-GPU-BiCC on

the graph in part (a) of the figure.

Algorithm 1: Algorithm Sample-GPU-BiCC

Input: A connected graph G
Output: The Biconnected Components (BCCs) of G.

1 Obtain subgraph H ′ from G
2 Find the BCCs of H ′ using Algorithm GPU-BiCC.

3 Extract F using the BCCs of H ′ and edges of G
4 Find the BCCs of F using Algorithm GPU-BiCC.

edge for a total of kn edges. Note that no randomness is

used as any kn edges suffice for our purpose.

• Step 2 – Find BCCs of H ′: Once H ′ is obtained, we find

the BCCs of H ′ using Algorithm GPU-BiCC from [37].

These BCCs are used to define the vertices of F .

• Step 3 – Extract F using BCCs of H ′ and the edges of G:

In this step, we create an auxiliary graph F . The BCCs

of H are treated as super-vertices that correspond to the

vertices of F . Recall that a vertex can be part of several

BCCs. In particular, articulation points belong to multiple

BCCs. Hence we keep such vertices as a separate vertex

in F . Two vertices in F are joined by an edge if there

exists an edge vw ∈ E(G) such that v and w are in

different super-vertices of F .

This results in F being a multi-graph. In such cases, since

we need to know if there are at least two edges between

nodes in F , we need to add at most two edges between

any two vertices of F . For every pair of vertices v, w in

F with two edges between them, we keep only one such

edge between v and w, and add an auxiliary vertex v′

and edges vv′, v′w to F . By doing so, F is now a simple

graph.

We note that as the edges of G are all used to define the

edges of F , F acts as a certificate for the 2-connectivity

of G. In other words, if vertices x and y have more than

one vertex-disjoint path between them in G, then either x
and y belong to the same super-vertex of F or the super-

vertices of F that contain x and y have more than one

vertex-disjoint path between them. The former happens

when all the edges on at least one cycle containing x and



y is in H ′. The latter happens when no cycle containing

x and y is in H ′ in which case, the edges of the cycle(s)

that are not in H ′ induce edges in F that ensure that the

super-vertices of F containing x and y have at least two

vertex-disjoint paths.

• Step 4 – Find BCCs of F : In this step, we find the BCCs

of F using Algorithm GPU-BiCC [37]. The biconnected

components identified in this step can be used to identify

the biconnected components of G.

B. Implementation Details

We implement Algorithm Sample-GPU-BiCC on a GPU.

For BFS on a GPU, we use the implementation from [24]

that uses a fine-grained task management strategy. According

to our approach, these BFS operations are done on subgraphs

H ′ and F thereby requiring lesser time. This is followed by

identifying the Least Common Ancestor (LCA) of the end

points of every non-tree edge. Here, we launch one thread for

every non-tree edge. Generating F requires a lookup of the

edge list of G along with the information of BCCs of H ′.

This is easily implemented on a GPU by assigning a thread to

every edge of G. We therefore note that Algorithm Sample-

GPU-BiCC is amenable to a GPU-based execution where a

massive thread pool is supported. We arrange the threads into

blocks with 1024 threads per block.

TABLE I: Graphs used in our experiments. In the table, the

letter K (resp. M) stands for a thousand (million).

Graph Description Nodes Edges

Real-World Graphs [40]

nd24k 3D Mesh, ND set. 72K 14.3M

kron18 kronecker, DIMACS10 262K 10.5M

rm07r 3D viscous case 381K 37.4M

coPaperDBLP
coauthor citation

network
540K 15.2M

bone010 3D trabecular bone 986K 36.3M

dielFilterV3
High-order vector finite

element method in EM
1.1M 45.2M

Random Graphs

rand-Bicc1 1 BCC 1M 75M

rand-Bicc2 10000 BCCs 1M 75M

C. Experimental Results and Discussion

1) Experimental Platform: All our experiments are per-

formed using an NVIDIA Tesla K40c GPU. This GPU is

attached to an Intel i7-4790K CPU with 32GB RAM. The

K40c has 2880 cores organized in 15 SMXs. The K40c

provides 12 GB of GDDR5 ECC RAM with a maximum

memory bandwidth of 288 GB/sec. Each core runs at a clock

speed of 745 MHz. The K40c GPU supports a peak double

precision floating point performance of 1.43 TFlops and a

single precision floating point performance of 4.29 TFlops.

