
Journal of Discrete Algorithms 30 (2015) 78–95
Contents lists available at ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

Reporting and counting maximal points in a query orthogonal
rectangle ✩

Ananda Swarup Das a,∗, Prosenjit Gupta b, Kishore Kothapalli c,
Kannan Srinathan c

a IBM India Research Labs, New Delhi, India
b Heritage Institute of Technology, Kolkata, India
c International Institute of Information Technology, Hyderabad, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 May 2013
Received in revised form 4 December 2014
Accepted 4 December 2014
Available online 9 December 2014

Keywords:
Computational geometry
Range queries
Maximal points

In this work we show that given a set S of n points with coordinates on an n × n grid,
we can construct data structures for (i) reporting and (ii) counting the maximal points
in an axes-parallel query rectangle in sub-logarithmic time. We assume our model of
computation to be the word RAM with size of each word being logn bits.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A point p = (p(x), p(y)) ∈ R2 is dominated by another point q = (q(x), q(y)) ∈ R2 if p(x) < q(x) and p(y) < q(y). Given
a set S of n points in R2, a point p ∈ S is maximal if it is not dominated by any point q ∈ S . Similarly, a point q is

Fig. 1. The points in the staircase are the maximal points.

✩ Preliminary versions of this paper containing solutions to the reporting and counting problems appear in Proceedings of WALCOM 2012 [6] and
WALCOM 2013 [7].

* Corresponding author.
E-mail addresses: anandaswarup@gmail.com (A.S. Das), prosenjit_gupta@acm.org (P. Gupta), kkishore@mail.iiit.ac.in (K. Kothapalli),

srinathan@mail.iiit.ac.in (K. Srinathan).
http://dx.doi.org/10.1016/j.jda.2014.12.002
1570-8667/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jda.2014.12.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
mailto:anandaswarup@gmail.com
mailto:prosenjit_gupta@acm.org
mailto:kkishore@mail.iiit.ac.in
mailto:srinathan@mail.iiit.ac.in
http://dx.doi.org/10.1016/j.jda.2014.12.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jda.2014.12.002&domain=pdf

A.S. Das et al. / Journal of Discrete Algorithms 30 (2015) 78–95 79
Table 1
Different results known for the reporting problem.

Query time Storage space Model Updates Source

O (log2 n + k) O (n logn) Pointer Dynamic [3]
O (logn + k) O (n logn) Pointer Static [11]
O (logn + k) O (n logn) Pointer Static [10]
O (

log n
log log n + k) O (n log n

log log n) word RAM Static this work
O ((k + 1) log logn) O (n logε n) word RAM Static [14]
O (

log n
log log n + k) O (n logε n) word RAM Static [2]

O ((k + 1)(log logn)2) O (n log logn) word RAM Static [14]
O (

log n
log log n + k log log n) O (n log logn) word RAM Static [2]

O (n) O ((k + 1) logε n) word RAM Static [14]

a minimal point if it does not dominate any point in S . See Fig. 1. Given the set S , the problem of finding maximal
(respectively minimal) points for the set S is fairly well studied and can be solved in O (n log n) time using O (n) space
(see [15]). The problem of finding maximal points is widely studied in the database community where the maximal points
are better known as skyline points. The skyline points are helpful in decision making tools where the number of points to
consider is too big [4]. The skyline query generally returns the interesting points which are hopefully not too many.

In this work, we propose data structures to (i) report and (ii) count maximal points in an orthogonal query rectangle.
The first problem is important as it is believed that a user is often not concerned about the entire data set and is

interested to find a result within his/her query window of interest. Of course, one can propose an algorithm where given a
query window, every point in the data set is checked to find if it fits in the window and then the maximal points for the
resulting subset are returned as an answer. But, such an approach may be too expensive in terms of query time when the
number of points in the data set is very large. Brodal et al. in [3] proposed the first dynamic solution in a pointer machine
model. Their solution uses a data structure of size O (n log n) and can be queried to report maximal points in O (log2 n + k)

time, where k is the size of the output. In this work, we consider the static case of the problem in the word RAM model of
computation with size of each word being θ(log n) and propose a data structure of size O (n log n

log log n) that can be queried in
O (

log n
log log n + k) time.
As stated above, the maximal points are used in decision making tools to reduce the size of the result. Thus, counting

maximal points may be useful to find the size of the resulting maximal points in a query window especially if the result
has to be transferred using network bandwidth. For the problem, we propose a data structure of size O (n log3 n

log log n) that can
be queried in O (

log n
log log n) time.

1.1. Our contributions

In this work, the first problem that we study is the following.

Problem 1. Given a set R of n points on an n × n grid, that is R = {(xi, yi)|xi ∈ {1, n}, yi ∈ {1, n}}, preprocess R into a data
structure such that given an orthogonal query rectangle q, the maximal points in q ∩ R can be reported efficiently.

For the problem, we have the following result.

Theorem 1. A set R of n points on an n ×n grid, that is R = {(xi, yi)|xi ∈ {1, n}, yi ∈ {1, n}}, can be preprocessed into a data structure
of size O (n log n

log log n) such that given a query rectangle q, the maximal points in q ∩ R can be reported in O (
log n

log log n + k) time.

Table 1 summarizes the different output sensitive results known in the literature for the problem.

Special note. Recently, Kejlberg-Rasmussen et al. in [12] have studied the problem in the external memory model and have
presented an algorithm to report maximal points in a query rectangle in O ((n

B)ε + k
B) I/Os, where k is the number of points

to be reported and B is the block size.

The second problem of this work is the following.

Problem 2. Given a set R of n points on an n × n grid, that is R = {(xi, yi)|xi ∈ {1, n}, yi ∈ {1, n}}, preprocess R into a
data structure such that given an orthogonal query rectangle q the count of the maximal points in q ∩ R can be reported
efficiently.

For the problem, we have the following result.

80 A.S. Das et al. / Journal of Discrete Algorithms 30 (2015) 78–95
Table 2
Different results for the counting version.

Query time Storage space Model Updates Source

O (logn) O (n logn) Pointer Static [10]

O (
log n

log log n) O (n log3 n
log log n) word RAM Static this work

O (
log n

log log n) O (n) word RAM Static [2]

Theorem 2. Given a set R of n points on an n × n integer grid, we can preprocess the points into a data structure of size O (n log3 n
log log n)

words, such that given an axis parallel query rectangle q = [a, b] × [c, d], we can count the number of maximal points in R ∩ q in
O (

log n
log log n) time.

Table 2 summarizes the different results known in the literature for the problem.

Special note. Recently, Brodal et al. in [2] studied the problem of counting maximal points in a query rectangle and cor-
related the problem with finding reachability in butterfly networks. In this work, we solve the problem by first proposing
an efficient solution for counting maximal points in a restricted grid of size [1, logρ n] × [1, n] : 0 < ρ ≤ 1

2 where we actu-
ally precompute the results and then find the count of maximal points in a query rectangle from the precomputed results.
We then extend this solution to the general setting. Although the proposed counting structure is not optimal, it serves the
purpose of showing that reporting and counting can be solved under the same framework.

Assumption. Throughout the work, we assume that each point in R has distinct x- and y-coordinates.

2. Outline of the paper

(1) We first present a preliminary data structure with O (n log n) space and O (log n +k) query time, that in essence shows
how to use 1-dimensional “range maximum queries” over a 2-dimensional range tree (with fractional cascading pointers) in
order to support “2-dimensional range maximal points” reporting queries. Both range maximum queries and 2-dimensional
range trees with fractional cascading are discussed in the next section.

(2) Next, we show that if the degree of the range tree is increased to roughly O (
√

log n), then, an order of O (log log n)

improvement is possible in both space and query time, given that a subproblem of restricted size can be solved in a node
in O (1) time. We tackle this issue by proposing an algorithm that identifies the nodes with useful output and by utilizing
fast data structures for “restricted 3-sided range successor queries” and “rank/select queries” (see [17]) to support the query
on these nodes.

(3) We finally extend the data structure to support “2-dimensional range maximal points” counting queries.

3. Preliminaries

Range tree with fractional cascading: Consider the following problem, “Given a set S of n points with distinct x- and
y-coordinates in R2 , preprocess S such that given a query rectangle q, we can efficiently report the points in S ∩ q”. A simple way to
solve the problem is to use a range tree which is constructed as follows:

1. Build a primary tree Tx which is a balanced binary search tree with all the leaves at the same level. The leaves store
the x-coordinates of the points in S in non-decreasing order of their values.

2. Each internal node μ ∈ Tx is assigned an interval int(μ) which is union of the discrete intervals associated with the leaf
nodes of the subtree rooted at μ.

3. Each internal node μ also maintains an auxiliary array Aμ which stores the y-coordinates of the points present in the
subtree rooted at μ. These y-coordinates are sorted in non-decreasing order of their values.

4. For any node φ ∈ Tx , it must be noted that int(φ) = int(u) ∪ int(w) where u, w are respectively the left and the right
children for φ. Also Aφ = Au ∪ Aw . Thus, with each element y ∈ Aφ , we store two pointers pointing to the smallest
values greater than y in Au and Aw respectively. The idea of maintaining such pointers in known as fractional cascading.

In the subsequent sections, we will refer to this tree as a two layer range tree.

Lemma 1. The storage space needed by the range tree is O (n logn).

Proof. The total space needed by the primary tree Tx with n leaves is O (n). Next, it should be noted that for any particular
point p = (p(x), p(y)) ∈ S , its y-coordinate can be present in at most one auxiliary array Aφ among all the auxiliary arrays
associated with the internal nodes of the tree Tx at a particular depth d. Thus, if we add the sizes of all the auxiliary arrays

A.S. Das et al. / Journal of Discrete Algorithms 30 (2015) 78–95 81
Fig. 2. The tree with its nodes.

Fig. 3. The segment [a,b] is allocated to the nodes colored black.

at the depth d of the tree Tx , it is equal to O (n). As Tx is a height balanced binary search tree with n elements, its height
is bounded by O (log n). Hence, the total storage needed by the range tree is O (n log n). �
Query algorithm: Given a query rectangle [a, b] × [c, d], we do the following:

1. The segment [a, b] is allocated to a node μ ∈ Tx , if int(μ) ⊂ [a, b] but int(parent(μ)) � [a, b]. The node μ is known as a
canonical node. Let Scan be the set of such nodes. Note that Scan is computed every time for the each query separately.

2. Search the auxiliary array Aroot and find the smallest element y(1) ≥ c and the largest element y(2) ≤ d. Then, follow
the pointers for the elements y(1) and y(2) and find the smallest element y(1)′ ≥ c and the largest element y(2)′ ≤ d
for each of the auxiliary arrays Aφ(l) : φ(l) ∈ Scan .

3. Report all the points whose y-coordinates are in the range of [y(1)′, y(2)′] for the array Aφ(l) : φ(l) ∈ Scan .

Lemma 2. There are O (logn) nodes in Scan.

Proof. See Fig. 2. Let x be the parent for the nodes u, v and y be the parent for w . Also, let x, y be siblings. We know
that int(x) = int(u) ∪ int(v). Suppose int(u) ⊂ [a, b] and int(v) ⊂ [a, b]. Then, int(x) ⊆ [a, b]. Thus, the segment [a, b] will be
allocated to the node x or any of its ancestors but not to the nodes u, v . This actually means that no two siblings of the
tree can be allocated the segment [a, b]. Also notice that if int(u) ⊂ [a, b] but int(v) is not contained in [a, b], then int(w)

is not contained in [a, b]. Thus, this point ensures that if the nodes of the tree are arranged in level-wise order from left to
right for a particular level and if a node to which [a, b] is allocated is a left child of its parent, then any succeeding node in
the level wise order of nodes at that level cannot be allocated the segment [a, b]. Hence, the only possible way the segment
[a, b] can be allocated to two nodes at the same level is as shown in Fig. 3. Thus, the maximum number of nodes to which
the segment [a, b] can be allocated at a particular level is two. Since the height of a height balanced binary search tree with n
leaf nodes is O (log n). Thus, the number of canonical nodes to which the segment [a, b] can be allocated is O (log n). �
Range maximum data structure: The problem for range maximum can be defined as follows: “Given an array A of n integers,
preprocess A such that given two indices (i, j) for the array A, we can return the index t : i ≤ t ≤ j storing the largest value in
A[i . . . j].”

A simple solution for the problem is as follows: For each index i in the array A and for every choice of r for 0 ≤ r ≤ logn,
we form two intervals [i, i + 2r − 1] and [i − 2r + 1, i]. For these two intervals, we compute the indices with the maximum
values in A[i, i + 2r − 1] and A[i − 2r + 1, i]. We denote these two indices as t1 and t2 respectively. For the element in A[i],
we maintain two arrays, each of size O (log n) and are denoted by B+

A[i] and B−
A[i] . We store the index t1 at the rth index of

B+
A[i] . Similarly, the index t2 is stored at the rth index of B−

A[i] . Given two query indices (i, j) we compute r′ = �log2(j − i)�
and find the two indices (t1, t2) in B A[i]+ [r′] and B A[j]− [r′]. We compare the two values A[t1] and A[t2] and return the index
storing the maximum value. Clearly, the range maximum queries can be answered in O (1) time using O (n log n) storage
space. In the subsequent sections, we denote the range maximum query on A[i, j] as RMQ(A[i, j]). Though the technique
discussed here is query efficient, it is not very storage efficient. However, the following result is known for the problem
from [8].

Theorem 3. (See [8].) For an array of n elements from a totally ordered set, there exists an algorithm for RMQ problem with query time
complexity O (1) and bit space complexity 2n + o(n) bits.

82 A.S. Das et al. / Journal of Discrete Algorithms 30 (2015) 78–95
Recently in [1], Brodal et al. studied the problem of range maximum/minimum for 2-d array A of size m × n and
proposed a beautiful linear space data structure that can be preprocessed in linear time and can be queried with a rectangle
q = [i1, . . . , i2] × [j1, . . . , j2] to report the position of the minimum element in a rectangle range within A in O (1) time.
It should be noted that the range maximum query for 2-d array is just not a simple extension of its 1-d counterpart as all
the memory indices accessed in the 2-d array are not actually contiguous unlike its 1-d counterpart.

The restricted range successor problem: Consider the following problem: “Given a set S of n points from an integer grid of
[1,

√
log n] ×[1, n] where every point has a distinct y-coordinate, preprocess S into a data structure such that given a query rectangle

[a, b] × [c, d] where (a, b) ∈ [1,
√

log n] × [1,
√

log n] and (c, d) ∈ [1, n] × [1, n], we can report the minimum x-coordinate in O (1)

time.”

A simple solution for the problem is as follows:

Preprocessing:

1. Store the y-coordinates of the points in S in an array A. Sort the array A in non-decreasing order of its values.
2. Construct a height balanced binary search tree T y , the leaves of which store the y-coordinates of S in non-decreasing

order. To each internal node of the tree μ ∈ T y , store a value denoted as key which is equal to the median of the values
present in the subtree rooted at μ.

3. For each possible pair of points (i1, i2) ∈ [1,
√

log n] × [1,
√

log n], form an interval [i1, i2] and do the following:
(a) For each y ∈ A, form two 3-sided anchored rectangles of the form q1 = [i1, i2] × (−∞, y] and q2 = [i1, i2] ×[y, ∞).
(b) For each such rectangles q1 (respectively q2) maintain an array of size O (log n) and denote the array as pathrecordq1

(respectively pathrecordq2
). Initially all the values for the array pathrecordq1

and pathrecordq2
are set to zero.

(c) Visit each ancestor μ for the leaf storing the value y and do the following:
i. Consider the value key at the node μ. If key ≤ y, form a rectangle [i1, i2] × [key, y]. Else, form a rectangle

[i1, i2] × [y, key].
ii. Let the node μ be at a depth h in T y . Find the point p with minimum x-coordinate in the rectangle. If

key ≤ y, store in pathrecordq1
[h] the value of the minimum x. Else if key > y, store in pathrecordq2

[h] the
value of the minimum x.

4. Also, maintain the data structure of [9] to find the least common ancestor for two given leaf nodes of the tree T y in
O (1) time.

Query algorithm: Given a query rectangle [a, b] × [c, d] : (a, b) ∈ [1,
√

log n] × [1,
√

log n], (c, d) ∈ [1, n] × [1, n], we do the
following:

1. Find the least common ancestor for the values c, d in the tree T y using the data structure of [9]. Notice that there are
n points in the set S and each point has a distinct y-coordinate. Also, (c, d) ∈ [1, n] × [1, n]. Thus, the values c, d are
present in the cth and the dth leaf nodes for the tree T y assuming the leftmost leaf node as the 1st leaf node.

2. Let the least common ancestor be at depth h and let the key stored at the least common ancestor be y. We form two
rectangles namely q1 = [a, b] × [c, ∞) and q2 = [a, b] × (−∞, d].

3. We compare the values at pathrecordq1
[h] and pathrecordq2

[h] and return the one which is minimum.

The above data structure needs O (n log2 n) storage space and can be queried to find the point with minimum x coordi-
nate in the query rectangle in O (1) time. However, the following result is known from [17]:

Theorem 4. (See [17].) If the coordinates of the points are on an integer grid of [1, log n
log log n] ×[1, n], then there exists a linear space data

structure that can be queried in O (1) time to report the point with smallest x-coordinate in [a, ∞) × [c, d] where a ∈ [1, log n
log log n] ×

[1, log n
log log n] and (c, d) ∈ [1, n] × [1, n].

To report the point with smallest x-coordinate in [a, b] × [c, d], we can simply find the point with smallest x coordinate
in [a, ∞) × [c, d]. If the x-coordinate for the reported point is less than or equal to b, we return the point, else we return
null.

Rank and select queries:

Rank query: Let S be a character string of length n over a finite ordered alphabet σ = {1, 2, . . . , |σ |}. For any character
c ∈ σ and any position i, a rank query denoted by rankc(S, i) reports the number of c in S from position 1 to position i.
Consider the example as given in [17]. Let S = 231131321. The query rank3(S, 6) = 2.

A.S. Das et al. / Journal of Discrete Algorithms 30 (2015) 78–95 83
Select query: A select query selectc(S, j) returns the position of the jth occurrence of the character c in S . The query
select3(S, 2) = 5.

For the rank query and the select query, the following result is known from [5].

Lemma 3. (See [5].) A binary string S(1, n) can be represented using n + o(n) bits of space while supporting rank query as well as
select query in O (1) time.