Each SMX has a 64KB cache that is shared by the 192 cores

of that SMX. A L2 cache of 1.5 MB is available across the

SMXs. We use CUDA Version 7.5 [41] in our implementation.

2) Dataset: The graphs we use for our experiments are

taken from real-world datasets [40] and random graphs follow-

ing the Erdős-Rényi model [3] generated using the GTGraph

generator [1]. All the graphs we consider are undirected and

unweighted. Directed graphs are made undirected by removing

the direction on the edge. Graphs that are not connected are

augmented with additional edges to make them connected. Key

properties of the graphs are shown in Table I.

3) Results: In this section we compare our implementation

of Algorithm Sample-GPU-BiCC to that of Algorithm Cert-

GPU-BiCC [37]. The overall improvement in performance on

the graphs listed in Table I is shown in Figure 4. Algorithm

Sample-GPU-BiCC achieves a speed-up ranging from 1.47x

to 3.35x compared to Algorithm Cert-GPU-BiCC. The av-

erage speedup as shown in Figure 4 is 2.2x. All the above

experiments were run with k = 4. The time spent by our

approach on BFS operations is listed on the top of each bar.

As can be noted, this time is on average only 15% of the total

time indicating that our approach is successful in mitigating

the practical inefficiency of BFS operations in the context of

parallel graph biconnectivity algorithms. The graph nd24K has

a high speedup of 3.35x as it is dense and is biconnected.

Even a small sample of edges keeps almost all the nodes in

a single BCC. For the graph coPaperDBLP, the lower than

average speed-up can be attributed to its graph structure and

the sampling strategy used. In this case, H ′ has several long

chains of vertices of degree two. This increases the BFS time

and the subsequent time for finding the BCCs of H ′.

Fig. 4: Figure showing the time taken by Algorithms Cert-

GPU-BiCC and Sample-GPU-BiCC on the graphs listed in

Table I. Numbers on the right bars indicate the percentage of

time spent by Algorithm Sample-GPU-BiCC in BFS opera-

tions. The Secondary Y-axis gives the speedup of Algorithm

Sample-GPU-BiCC over Algorithm Cert-GPU-BiCC.

To study the impact of the choice of k on the performance

of Algorithm Sample-GPU-BiCC, we plot time taken by our

algorithm on two graphs from Table I as we vary k. The results

of this experiment are shown in Figure 5 and 6 for graphs

kron18 and coPaperDBLP respectively. When k is small, the

size of H ′ is small. As a result, the time taken in Step 2 is

small. However, if only few edges of G are included in H ′,



the number of biconnected components found in Step 2 tends

to be high. Therefore, the size of F grows, resulting in Step 4

consuming more time. On the other hand if the value of k is

high, the size of H ′ is high. As a result, the time taken in Step

2 is high. But, since more edges have been included in H ′, the

size of F decreases thereby making Step 4 relatively faster.

Steps 1 and 3 are not significantly impacted by the choice of

k and hence omitted from Figures 5 and 6. In Figures 5 and

6, the vertical line at k = 4 indicates that the minimum for

total time is achieved at k = 4.

Another factor to be noted is that the size of F , shown in

Figures 5 and 6, indeed decreases as we increase k. This is in

tune with our original motivation that doing a BFS on such a

small graph will be significantly better than doing a BFS on G.

The BFSs on smaller-sized H ′ and F combined are cheaper

than a BFS on G. (Obtaining a certificate from G requires 2

BFSs on G, not one). The above discussion suggests that k
should be chosen appropriately. We see from Figures 5 and 6

that a good value of k is around 4 while values of k between

3 to 5 offer a similar result in general.

Fig. 5: Figure represents the time taken by Algorithm Sample-

GPU-BiCC on the graph kron as k is varied. Tuples on the

line labeled “Total Time” show the number of vertices and

edges of F in thousands at k = 1, 4, 9, and 14.

Fig. 6: Figure represents the time taken by Algorithm Sample-

GPU-BiCC on the graph coPaperDBLP as k is varied. Tuples

on the line labeled “Total Time” show the number of vertices

and edges of F in thousands at k = 1, 4, 9, and 14.

4) Discussion: In this section, we summarize a few impor-

tant points concerning our approach.