4. A preliminary solution for Problem 1

Preprocessing:

1. We construct the two layer range search tree Tx as discussed in the previous section. However, each auxiliary array Aφ

associated with the internal node φ ∈ Tx , stores the y-coordinates of the points present in the leaves of the subtree
rooted at μ in non-increasing order.

2. Additionally, at each internal node φ ∈ Tx , we maintain an auxiliary array Bφ . The ith node of Bφ stores the x-coordinate
p(x) of the point p = (p(x), p(y)) whose y-coordinate p(y) is stored at Aφ[i].

3. Preprocess Bφ into an instance of the data structure of Theorem 3. Remember that from [8], we know that an
RMQ(Bφ[i, j]) can be performed in O (1) time. An instance of the data structure of [8] for performing RMQ(Bφ[i, j])
needs O (|Bφ |) bits.

4. Also, for each element y ∈ Aφ we maintain a pointer to its position in Aparent(φ) . Thus, each element y ∈ Aφ has now
three pointers.

Lemma 4. The above data structure needs O (n logn) space.

The proof for the above lemma is similar to the proof of Lemma 1.

Query algorithm:

1. Given a query rectangle q = [a, b] × [c, d], we assign the segment [a, b] to O (log n) canonical nodes of the tree Tx .
2. Let Scan be the set of such O (log n) canonical nodes. Arrange these nodes in order of their occurrences from right to

left in the tree Tx .
3. Next, search the array Aroot , the auxiliary array which stores the y-coordinates of the points present in the tree rooted

at root and find the largest value y1 ≤ d. Then, using fractional cascading, find the indices i in the auxiliary arrays Aφ(l)
associated with each of the canonical nodes φ(l) ∈ Scan such that Aφ(l)[i] is the largest value smaller than d in Aφ(l) .

4. We begin our search from the rightmost canonical node φ(1) in Scan .
5. Search the array Aφ(1) and find the index j storing the smallest value ≥ c.
6. Run RMQ(Bφ(1)[i, j]) (using the technique of [8]) and find the index t : i ≤ t ≤ j with the largest x-coordinate in

Bφ(1)[i, j].
7. Next, run RMQ(Bφ(1)[i, t − 1]). Repeat RMQ queries until the value in Bφ(1)[i] is reported. Notice that the point p =

(p(x), p(y)) whose x coordinate is stored at Bφ(1)[i] will be reported as the last maximal point from the node φ(1).
(The proof for the same follows in the next section.)

8. Move to the next rightmost node φ(2) ∈ Scan and consider only the points with y-coordinates that are greater than
p(y), the y-coordinate of the last maximal point reported from the node φ(1) and are in the range [c, d].

9. By step 3, we already have the index i for the array Aφ(2) such that Aφ(2)[i] is the largest value smaller than d.
By following the pointer for the value p(y) ∈ Aφ(1) to its corresponding position in Aparent(φ(1)) and then chasing the
subsequent pointers, we can find the index j for the smallest value greater than p(y) in Aφ(2) (the details follow in the
proof for Lemma 6).

10. Repeat steps 6 and 7 at the node φ(2).
11. Continue the above steps until all the nodes in Scan have been visited.

Lemma 5. The point p = (p(x), p(y)) whose x-coordinate is stored in Bφ(1)[i] and is reported as the last point from the node φ(1)

(by step 7) is a maximal point.

Proof. For any node φ(2) which is to the left of φ(1), the leaves present in the subtree rooted at φ(2) store values smaller
than the smallest value stored in the leftmost leaf of the subtree rooted at φ(1). Thus, no point from any other subtree
rooted at any other canonical node in Scan can dominate p. Next, the auxiliary array Aφ(1) is sorted in non-increasing order
of the y-coordinates stored. Hence Aφ(1)[i] > Aφ(1)[i + 1] > . . . > Aφ(1)[j]. Hence the claim holds. �
Lemma 6. The smallest y-coordinate greater than p(y) in Aφ(2) can be found using fractional cascading.

84 A.S. Das et al. / Journal of Discrete Algorithms 30 (2015) 78–95
Fig. 4. The segment [a,b] is allocated to the nodes colored black.

Proof. Notice that the node φ(2) has to be to the left of φ(1) and it cannot be a descendant of φ(1). This is because,
if φ(2) is a descendant of φ(1), then it means int(φ(2)) ⊂ [a, b] and int(φ(1)) ⊂ [a, b] and thus the segment [a, b] cannot
be allocated to φ(2). Thus, φ(2) has to be either a left child of some ancestor for φ(1) or it has to be a right child for some
ancestor of the leftmost node in Scan (assuming, it is not the leftmost node itself). See Fig. 4. If φ(2) is a left child for some
ancestor of φ(1), then we can start following the pointer for the value p(y) ∈ Aφ(1)[i] to its corresponding position in the
array Aparent(φ(1)) and continue to do so until we reach the parent of φ(2) from where we find the largest value smaller
than y1 in Aφ(2) . Remember for each value y in an auxiliary array Aφ we maintain two pointers pointing to the smallest
values greater than y in the auxiliary arrays associated with the left and the right children of φ. If φ(2) is a right child
for some ancestor of the leftmost node, we can follow similar steps. That is, we move to the least common ancestor for
the rightmost and the leftmost nodes and then start descending the path from the least common ancestor to the leftmost
node. �
Lemma 7. The query algorithm reports all the maximal points in the query rectangle.

Proof. For any node φ(l), if it is the rightmost node, we start reporting the maximal points by finding the point p =
(p(x), p(y)) with the maximum x-coordinate. This point cannot be dominated by any other point as this is the rightmost
point in the query rectangle. The next point that is reported is the rightmost point among all the points that are above p(y)

and are in the query rectangle. We continue to do so as long as there are maximal points from the node φ(l). However,
if φ(l) is not the rightmost node, we consider the last point p = (p(x), p(y)) reported from the node φ(l − 1). Notice that
this point p is the topmost and even leftmost maximal point reported as of yet. By step 3, we have the index i for the array
Aφ(l) such that Aφ(l)[i] is the largest value smaller than d. By step 8, we find the index j such that Aφ(l)[j] is the smallest
value greater than p(y). We repeat RMQ at the node φ(2) and report the point p′ with the maximum x coordinate. The
point p′ has the maximum x coordinate above p(y) and hence cannot be dominated by any other point to the left of p in
the query rectangle. Also, this point cannot be dominated by any other point to the right of p as their y-coordinates are
less than the y-coordinate of p′ . We repeat similar steps until all the canonical nodes in Scan are visited. Hence the claim
holds. �
Lemma 8. The query algorithm reports all the maximal points in the rectangle in O (logn + k) time.

The proof for the above lemma is similar to the proof of Lemma 24 which we discuss later. Hence we skip the proof for
the above lemma.

The above technique was used in [11] for reporting maximal points. A way to achieve the sub-logarithmic query time is
to reduce the height of the tree by increasing the degree of each internal node of the tree to O (

√
log n). Thus, the height of

the tree is reduced to O (
log n

log log n).

Fig. 5. The segment [a,b] is allocated to the nodes colored black and the nodes marked 1,2. However, only the nodes marked 1,2 have maximal points.

Given a query rectangle [a, b] × [c, d], if we allocate the segment [a, b] in a way similar to the step 1 of the query
algorithm for reporting points in a rectangle, the number of our canonical nodes increases to O (

log3/2 n
log log n). The challenge is to

wisely identify the nodes holding points present in the maximal chain in the query rectangle. We will call such canonical
nodes as profitable nodes in the rest of the text. It should be noted that while targeting a sub-logarithmic query time bound,

A.S. Das et al. / Journal of Discrete Algorithms 30 (2015) 78–95 85
it is crucial to quickly (preferably in O (1) time) identify if a canonical node is a profitable node. The reason is as follows.
In the above discussed algorithm, the height of the tree is O (log n) and so is the number of the canonical nodes. Thus, even
if a node does not hold any maximal point for the query rectangle and we accidentally visit the node, we still manage to
get a query time of O (logn + k). However, this is not the case when the height of the tree is reduced to O (

log n
log log n) as the

number of canonical node increases to O (
log3/2 n
log log n). In case all the canonical nodes are profitable nodes and we visit all these

canonical nodes our query time will be O (
log n

log log n + log3/2 n
log log n + k). As k ≥ log3/2 n

log log n , our query time becomes O (
log n

log log n + k).

However, if k < log3/2 n
log log n , then we do not have the luxury to visit all the canonical nodes as we are targeting to achieve

sub-logarithmic query time. See Fig. 5. The segment [a, b] is allocated to the nodes colored black and the nodes marked
1, 2. However, only the nodes marked 1, 2 have maximal points. Thus, if we visit the nodes colored black, then we loose
our query time.

Clearly different techniques are required to achieve the sub-logarithmic query time bound.

5. The word-RAM data structure for Problem 1

Before we present the data structure, we need to solve two subproblems which form the core components to identify
the profitable nodes in the main solution.

5.1. Subproblems

Subproblem 1. Given an unsorted array A of n integers from the range of [0,
√

log n − 1], preprocess A into a linear space
data structure such that given two indices i, j and two values, a, b : (a, b) ∈ [0,

√
log n−1] ×[0,

√
log n−1], we can efficiently

report the smallest value t ∈ A[i, j] for a ≤ t ≤ b.

This is clearly a variant of range successor problem and we can solve the problem as follows:

Preprocessing:

1. For the element x stored at the ith index of the array A, we create a 2-d point (x, i). Let S ′ be the set of such points.
2. We preprocess S ′ into a data structure denoted by RS. RS is an instance of the data structure of Theorem 4. Remember

that, from [17], we know that range successor queries of the form [x1, ∞) × [y1, y2] : x1 ∈ [1, log n
log log n], (y1, y2) ∈

[1, n] ×[1, n] can be answered in O (1) time using a linear space data structure for a set of n 2-d points with coordinates
from an integer grid of [1, log n

log log n] ×[1, n]. However, in our case, for any point (x, i) ∈ S ′ , x ∈ [0,
√

log n−1] and i ∈ [1, n].

Query algorithm: Our query algorithm is as follows:

1. Given the two indices i, j : (i, j) ∈ [1, n] ×[1, n] and two values a, b : (a, b) ∈ [0,
√

log n−1] ×[0,
√

log n−1], we construct
a three sided query rectangle of the form [a, ∞) × [i, j].

2. We run the range successor query on the data structure RS and find the smallest value t in [a, ∞) × [i, j]. If t ≤ b,
we return t , else we return null.

Lemma 9. The total storage space needed by RS is O (|A|) words.

Proof. The number of 2-d points formed is equal to the number of elements in the array A. Thus S ′ has O (|A|) points.
As RS is an instance of the data structure of [17], which is a linear space data structure, the total storage space needed by
RS is O (|A|) words. �
Lemma 10. The query algorithm reports the smallest element t : a ≤ t ≤ b for t ∈ A[i, . . . , j].

Proof. As Subproblem 1 is an instance of the range successor query with points restricted in the range of [1,
√

log n] ×[1, n],
the correctness of our algorithm follows from the correctness of the data structure of [17]. �
Lemma 11. The query algorithm runs in O (1) time.

Proof. As Subproblem 1 is an instance of the range successor query with points restricted in the range of [1,
√

log n] ×[1, n],
and as the data structure of [17] takes O (1) time to answer a range successor query, our query algorithm takes O (1)

time. �
Therefore, we conclude:

86 A.S. Das et al. / Journal of Discrete Algorithms 30 (2015) 78–95
Theorem 5. Given an unsorted array A of n integers from the range of [0,
√

log n − 1], we can preprocess A into a linear space data
structure such that given two indices i, j and two values, a, b : (a, b) ∈ [0,

√
log n − 1] × [0,

√
log n − 1], we can report in O (1) time

the smallest value t ∈ A[i, j] for a ≤ t ≤ b.

Subproblem 2. Given an unsorted array A with n integers in the range of [0,
√

log n − 1], preprocess A into a data structure
such that given an element x ∈ [0,

√
log n − 1] and an index i, we can efficiently report the number of occurrences of

x ∈ A[0, i − 1].

Preprocessing:

1. For each element x ∈ [0,
√

log n − 1], we construct a bit string of size |A| bits such that the bit string supports rank
query. We denote the string by sx .

2. The (n − 1 − l)th most significant bit of the string sx is set to “one” if the element stored at A[l] is x.

Lemma 12. The storage space needed by the above data structure is O (|A|) words.

Proof. As there are log n integer elements in the range [0,
√

log n − 1], there are
√

log n bit strings each of size |A| bits.
Thus, the total number of bits needed to store all the strings is O (|A|√log n) ≤ O (|A| logn). Hence the claim holds. �
Query algorithm: Our query algorithm is as follows:

1. Given an element x ∈ [0,
√

log n − 1] and the index i, we perform the rank query count = rank(sx, i − 1).
2. We return the value of rank.

Lemma 13. The query algorithm returns the number of occurrences of x ∈ A[0, i − 1].

Proof. The string sx has its (n − 1 − l)th most significant bit set to one if A[l] = x. Our query returns the count of the
number of ones in the binary string sx by executing rank query. Thus, the correctness of our algorithm follows from the
correctness of the rank query of [5]. �
Lemma 14. The query algorithm takes O (1) time.

Proof. Follows directly from Lemma 3. �
We therefore conclude,

Theorem 6. Given an unsorted array A with n integers in the range of [0,
√

log n − 1], A can be preprocessed into a data structure of
size O (n) words such that given an element x ∈ [0,

√
log n − 1] and an index i, we can report in O (1) time the number of occurrences

of x ∈ A[0, i − 1].

5.2. Construction of the main data structure

1. Construct a primary tree Tx, the leaves of which store the x-coordinates of the points in S sorted in increasing order of
its values from left to right.

2. Each internal node of the tree Tx has
√

log n children which are numbered from 0 to
√

log n − 1 with the rightmost
being 0 and the leftmost being

√
log n − 1.

3. Each internal node μ has an auxiliary array Aμ which stores the y-coordinates of the points present at the leaves of
the subtree rooted at μ. Aμ is sorted in non-increasing order of the y-coordinates. Notice that Aμ = ⋃log n−1

i=0 Av(i) for
v(i) being a child of μ ∈ Tx . Therefore, each element y ∈ Av(i) points to its corresponding position in Aμ .

4. We also maintain an array A′
μ whose ith index stores an integer j ∈ [0,

√
log n − 1] if the value in Aμ[i] is present in

Av(j) for v(j) being a child of μ. Remember that, by assumption, each point in R has distinct x- and y-coordinates.
Thus, if the value in Aμ[j] is present in Av(j) , it cannot be present in any other array associated with any other children
of the μ. We preprocess the array A′

μ into instances of the data structures of Theorem 5 and Theorem 6.
5. We then create a separate array Bμ whose ith index stores the x-coordinate of the point p = (p(x), p(y)) if p(y) is

stored in Aμ[i]. We preprocess Bμ to an instance of the data structure of [8] such that given two indices i, j, we can
perform RMQ(Bμ[i, j]) in O (1) time.

6. At the node μ, we additionally maintain a tree VTμ which is an instance of the van Emde Boas tree [16]. VTμ is
constructed on the values of Aμ . A set of n integers can be preprocessed in a van Emde Boas tree such that we can
search for a particular integer value in the data set in O (log log n) time.

A.S. Das et al. / Journal of Discrete Algorithms 30 (2015) 78–95 87
Fig. 6. The segment [a,b] is allocated to the nodes colored black.

Lemma 15. The height of the tree of is O (
log n

log log n).

Proof. Since the degree of each internal node is
√

log n, the height of the tree of is O (
log n

log log n). �
Lemma 16. The storage space needed by the above data structure is O (n log n

log log n) words.

Proof. The primary tree Tx needs O (n) words. Each internal node μ maintains three auxiliary arrays Aμ, A′
μ, Bμ . Any

element present in Aμ , A′
μ or Bμ cannot be present in any other array Aχ , A′

χ or Bχ for μ, χ being nodes at the same
depth h of the tree Tx . Thus, the total size needed by all Aμ, A′

μ or Bμ arrays across all the internals nodes at a particular
depth h of Tx is O (n) words. Since the height of Tx is O (

log n
log log n), the total storage space needed by the above data structure

is O (n log n
log log n) words. �

5.3. Emulating fractional cascading for a node with
√

log n children

See Fig. 6. Let the children for the node v that are colored black are the ones to which segment [a, b] of the query
rectangle [a, b] × [c, d] is allocated. Let us call the node v as a group leader for the set of the nodes {2, 3, 4}. Also let i, j be
the indices for the array Av such that Av [i, j] ∈ [c, d]. We now want to visit the rightmost black child v(i) ∈ {2, 3, 4} of v
such that Av(i) has elements in Av [i, j]. Remember, by step 4, the array A′

v [i] stores the identity of the array from which the
element Av [i] is coming. As the array A′

v is preprocessed into instances of the data structures of Theorems 5 and 6, we run
the range successor query with the query range [2, ∞) × [c, d] to find the smallest element t ∈ A′

v [i, j] such that 2 ≤ t .
If t ≤ 4, we run the following two rank queries with the binary string st and find i′ = rank(st , i − 1) and j′ = rank(st , j).
We thus get two indices i′, j′ : At [i′, j′] ∈ [d, c]. However, if t > 4, then it means that there are no elements in Av [i, j] that
are coming from A2, A3 or A4.

Lemma 17. For the node v of Fig. 6, we can find the rightmost canonical node with points in the query rectangle in O (1) time.

Proof. Follows directly from Theorem 5 and Theorem 6. �
5.4. Query algorithm

1. Given a query rectangle [a, b] × [c, d], the segment [a, b] is allocated to a node μ ∈ Tx if int(μ) ⊂ [a, b] but
int(parent(μ)) � [a, b]. There will be O (

log3/2 n
log log n) (see [13]) such nodes. Denote the set of such nodes as V .

2. As stated in [13], the set of all such canonical nodes can be grouped into O (
log n

log log n) groups with each group gi

containing some children vl . . . vk for some node v . We will denote the node v as group leader GL(i). Let G =
{GL(1), . . . , GL(O (

log n
log log n))} be the set of group leaders stored in order of their positions from right to left in the tree Tx.

The exact details of finding the group leaders and the canonical nodes follow next.
3. Find the least common ancestor for the values a, b in Tx .
4. Search for the smallest value ≥ c and the largest value ≤ d in the auxiliary array A associated with the least common

ancestor. The smallest and the largest values can be found in O (log log n) time by searching the corresponding van
Emde Boas tree associated with the least common ancestor.