• Obtaining H ′: We observe that H ′ can be generated

in several other ways such as a uniformly-at-random

process on the edges, a selection based on degree of the

vertices, and other such strategies. With a deterministic

post-processing phase, we believe that one should focus

more on trying to reduce the overall run time instead

of getting a “good” H ′. Hence we use deterministic

sampling.

• Certificate based approaches: From the work of Bader

and Cong [10] and also that of Cheriyan and Thurimella

[8], it is apparent that using a certificate for testing the

biconnectivity of a graph is practically efficient. In our

approach, as the graphs H ′ and F are very sparse, such

a certificate is not required and Algorithm GPU-BiCC is

enough.

IV. APPLICATION TO 3-CONNECTIVITY

A. Overview

Hopcroft and Tarjan [19] presented the first sequential algo-

rithm for finding the triconnected components of a graph. The

algorithm from [19] is based on the depth-first traversal (DFS)

of a graph. Given that DFS is a P-complete problem [23],

this approach would not be parallelizable in the PRAM sense.

Over the years, few PRAM style parallel algorithms have been

presented for finding the triconnected components of a graph.

Ramachandran and Vishkin [28] present a PRAM algorithm

for testing triconnectivity that runs in O(log n) time using

O(n + m) work. Miller and Ramachandran [25] extend the

work from [28] to also obtain the triconnected components of

a graph using O(log2 n) time and O(n+m) work on a CRCW

PRAM. To date, the algorithm of Miller and Ramachandran

is the fastest PRAM algorithm for identifying the triconnected

components of a graph in parallel. In this work, we implement

the algorithm of Miller and Ramachandran [25] on a GPU

and also extend our approach from Section II for the graph

triconnectivity problem. We start by briefly describing the

algorithm of Miller and Ramachandran [25].

B. The Algorithm of Miller and Ramachandran for Graph

Triconnectivity

The algorithm of Miller and Ramachandran [25] is based

on an open ear decomposition of a graph. An open ear

decomposition of a graph G(V,E) is a partition of E into

ordered edge-disjoint paths P0, P1, P2, ... such that P0 is a

simple cycle and every other path Pi, i ≥ 1, has its endpoints

on previous paths (ears) and no internal vertices of Pi lie on

Pj , for j < i. Since a vertex cannot be internal to two ears,

an open ear decomposition provides scope for traversing the

graph in parallel. In addition, Miller and Ramachandran [25]

prove that the two vertices from any separating pair 1 in a

biconnected graph are non-adjacent vertices of some ear Pi.

1A separating pair in a graph G is a pair of vertices v, w such that removing
v and w from G disconnects G.



As a result, Miller and Ramachandran start with an open

ear decomposition of a biconnected graph. The algorithm then

generates the bridges for every non-trivial ear in parallel. (An

ear is non-trivial if it has at least three vertices.) For a given

subgraph S, the bridges with respect to S is a partition of

V (G \ S) such that two vertices are in the same class if and

only if there is path connecting them without using any vertex

of S. For the graph in Figure 7(a) the bridge graph of ear P1

is shown in Figure 7(b). Each such bridge is then compressed

into a single vertex as indicated by vertices B1 through B5 in

Figure 7(c). This single vertex is connected to the original ear

through the same attachments as the corresponding bridge.

This step is shown in Figure 7(c). This is done for every

bridge for every non-trivial ear in parallel. The bridge graph is

simplified into an ear graph by merging bridges which share

the same attachments on an ear as shown in Figure 7(d).

Fig. 7: Figure showing the stages in the algorithm of Miller

and Ramachandran [25]. The numbers on edges in part (a) of

the figure show the ear that the edge belongs to.

The ear graph for every ear is further simplified by merging

interlacing bridges into an non-overlapping graph, called a star

graph. All separating pairs can be easily discovered through

a star graph. Figure 7(e) shows the formation of a star

graph from the corresponding ear graph and the subsequent

separating pairs with respect to a single ear. This process

is done across the graph for all ears in parallel. Once the

separating pairs are identified, the triconnected components

are generated by splitting the graph into Tutte splits [42] for

every separating pair. The entire algorithm is shown in run in

O log2 n) time using O(n + m) work in the CRCW PRAM

model. We refer the reader to [25] for further details.