5. Next, by using the technique for Subproblem 2 and the technique discussed in the previous subsection 5.3, we can find
the appropriate positions for c, d in the auxiliary arrays associated with all the group leaders in O (

log n
log log n) time in total.

6. We start traversing the group leaders in order of their positions from right to left in the tree Tx starting from the
rightmost node that in the node GL(1).

7. Let the positions for d, c in AGL(1) be i, j. Also, let the nodes v(p), . . . , v(
√

log n − 1) be the children of GL(1) to which
the segment [a, b] is allocated. It should be remembered that the children of a node are numbered in order of their
positions from right to left with the rightmost being numbered 0 and the leftmost being numbered

√
log n − 1.

8. Perform range successor query with the range [p, ∞) × [i, j] to find the smallest t ∈ [p,
√

log n − 1] such that t ∈
A′ [i, j].
GL(1)

88 A.S. Das et al. / Journal of Discrete Algorithms 30 (2015) 78–95
9. Find the indices m, m′ of the largest value smaller than or equal to AG(1)[i] and the smallest value greater than or equal
to AG(1)[j] in the array At , the auxiliary array associated with the node t . This can be done by using the technique of
Theorem 6.

10. Run l = RMQ(Bt [m, m′]) and report the point whose y-coordinate is stored in At[l] as a maximal point. Next, repeat
l′ = RMQ(Bt[m, l − 1]) and report the point whose y-coordinate is stored in At [l′]. Repeat similar steps until the point
stored at At [m] is reported.

11. Let the y-coordinate for the last maximal point reported from the node t be y1. Find the position j′ of y1 in the array
AGL(1) . This can be done in O (1) time as there is a pointer from every element to its corresponding position in the
auxiliary array associated with the parent node.

12. Repeat range successor query at the node GL(1) with the range [t + 1, ∞)×[i, j′ − 1]. If no other child of GL(1) has any
maximal point for q, we move to the next group leader GL(2).

13. Repeat similar steps until all the group leaders are visited.

5.4.1. How to find the canonical nodes
1. Given a query rectangle [a, b] ×[c, d], find the leaves in the tree Tx storing the values a, b. As all the points have distinct

x- and y-coordinates (by assumption) and as all the points have coordinates in [1, n] ×[1, n], the values a, b are present
in the leaves of tree Tx .

2. Start visiting the ancestors for the leaves storing a, b and find the least common ancestor μ for the two leaves. Let π1
be the path from the leaf storing a to μ.

3. For any node vi ∈ π1 : vi �= μ, check if int(vi) ⊂ [a, b]. If “true”, then:
(a) check if int(parent(vi)) ⊆ [a, b]. If “yes”, then move to parent(vi).
(b) Else, the nodes vi, . . . , v0 are the canonical nodes and the node parent(vi) is the group leader node.

4. If int(vi) � [a, b], then the nodes vi−1, . . . , v0 are the canonical nodes and the node parent(vi) is the group leader node.
5. If parent(vi) is a group leader, then denote the node as GL(i). Let vi, vi−1, . . . , v0 be the canonical nodes. Also let

int(vi) = [x1, x2] and int(v0) = [x3, x4]. Along with the node GL(i) maintain a tuple denoted by TupleGL(i) in which we
store 〈vi, v0, [x1, x4]〉.

6. We perform similar steps for the nodes on the path π2 from the leaf storing b to the least common ancestor μ. For
any node v j ∈ π2, if int(parent(v j)) is not contained in [a, b], then either {v√

log n−1, . . . , v j} are the canonical nodes or
{v√

log n−1, . . . , v j+1} are the canonical nodes.

7. If vi = μ, then find the children vu, v w of vi such that vu ∈ π1 and v w ∈ π2. If int(vu) ∈ [a, b] and/or int(v w) ∈ [a, b],
then vi is the group leader node and vu and v w are the leftmost and rightmost children of vi that are canonical nodes.
Else if |u − w| > 1, there is at least one child of vi which is a canonical node. We maintain a similar tuple as discussed
above if in case the least common ancestor is a group leader.

8. Notice that these group leader nodes can be sorted easily in order of their positions from right to left in the tree Tx .
As we are moving form bottom to top for the path π2, the first group leader node on the path π2 is the rightmost
group leader node. The next group leader node on the path π2 is the second rightmost group leader node and so on.

Lemma 18. Any node visited by our query algorithm is either a canonical node or a group leader.

Proof. Any node visited either on path π1 or π2 is a group leader node. Any other node which is not present either in π1
or in π2 is visited only if it has been reported by a range successor query at a group leader. For any group leader node,
we have a tuple containing the identity of its rightmost and its leftmost children that are canonical nodes. For any node
reported by a range successor query, it is ensured that it is in between the leftmost and the rightmost children stored in
the tuple. Hence, any node visited by our query algorithm is either a canonical node or a group leader. �
Lemma 19. For any canonical node φ visited by the query algorithm, we have the correct indices i, j for the array Aφ such that
Aφ[i, j] ∈ [d, c].

Proof. Let us assume that we have the correct indices i, j for the parent of φ which is denoted by parent(φ). We also
assume that the range successor query at parent(φ) returned φ to be the next profitable node to visit. Then, the value φ
must be present in A′

parent(φ)[i, j]. Thus, the bit string sφ must have at least one bit set in between (n − i)th most significant
bit (msb) and (n − j)th most significant bit. If we execute l = rank1(sφ, n − i + 1), then we get the number of 1s in sφ till the
(i − 1)th msb. Thus, the element Aφ[l + 1] is the first value in Aφ to be present in the range of [d, c]. Thus, the correctness
of our technique is dependent on the correctness of the rank queries and the correct indices for the auxiliary array Aparent(φ)

associated with the parent of φ. The correctness of the rank queries follow from [5]. So we have to prove the correctness of
the indices for the auxiliary array Aparent(φ) associated with the parent of φ. Notice that we first search the auxiliary array
A associated with the least common ancestor to find the indices i, j containing the largest value smaller than or equal to
d and the smallest value greater than or equal to c respectively. Notice that any group leader node is either on the path
π1 from the leaf storing a to the lca or on the path π2 from the leaf storing b to the lca. If nodes on the path π1 (or π2)
are arranged in decreasing order of their depths at which these nodes are present (assuming leaves to be at depth zero),

A.S. Das et al. / Journal of Discrete Algorithms 30 (2015) 78–95 89
then the ith group leader in this sorted arrangement is the parent of the (i + 1)th group leader. Thus, by performing two
rank queries at the ith group leader, we can find the indices for (i + 1)th group leader and the correctness of these indices
at the (i + 1)th node is ensured by the correctness of the rank queries [5]. Also, each element in Ai+1 has a pointer to
its corresponding position in Ai . Thus, for the element Ai+1[j], we can find in O (1) time the largest element smaller than
Ai+1[j] in Ai . Hence the claim holds. �
Lemma 20. The query algorithm reports the points in nondecreasing order of y-coordinates.

Proof. By preprocessing step 1, the array A associated with any internal node is sorted in nonincreasing order. For any
canonical node φ : Aφ[i, j] ∈ [d, c] if φ is the rightmost canonical node among all the canonical nodes, then we first find
the index l of point with maximum x-coordinate such that i ≤ l ≤ j. Subsequently, in the next iteration, we repeat range
maxima to find the point with maximum x-coordinate among all the points with y-coordinates in Aφ [i, l − 1] and so on.
As Aφ[i] > Aφ[i + 1], . . . , Aφ[j], the points reported from φ are in nondecreasing order of y-coordinates. However, if φ, the
next canonical node to be visited is not the rightmost canonical node, then we first find the smallest value > p y where
p y is the y-coordinate of the last reported maximal point and then we first report the point with maximum x-coordinate
above p y but less than or equal to d. We continue to repeat similar steps as discussed here. Hence the claim holds. �
Lemma 21. Any point reported by the query algorithm is a maximal point.

Proof. Follows directly from Lemma 20. �
Lemma 22. Any canonical node visited by our query algorithm has at least one maximal point in [a, b] ×[c, d].

Proof. Before visiting any canonical node φ, we visit its parent which is a group leader node GL(m) and execute a range
successor query to decide the next rightmost canonical node that has elements in AGL(m)[i, j − 1] where AGL(m)[i] is the
largest element smaller than the value d and AGL(m)[j − 1] is the smallest element greater than the y-coordinate of the last
reported maximal point or the value c. The range successor query returns φ only if φ is present in A′

GL(m)[i, j − 1] and φ is
a canonical node. Notice that by step 4 of construction of the main data structure, the array A′

GL(m)
is created in accordance

with the array AGL(m) .
As AGL(m) is sorted in non-increasing order of y-coordinates, any element y ∈ AGL(m)[i, j − 1] cannot be dominated by

any previously reported maximal points. Thus, if AGL(m)[i, j −1] has elements from Aφ , then the node φ has maximal points
for [a, b] × [c, d]. �
Lemma 23. All the maximal points in the query range are reported by the query algorithm.