C. Triconnectivity on GPU

To the best of our knowledge, there is no known GPU based

algorithm for the graph triconnectivity problem. In this section,

we provide a GPU based implementation for the algorithm

of Miller and Ramachandran [25]. A brief summary of our

implementation is given below. Henceforth, we refer to our

GPU implementation for triconnectivity as Algorithm GPU-

TriCC listed as Algorithm 2.

Algorithm 2: Algorithm for GPU-TriCC

Input: Biconnected graph G
Output: TriCC(G)

1 Find an open ear decomposition of G
2 for every nontrivial ear Pi do

3 Construct the bridge graph from bridges

4 Obtain the ear graph Gi(Pi) from the bridge graph

5 Coalesce the interlaced ear graph into a star graph

G∗

i (Pi)
6 Identify the separating pairs from G∗

i (Pi)

7 Use Tutte splits to obtain the triconnected components

We employ Ramachandran’s [29] popular ear decomposition

algorithm for generating the open ear decomposition. Our ear

decomposition requires two graph traversals and a sorting of

the edge list. Obtaining bridges and the subsequent bridge

graph requires a connected components algorithm. We use

Soman et al. [33] GPU implementation for the same. The ear

graphs are generated through a divide and conquer approach as

mentioned in [25]. Assuming r ears, the first step in the divide

and conquer approach generates the ear graph for the first and

the last r/2 ears. Connected components of the ith stage are

utilized at the (i+1)th stage as we narrow down to generating

the ear graph for every individual ear. Every ear graph is then

coalesced in parallel to generate the star graph. Coalescing

involves resolving all overlapping attachments in the ear graph.

Separating pairs can be easily identified once the star graph

is generated as shown in Figure 7(e). The graph is then split

into upper split and lower split graphs for every separating pair

(a, b) on the ear Pi. The upper split and lower split graphs are

a division of vertices belonging to ears Pj , j < i and ears

Pk, k > i. Miller and Ramachandran [25] prove that each of

the split is biconnected and every separating pair lies either in

the upper split graph or in the lower split graph but not in both.

Hence this procedure is applied recursively till no separating

pair is present in either of the split graphs generated. Thus the

triconnected components of G are identified.

Notice from the algorithm of [25] that the bulk of the work

done can be associated with each ear subsequent to obtaining

an open ear decomposition. As every graph G has m− n+1
ears, the number of edges in G heavily impacts the perfor-

mance. Hence a reduction in the size of the graph through use

of certificates provides scope for a better performance. To this

end, we make use of the idea of Cheriyan and Thurimella [8].

Accordingly, a certificate for triconnectivity of G is obtained

as the union of T , F1 = BFSSpanningForest(G/T ) and

F2 = BFSSpanningForest(G/(T ∪F1)), where T is a BFS

tree of G. The graph H := T ∪F1∪F2 is then provided as the

input to Algorithm GPU-TriCC. This modification is named

as Algorithm Cert-GPU-TriCC and is listed as Algorithm 3.

Results: On a collection of real-world graphs listed in Table

I along with the random graphs of Table I, we study the

performance of Algorithms GPU-TriCC and Cert-GPU-TriCC.

The random graphs are generated to have a particular number

of TCCs as shown in Table II. The GPU used for these

experiments is an NVIDIA K40c GPU (cf. Section III-C1).



Algorithm 3: Algorithm Cert-GPU-TriCC.

Input: Biconnected graph G
Output: TriCC(G)

1 T := BFS(G)
2 F1 := BFSSpanningForest(G/T )
3 F2 := BFSSpanningForest(G/(T ∪ F1))
4 H := T ∪ F1 ∪ F2

5 Run GPU-TriCC on H

From Figure 8, we can observe that Algorithm Cert-GPU-

TriCC is on an average 4x faster compared to Algorithm GPU-

TriCC.

Fig. 8: Figure showing the time taken by Algorithms GPU-

TriCC and Cert-GPU-TriCC on the graphs listed in Table II.

Numbers on right bars indicates the percentage of time spent

by Algorithm Cert-GPU-TriCC in BFS operations.

In Figure 8, we show the percentage of the time spent

by Algorithm Cert-GPU-TriCC in obtaining the certificate H
using three BFS traversals of G. As can be observed from

Figure 8, Algorithm Cert-GPU-TriCC despite being 4x faster

than Algorithm GPU-TriCC, spends nearly 63% of total time

in obtaining H . The high cost of procuring the certificate leads

us to try our approach from Section II for this problem.