Proof. If a point p is a maximal point, then p must be present in the subtree rooted at some canonical node φ. The
corresponding group leader node GL(m) which is parent of φ must be present in Scan . By step 13 the query algorithm visits
all the nodes present in Scan . By step 8 of the query algorithm, for any node in Scan we execute range successor query to
find the current rightmost canonical node. By step 12, once all the children of the current group leader that have maximal
points for the query rectangle are visited, we move to the next node next group leader in the Scan . At each canonical node
we report the maximal points by repeating range maxima queries. Thus, reporting the point p is ensured by the correctness
of range maxima data structure of [8] while visit to the node φ is ensured by the correctness of the range successor query
of [17] and visiting the group leader node GL(m) is ensured by the step 13 of the query algorithm. �
Lemma 24. The query algorithm reports all the maximal points inside the query rectangle in time O (

log n
log log n + k) where k is the size

of the output.

Proof. The total run time of our query algorithm is dependent on three factors namely: (i) the number of group leaders we
visit; (ii) the number of canonical nodes we visit and (iii) the number of maximal points we report. From [13], it is known
that the number of group leaders is O (

log n
log log n). A particular child of a group leader is visited if the segment [a, b] is allocated

to the node and the node holds at least one maximal point for the query rectangle. While at a group leader, we decide in
O (1) time, the next child node of the group leader that we should visit to report maximal points (check step 8 of the query
algorithm). Thus, the number of children of the group leaders we visit is ≤ k, the number of maximal points in the query
rectangle. Next, we need to prove that (i) we can visit all the group leaders in O (

log n
log log n) time and (ii) the time we spend

at a child of a group leader is equal to the number of maximal points reported from that node. We start with the first part.
It should be noted that for any group leader node, one of the following two conditions has to be true: (a) it is present in
the path from the least common ancestor to the node GL(1); (b) it is present in the path from the least common ancestor
to the node GL(O (

log n
)).
log log n

90 A.S. Das et al. / Journal of Discrete Algorithms 30 (2015) 78–95
Moving from a particular node to its parent needs O (1) time following the step 11 of the query algorithm. Similarly
moving from a parent to any of its child needs O (1) time following the step 5 of the query algorithm. Thus, the total time
needed to visit all the group leader nodes is equal to the maximum height of either of the two paths which is O (

log n
log log n).

At each group leader, we decide in O (1) time the next child of its that we should visit. At any child of the group leader that
we visit, we repeat range maximum queries until there are no maximal points from that node. Each run of range maxima
query needs O (1) time. Thus, the total time spent in the child is equal to the number of maximal points reported from that
node. Therefore, the query algorithm reports all the maximal points inside the query rectangle in time O (

log n
log log n +k) where

k is the size of the output. �
Combining Lemma 16 and Lemma 24, we conclude to Theorem 1.

6. Solution for Problem 2

6.1. Outline of the solution

As stated earlier, the number of canonical nodes with maximal points in a query rectangle can be O (
log3/2 n
log log n). However,

we are targeting a sub-logarithmic query time algorithm. Hence, we will devise a technique to count the number of maximal
points coming from the children of a group leader for a query rectangle without visiting its children explicitly. But before
doing so, we will first study the problem in a restricted domain which is defined next.

6.2. A subproblem

In order to solve Problem 2, we will need an efficient solution for the following subproblem.

Subproblem 3. Given a set S of n points from a universe of [1, logρ n] × [1, n] for 0 < ρ ≤ 1
2 , preprocess the points into

a data structure such that given an axis parallel rectangle q = [a, b] × [c, d] for (a, b) ∈ [1, logρ n] × [1, logρ n] and (c, d) ∈
[1, n] × [1, n], we can efficiently count the number of maximal points in S ∩ q.

In the complete solution, an efficient technique for the above problem will help us to count in O (1) time the number of
maximal points in q that are coming from children of a group leader.

Solution for Subproblem 3

Preprocessing:

1. First of all, store the y-coordinates of the points in an array A. Then, construct a height-balanced binary search tree T y

whose leaf nodes store the values in the array A and are at the same level. At each internal node m ∈ T y , store a key
value ym which is the median of the points stored in the subtree rooted at m.

2. For each pair of possible points (i1, i2) ∈ [1, logρ n] × [1, logρ n], form an interval [i1, i2] (including i1 = i2).
3. For each value y2 ∈ A and for each possible interval [i1, i2], form 3-sided anchored rectangles [i1, i2] × [y2, ∞) and

[i1, i2] × (−∞, y2]. Next, for the interval [i1, i2] and the value y2, do the following:
(a) Visit the ancestors of y2 in the tree T y . At each ancestor m, find the key value ym .
(b) If ym < y2, form an axis-parallel rectangle R1 = [i1, i2] × [ym, y2].

i. For the points in S ∩ R1, compute the subset of points that are not dominated by any other point. We call
such a subset a maximal chain. Let pymax and pxmax respectively be the topmost point and the bottommost
point of the maximal chain.

ii. Count the number of maximal points in the chain pxmax to pymax . Denote the value as |pxmax, pymax|. Store
the value in a variable denoted by countm(y2).

iii. Next, for the point pxmax , find the topmost point pnodom in [i1, i2] × (−∞, ym] such that pnodom is not domi-
nated by pxmax .

iv. Create a tuple 〈countm(y2), pnodom〉 and store it with reference to the rectangle R1 in a lookup table. Here
the suffix m denotes the index for the node m ∈ T y that is an ancestor of the leaf node storing the value y2.

v. Special cases
A. If no points are present in the rectangle R1, store 〈0, NULL〉.
B. If the point pnodom does not exist, store 〈countm(y2), NULL〉.

(c) On the other hand, if ym > y2, form a rectangle R2 = [i1, i2] × [y2, ym] and then find the topmost point p′
ymax and

the bottommost point p′
xmax in the maximal chain for the points in S ∩ R2. Count the number of maximal points

in the chain from p′
xmax to p′

ymax that is count |p′
xmax, p′

ymax|. Store it in a tuple 〈count′m(y1), p′
xmax〉.

A.S. Das et al. / Journal of Discrete Algorithms 30 (2015) 78–95 91
Fig. 7. The rectangle [a, b] × [c, d] is split into two parts (a) [a, b] × [ym, d] and (b) [a, b] × [c, ym]. The points pxmax, pymax (respectively
p′

xmax, p′
ymax) are the bottommost and the topmost points of the maximal chain in [a, b] × [ym, d] (respectively [a, b] × [c, ym]). The point

pnodom is the topmost point in the anchored rectangle [a, b] × (−∞, ym) which is not dominated by pxmax .

(d) Special case
i. If there are no points in R2, store 〈0, NULL〉.

4. Maintain the data structure of [9] to find the least common ancestor for two given leaf nodes of the tree T y in O (1)

time.

Lemma 25. The total storage space needed by the data structure is O (n log1+2ρ n) words.

Proof. As (i1, i2) ∈ [1, logρ n] × [1, logρ n] : 0 < ρ ≤ 1
2 , the number of possible intervals formed in step 2 is O (log2ρ n).

With n possible values of y ∈ [1, n], the number of three sided rectangles formed is O (n log2ρ n). For each three sided
rectangle, we form O (log n) four sided rectangles in step 3. With each four sided rectangles, a tuple is stored. Thus, there
are O (n log1+2ρ n) tuples. Any tuple is of at most 3 log n bits which is equal to O (1) words. Thus, the total storage space is
O (n log1+2ρ n) words. �
Query algorithm

1. Given a query rectangle [a, b] × [c, d] such that (a, b) ∈ [1, logρ n] × [1, logρ n] for 0 < ρ ≤ 1
2 and (c, d) ∈ [1, n] × [1, n],

find the least common ancestor m for the values d, c in the tree T y . Let the key value stored at m be ym .
2. Consider the rectangle [a, b] × [ym, d] and the corresponding tuple 〈countm(d), pnodom〉. The suffix m has the same

meaning as specified in step 3(b)iv of the preprocessing algorithm.
3. If pnodom �= NULL:

Let pnodom(y) be the y-coordinate of the point pnodom .
(a) If c ≤ pnodom(y), we do the following:

i. Consider the rectangle [a, b] × [pnodom(y), ym]. Choose the value count′m(pnodom(y)) from the corresponding
tuple for the rectangle [a, b] × [pnodom(y), ym].

ii. For the rectangle [a, b] × [c, ym] choose the value count′m(c).
iii. Return count′m(c) − count′m(pnodom(y)) + 1 + countm(d).

(b) Else, (that is pnodom(y) < c):
i. Return the value countm(d).

4. Else, (that is if pnodom = NULL):
(a) If countm(d) �= 0, return countm(d).
(b) Else, return count′m(c).

6.3. Analysis of the query algorithm

Lemma 26. Let pnodom �= NULL and c ≤ pnodom(y) < d. Then, the point pnodom belongs to the subtree rooted at m ∈ T y .

Proof. Since c ≤ pnodom(y) ≤ d and m is the least common ancestor of c and d in T y , the point pnodom belongs to the
subtree rooted at m ∈ T y . �
Lemma 27. Let pnodom �= NULL and c ≤ pnodom(y) < d. Then, the maximal chain in the rectangle [a, b] ×[c, ym] will pass through the
point pnodom.

Proof. As the point pnodom is the topmost point below ym and above c that is not dominated by pxmax , the point with
maximum x-coordinate in [a, b] × [ym, d], the point pnodom cannot be dominated by any other point in the rectangle in
[a, b] × [c, ym] as that point dominating pnodom in [a, b] × [c, ym] would have been the topmost point not dominated by
pxmax . �

92 A.S. Das et al. / Journal of Discrete Algorithms 30 (2015) 78–95
Lemma 28. See Fig. 7. Let p′
xmax and p′

ymax be respectively the two points with maximum x- and y-coordinates in the rectangle
[a, b] × [c, ym]. Let |p′

xmax, pnodom| denote the number of maximal points between p′
xmax and pnodom (including p′

xmax and pnodom)
inside the rectangle [a, b] × [c, ym]. Then |p′

xmax, pnodom| = |p′
xmax, p′

ymax| − |p′
ymax, pnodom| + 1.

Proof. By Lemma 27, the point pnodom is a point in the maximal chain from p′
xmax to p′

ymax . As the rectangle [a, b] ×
[pnodom(y), ym] is contained in [a, b] × [c, ym], any maximal point in [a, b] × [pnodom(y), ym] is also a maximal point in
[a, b] × [c, ym]. Therefore, |p′

xmax, pnodom| = |p′
xmax, p′

ymax| − |p′
ymax, pnodom| + 1. �

Lemma 29. If c ≤ pnodom(y) < d, then the rectangle [a, b] × [pnodom(y), ym] is present in the set of O (n log1+2ρ n) rectangles for
which we precomputed the count of maximal points.

Proof. As c ≤ pnodom(y) < ym ≤ d, the leaf storing the value pnodom(y) is present in the subtree rooted at the internal node
φ storing the value ym . Hence the node φ is an ancestor for the leaf storing pnodom(y). Hence the claim holds. �
Lemma 30. Let pnodom �= NULL and c ≤ pnodom(y) < d. Then, the number of maximal points inside the rectangle [a, b] ×[c, d] is equal
to the number of maximal points in the rectangle [a, b] × [c, pnodom(y)] plus the number of maximal points in [a, b] × [pxmax(y), d].

Proof. As the point pnodom is not dominated by pxmax , pnodom(x) > pxmax(x). Here pnodom(x) and pxmax(x) are the
x-coordinates of the points pnodom and pxmax respectively. Any point in the maximal chain inside the rectangle [a, b] ×
[c, pnodom(y)] must have an x-coordinate greater than pnodom(x), otherwise the point will be dominated by pnodom . Also,
it should be noted that any point in the maximal chain in the rectangle [a, b] × [pxmax(y), d] is not dominated by any
other point in the rectangle [a, b] × [pxmax(y), d] or [a, b] × [c, pxmax(y)]. Hence, the number of maximal points inside the
rectangle [a, b] × [c, d] is equal to the number of maximal points in the rectangle [a, b] × [c, pnodom(y)] plus the number of
maximal points in [a, b] × [pxmax(y), d]. �
Lemma 31. Let pnodom �= NULL but pnodom(y) < c. The number of maximal points inside the rectangle [a, b] × [c, d] is equal to the
number of maximal points in the rectangle [a, b] × [ym, d].

Proof. As pnodom is the topmost point not dominated by pxmax below ym , the case of pnodom(y) < c is possible only if (a)
there are no points in the rectangle [a, b] ×[c, ym] or (b) any point in the rectangle [a, b] ×[c, ym] is dominated by the point
pxmax . In any case, no maximal point for the rectangle [a, b] × [c, d] is present in [a, b] × [c, ym]. Hence the claim holds. �
Lemma 32. If pnodom = NULL but countm(d) �= 0, the number of maximal points in [a, b] × [c, d] is equal to countm(d).

Proof. If pnodom = NULL, then there is no point in [a, b] × (−∞, ym] not dominated by pxmax , the point with maximum
x-coordinate in [a, b] × [ym, d]. Hence, the number of maximal points in [a, b] × [c, d] is equal to countm(d). �
Lemma 33. If pnodom = NULL and countm(d) = 0, the number of maximal points in [a, b] × [c, d] is equal to count′m(c).

Proof. By step 3(b)vA of preprocessing, if pnodom = NULL and countm(d) = 0, then the rectangle [a, b] × [ym, d] is empty.
Hence, the number of maximal points in [a, b] × [c, d] is equal to count′m(c). �
Lemma 34. For any query rectangle [a, b] × [c, d] : (a, b) ∈ [1, logρ n] × [1, logρ n], (c, d) ∈ [1, n] × [1, n] and 0 < ρ ≤ 1

2 , our query
algorithm correctly counts the number of maximal points in the query rectangle.

Proof. Given the query rectangle [a, b] × [c, d], we first find the value ym such that c ≤ ym ≤ d and ym is stored in the
least common ancestor for the leaves storing c, d. We split the rectangle [a, b] × [c, d] into two smaller rectangles R1 =
[a, b] × [c, ym] and R2 = [a, b] × [ym, d]. For the rectangle R2, we consider its corresponding tuple and find the topmost
point pnodom in [a, b] × (−∞, ym] not dominated by any maximal point in [a, b] × [ym, d]. If pnodom �= NULL and pnodom ≥ c,
then Lemmas 28, 29 and 30 ensure that the correct result is returned. However, if pnodom = NULL, then Lemmas 31 and 33
ensure that the correct result is returned. �
Query time analysis

Lemma 35. The query algorithm takes O (1) time to count the number of maximal points inside a given query rectangle.

Proof. As all n points have distinct y-coordinates and the y-coordinates of the points are in the range [1, n], the values c, d
will be present in array A (see step 1 of preprocessing). Thus, locating the indices (as well as the leaf nodes) storing these

A.S. Das et al. / Journal of Discrete Algorithms 30 (2015) 78–95 93
two values can be done in O (1) time. Finding the least common ancestor m can also be done in O (1) time using the data
structure of [9]. Thus, all we are left with is to find the tuples for the rectangles [i1, i2] × [c, ym] and [i1, i2] × [ym, d] by
using the lookup table and then adding the respective counts. All these operations can be done in O (1) time. �

By Lemma 25 and Lemma 35, we conclude:

Theorem 7. Given a set S of n points from a universe of [1, logρ n] × [1, n] for 0 < ρ ≤ 1
2 , we can preprocess the points into a data

structure of size O (n log1+2ρ n) words, such that given an axis parallel rectangle q = [a, b] ×[c, d] for (a, b) ∈ [1, logρ n] ×[1, logρ n]
and (c, d) ∈ [1, n] × [1, n], we can count the number of maximal points in S ∩ q in O (1) time.

Special note. In the above solution, we have shown that we can preprocess the count of maximal points and do some
bookkeeping for some O (n log1+2ρ n) : 0 < ρ ≤ 1

2 rectangles when the horizontal intervals for the query rectangles are
bounded in the range of [1, logρ n] and the vertical intervals for the query rectangles are bounded in the range of [1, n].
Given a query rectangle, we split the rectangle into two smaller rectangles for which we already have the count of maximal
points and some additional information using which we can compute the count of the maximal points in a query rectangle
in O (1) time. We will use this idea in the next section.

7. Solution for the general problem

7.1. Preprocessing for the main data structure

7.1.1. Preprocessing phase 1
1. Construct a tree Tx whose leaf nodes are at the same level (height) and store the x-coordinates of the points in the set

R in non-decreasing order of their values.
2. Each internal node μ ∈ Tx has O (

√
log n) children, the left most child being numbered as

√
log n − 1 and the right

most child being 0. Each internal node μ ∈ Tx is assigned an interval int(μ) which is equal to the union of the discrete
intervals induced on the x-axis by the values stored at the leaf nodes of the subtree rooted at μ.

3. Next, the following arrangement has to be done for all the internal nodes of the tree Tx except the root.
(a) Each internal node μ has an auxiliary array Aμ which stores the y-coordinates of the points whose x-coordinates

are present in the leaf nodes of the subtree rooted at μ. Thus, Aμ = ⋃
i=0...

√
log n−1 Ai where i is a child of μ. Aμ is

sorted in non-increasing order of its values.
(b) Each element of Ai, i = 0, . . . ,

√
log n − 1 will point to its corresponding position in the array Aμ .

(c) However, there will be no pointers from the elements of the array Aμ to the elements in the arrays of its children.
Rather, the array Aμ will be preprocessed into Dμ(1) which is an instance of the data structure of Theorem 5.
While constructing the data structure Dμ(1) , we have to perform the following step:

i. For the value y j stored in Aμ[j], create a corresponding point (i, y j) if the value y j came from the array Ai

where i is a child of μ. Thus we have a set of points from a grid of [0,
√

log n − 1] × [1, n].
(d) Each child vi of μ maintains a binary string lookup of size |Aμ|. The ith most significant bit of the string lookup

is set to one if Aμ[i] ∈ Av j . Notice that Aμ = ⋃
Av j , for v j being a child of μ. The string lookup should support

rank() and select() (see [5]) queries.
(e) Maintain a range maximum data structure (see [18]) RMAμ such that given two indices i, j of Aμ , we can return

the maximum x-coordinate among the points whose y-coordinates are stored between Aμ[i] to Aμ[j].
(f) For the values of the array Aμ , construct the following two auxiliary trees at the node μ:

i. VTμ which is an instance of the van Emde Boas tree [16]. A set of n integers can be preprocessed in a van
Emde Boas tree such that we can search for a particular integer value in the data set in O (log logn) time.

ii. A height balanced binary search tree Tμ,y . A node φ ∈ Tμ,y stores the median of the values stored in the
leaf nodes of its subtree. We denote the value as key.