D. Our Approach

As discussed and shown in the previous section, the three

BFS traversals required to obtain a certificate H for testing

the triconnectivity of a graph take up almost 63% of the total

time. A suitable H ′ can reduce the cost of the three BFSs. We

begin with a kn sized random subgraph H ′. As in the case

of biconnectivity, H ′ can miss out out on some critical edges

required for triconnectivity of G. It is not a valid certificate

yet. We then find the TCCs of H ′. The TCCs are treated as

super-vertices. These super-vertices form the vertex set of an

auxiliary graph F . The edges of the rest of G are then used

to define the edges of F . In order to keep the size of F small,

the graph F is refined to ensure that at most three edges are

present between any two vertices of F . Finally, the TCCs of

F are identified which correspond to the TCCs of G. The

algorithm is explained in-depth in the following.

1) Our Algorithm: Algorithm Sample-GPU-TriCC for find-

ing the TCCs of a connected graph G is listed as Algorithm

4. Each of the steps are explained below.

Algorithm 4: Algorithm Sample-GPU-Tricc

Input: Biconnected Graph G
Output: TCCs of G

1 Obtain a spanning subgraph H ′ from G
2 Find the TCCs of H ′

3 Extract F using the TCCs of H ′ and edges of G
4 Find the TCCs of F

• Step 1 – Obtain a spanning subgraph H ′ from G: As in

the case of Algorithm Sample-GPU-BicC, we identify H ′

by viewing the edges of G as an edge list and including

every m/knth edge for a total of kn edges. Note that

no randomness is used as any kn edges suffice for our

purpose.

• Step 2 – Find the TCCs of H ′: We find the TCCs of

H ′ using Algorithm GPU-TriCC. Since H ′ is a sampled

subgraph, it may not be biconnected. However, Algo-

rithm GPU-TriCC only requires the ears and not their

numbering. Therefore, we modify the ear decomposition

algorithm of Ramachandran [29] to find an open ear de-

composition within individual biconnected components.

Due to this modification, the ears are identified correctly,

though they may not be correctly numbered.

• Step 3 – Constructing F using the TCCs of H ′ and

edges of G: The TCCs of H ′ are compressed into super-

vertices. Since a vertex in a separating pair can belong

to multiple triconnected components, vertices in each

separating pair are treated as independent super-vertices.

These super-vertices form the vertices of F . The edges

of F are identified in three steps. First, an edge is

added between two nodes of F if there exists an edge

vw ∈ E(G) such that v and w are part of different TCCs

of H ′. In second step, F is filtered to ensure that no more

than three edges are present between any two vertices

of F . This is done to keep the size of F as small as

possible. In the third step, we convert F to be a simple

graph. To this end, for every two nodes in F with more

than one edge between them, we split each such edge by

introducing auxiliary vertices.

Similar to the arguments provided in Section III-A, we

note that the graph F has the property that if vertices

a, b, c of G have at least three vertex-disjoint paths

between them in G, then either they belong to the same

super-vertex of F , or the super-vertices of G containing

these vertices have at least three vertex-disjoint paths

between them in F . Therefore, F can be used to identify

the triconnectivity and the triconnected components of G.

• Step 4 – Find the TCCs of F : We run Algorithm GPU-

TriCC on F to generate the TCCs of F . These compo-

nents can be used to identify the triconnected components

of G.



E. Implementation Details

As can be noticed from [25], for the graph triconnectivity

problem, some computations such as BFS and LCA traversals

are common to the biconnectivity problem. In this case too, on

the GPU, we therefore use the BFS implementation from [24].

Open ear decomposition is implemented through sorting and

LCA traversals. Sorting is performed using Thrust library [38].

LCA traversals are done by assigning a thread to every non-

tree edge. Generating the bridge graph for every ear involves

finding the connected components of various appropriately

defined subgraphs. For this purpose, we use the GPU based

algorithm from Soman et al. [33]. Generating the star graph

with respect to every ear and the subsequent identification

of triconnected components can also be done on a GPU by

expressing the computation as a sequence of multiple kernels.

F. Experimental Results, Analysis, and Discussion

The experimental platform we use for our experiments is

described in Section III-C1. We scheduled the above algorithm

on 1024 threads per blocks.

1) Dataset: We use two different datasets for our experi-

ments. We use the real-world datasets [40] from Table I. In

addition, we use random graphs generated according to the

Erdos-Renyi model [3] that have a fixed number of TCCs. All

the graph we consider are undirected and unweighted. Key

properties of the graphs are shown in Table II.

TABLE II: Graphs used in our experiments for triconnectivity.

In the table, K refers to a thousand and M refers to a million.

Graph Nodes Edges Description

Real-World Graphs

Same as in Table I

Random Graphs

rand-Tricc1 500K 30M 1 TCC

rand-Tricc2 500K 30M 10000 TCCs

2) Results: We compare the performance of Algorithm

Sample-GPU-TriCC to that of Algorithm Cert-GPU-TriCC.

As noted earlier, Algorithm Cert-GPU-TriCC is to the best

of our knowledge, the fastest algorithm on GPUs for finding

the triconnected components of a graph.

Figure 9 shows the time taken by Algorithm Sample-GPU-

TriCC on the graphs listed in Table II. As can be observed,

Algorithm Sample-GPU-TriCC achieves a speedup of 2.1x

on average over Algorithm Cert-GPU-TriCC. Moreover, the

percentage of time spent in BFS operations by Algorithm

Sample-GPU-Tricc is now on average 17%. The value of k
is set at 4 in this experiment.

We now proceed to study the performance of Algorithm

Sample-GPU-TriCC as k is varied. On graphs rm07r and rand-

Tricc1, Figures 10 and 11 respectively show the results of this

study. As k increases, the size of H ′ increases resulting in

increase in the time taken by Step 2. On the other hand, the

decrease in the size of F with increasing k reduces the time

taken in Step 4. The choice of k is to be made considering

this trade-off. From our experiments, we note that k = 4 is a

Fig. 9: Figure showing the time taken by Algorithms Cert-

GPU-TriCC and Sample-GPU-TriCC on the graphs listed in

Table II. Numbers on the right bar indicate the percentage of

time spent by Algorithm Cert-GPU-TriCC in BFS operations.

The secondary Y-axis gives the speedup of Algorithm Sample-

GPU-TriCC over Algorithm Cert-GPU-TriCC.

good choice in the case of triconnectivity. In Figures 10 and

11, the vertical line at k = 4 indicates that the minimum for

total time is achieved at k = 4. However, values of k between

4 and 6 offer a near equal minimum.

Fig. 10: Figure represents the time taken by Algorithm

Sample-GPU-TriCC on the graph rm07r as k is varied. Tuples

on the line labeled “Total Time” show the number of nodes

and edges of F in millions at various values of k.

3) Discussion: One can observe in Figure 10 and Figure

11 or even in Figure 5 and Figure 6 (in Section III), that

the time spent in Step 4 does not decrease significantly with

increasing k. This is due to the fact that after some k, most of

the biconnected/triconnected components of G are identified

via H ′ alone.

In general, Algorithm Cert-GPU-TriCC involves more BFS

operations than Algorithm Cert-GPU-BiCC. Thus, it seems

that Algorithm Sample-GPU-TriCC should benefit more from

our technique than Algorithm Sample-GPU-BiCC. However,

as shown in Figure 4 and Figure 9, our technique results in a

near similar speedup in both cases. This is due to the reason

that for the graphs we considered in our dataset, and in general,

we expect more triconnected components than biconnected



Fig. 11: Figure represents the time taken by Algorithm

Sample-GPU-TriCC on the graph rand-TriCC1 as k is varied.

Tuples on the line labeled “Total Time” show the number of

nodes and edges of F at various values of k.

components. So, the size of the auxiliary graph F generated

using our technique is larger in the case of triconnectivity as

compared to biconnectivity.

V. CONCLUSIONS

In this paper, we studied how parallel graph connectivity

algorithms can be improved by reducing the time spent in

BFS operations. Our results indicate that a significant gain in

performance can be obtained by reinterpreting algorithms to

perform BFS on graphs that are much smaller in size compared

to the input graph. We believe that our approach can be useful

in other settings too. As our results show promise, in future,

we want to also understand how to theoretically analyze the

speedup that can be obtained using our approach.
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