4. For the root we do the following
(a) Each index i of the array at the root node Aroot will have 2

√
log n pointers of which

√
log n pointers will be pointing

to the smallest elements greater than Aroot[i] in each of the arrays A j for j being a child of the root node.
(b) Similarly the other

√
log n pointers will be pointing to the largest elements greater than Aroot[i] in the arrays A j

for j being a child of the root node.
(c) Construct a range maximum data structure RMAroot such that given two indices i, j of Aroot , we can return the

maximum x-coordinate among the points whose y-coordinates are stored between Aroot[i] to Aroot[j].

7.1.2. Preprocessing phase 2
1. At each internal node μ ∈ Tx of the data structure we constructed above, we do the following:

for i = 0, . . . ,
√

log n − 1 and for j = 0, . . . ,
√

log n − 1:
(a) Form a pair (i, j). Consider all the points present in the subtrees rooted at the vi, vi−1, . . . , v j+1, v j . Store these

points in a set S ′ .

94 A.S. Das et al. / Journal of Discrete Algorithms 30 (2015) 78–95
(b) Form a vertical slab V whose x-interval is equal to int(v j) ∪ int(v j+1) ∪ . . . ∪ int(vi−1) ∪ int(vi). We denote this
interval as [x1, x2].

(c) For each y ∈ Aμ , form two three sided rectangles of the form [x1, x2] × (−∞, y] and [x1, x2] × [y, ∞).
(d) Visit the ancestors for the leaf storing the value y in the tree Tμ,y . If the key ym stored at an ancestor μ is < y,

form a rectangle R1 = [x1, x2] × [ym, y].
(e) We then find

i. The topmost and the rightmost points of the maximal chain in R1 ∩ S ′ . Denote these points as (ptop, pbottom).
ii. The count of the maximal points in R1 ∩ S ′ . Also find the topmost point in [x1, x2] × (−∞, ym] which is not

dominated by pbottom . Denote the point as pnodom . If there are no such points, we store pnodom as NULL.
(f) This information is stored in a tuple TupleR1

= 〈ptop, pbottom, count, pnodom〉 for the rectangle R1.
(g) However, if the key ym > y, we then form the rectangle R2 = [x1, x2] ×[y, ym] and find the count of maximal points

in R2 = [x1, x2] × [y, ym] and store it in a tuple TupleR2
. Also store in the tuple, the topmost and the rightmost

points in R2.

Given a query rectangle [a, b] × [c, d], for any group leader GL(i) if vi, vi−1, . . . , v j : i > i − 1 > . . . , j are its children that
are canonical nodes, then int(vi) ⊂ [a, b], int(vi−1) ⊂ [a, b], . . . , int(v j) ⊂ [a, b]. Let the horizontal interval [x1, x2] be equal to ⋃ i

m= j int(vm). Thus, if we have (i) the count of the maximal points for the rectangles [x1, x2] ×[c, ym] and [x1, x2] ×[ym, d] :
c ≤ ym ≤ d and (ii) additional information like the topmost point, rightmost point in [x1, x2] × [ym, d] and the topmost in
[x1, x2] × (−∞, ym], we can then compute the count of the maximal points coming from the children of GL(i) for the
rectangle [a, b] × [c, d] in O (1) time. That is the reason for the construction of the auxiliary data structure at the node μ at
preprocessing phase 2. Notice that this data structure is an instance of the data structure of Theorem 7 used in the previous
section for counting maximal points in a restricted setting.

Lemma 36. The total storage space needed by the data structure for the counting problem will be O (n log3 n
log log n).

Proof. The height of the primary tree Tx is O (
log n

log log n). Each internal node μ ∈ Tx of the tree has a degree of O (
√

log n).
Also, the node μ is associated with an auxiliary data structure which is an instance of the data structure of Theorem 7. This
auxiliary data structure needs a storage space of O (|Tx,μ| log2 n) words where |Tx,μ| is the number of leaves present in the
subtree Tx,μ rooted at the node μ ∈ Tx . Thus, the total storage space needed at a particular level of the tree is O (n log2 n).
With height of the tree Tx being O (

log n
log log n), the total storage space needed by the data structure is O (n log3 n

log log n). �
7.2. Query algorithm for the main data structure

1. Given a query rectangle [a, b] × [c, d], find the group leaders in tree Tx using the steps discussed earlier. Sort these
group leaders in order of their positions from right to left in the tree Tx as we visit these group leaders in this order.

2. Let GL(1) be the rightmost group leader node. Visit GL(1) and consider the tuple TupleGL(1) = 〈v√
log n−1, v j, [x1, x4]〉 (see

step 5 in Section 5.4.1). Also find the indices i, j for the array AGL(1) such that AGL(1)[i] is the smallest value ≥ c and
AGL(1)[j] is the largest value ≤ d.

3. Let AGL(1)[i] = y1 and AGL(1)[j] = y2. Form a rectangle [x1, x4] × [y1, y2].
4. Next, find the least common ancestor φ ∈ TGL(1),y for the leaves storing the values y1, y2. Let the key stored in φ be ym .
5. We split the rectangle into two smaller rectangles namely R1 = [x1, x4] ×[ym, y2] and R2 = [x1, x4] ×[y1, ym]. We then

count the number of maximal points in [x1, x4] × [y1, y2] by using the technique of Subproblem 3. Remember that in
preprocessing phase 2, we have constructed an instance of the data structure of Theorem 7 at the node GL(1). Store the
count in a variable maximalcountGL(1) .

6. Next consider the tuple TupleR1
for the rectangle R1 (see step 1f of preprocessing phase 2). Let the count �= 0 in TupleR1

.
Then, consider the y-coordinate ptop(y) for the point ptop stored in the tuple and move to the next group leader GL(2).

7. Consider the tuple TupleGL(2) as constructed in step 5 in Section 5.4.1 and consider the range [x′
1, x

′
4]. Also find the

indices i, j for the array AGL(2) such that AGL(2)[i] is the smallest value ≥ ptop(y) and AGL(2)[j] is the largest value ≤ d.
8. Let AGL(2)[i] = y′

1 and AGL(2)[j] = y′
2. Then, for GL(2), our query rectangle is [x′

1, x
′
4] × [y′

1, y
′
2].

9. We repeat similar steps until we visit all the group leaders. Let the number of group leader nodes be denoted by m.
We then return maximal−count = ∑m

i=1 maximalcountGL(i) .
10. However, if the count = 0 in TupleR1

for the step above, we then consider the TupleR2
and take the topmost point in

the tuple as ptop .

8. Query time analysis and correctness proof

Lemma 37. Our query algorithm correctly counts the number of maximal points inside the query rectangle.

A.S. Das et al. / Journal of Discrete Algorithms 30 (2015) 78–95 95
Proof. As evident from the query algorithm, we divide the problem of reporting maximal points for a query rectangle in
a general setting to O (

log n
log log n) instances of the problem of counting maximal points for a query rectangle in a restricted

setting (Subproblem 3). By Lemma 34, it is ensured that for each such small instance, we have the correct count of maximal
points. Next, notice that for a group leader GL(i), we consider only the points that are above the topmost maximal point
reported from the group leader GL(i − 1) where GL(i − 1) is the last visited group leader node. Thus, by summing the counts
of maximal points for each of the O (

log n
log log n) instances, we get the count of maximal points in the query rectangle. �

Lemma 38. The query algorithm takes O (
log n

log log n) time to count the number of maximal points in the query rectangle.

As the above lemma is obvious from the above discussion, we skip a detailed proof for it.

Special note. The storage space of the above discussed data structure can be improved without sacrificing the query time
efficiency simply by reducing the degree of each internal node of the tree to logρ n for 0 < ρ < 1

2 . The storage space of the

above data structure will thus reduce to O (n log2+2ρ n
log log n).

Combining Lemma 36, Lemma 37 and Lemma 38, we conclude to Theorem 2.

References

[1] G.S. Brodal, P. Davoodi, S.S. Rao, On space efficient two dimensional range minimum data structures, Algorithmica 63 (4) (2012) 815–830.
[2] G.S. Brodal, K.G. Larsen, Optimal planar orthogonal skyline counting queries, CoRR arXiv:1304.7959, 2013.
[3] G.S. Brodal, K. Tsakalidis, Dynamic planar range maxima queries, in: ICALP (1), 2011, pp. 256–267.
[4] C.Y. Chan, H.V. Jagadish, K.-L. Tan, A.K.H. Tung, Z. Zhang, Finding k-dominant skylines in high dimensional space, in: SIGMOD Conference, 2006,

pp. 503–514.
[5] D.R. Clark, J.I. Munro, Efficient suffix trees on secondary storage (extended abstract), in: SODA, 1996, pp. 383–391.
[6] A.S. Das, P. Gupta, A.K. Kalavagattu, J. Agarwal, K. Srinathan, K. Kothapalli, Range aggregate maximal points in the plane, in: WALCOM, 2012, pp. 52–63.
[7] A.S. Das, P. Gupta, K. Srinathan, Counting maximal points in a query orthogonal rectangle, in: WALCOM, 2013, pp. 65–76.
[8] J. Fischer, Optimal succinctness for range minimum queries, in: LATIN, 2010, pp. 158–169.
[9] D. Harel, R.E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM J. Comput. 13 (2) (1984) 338–355.

[10] A.K. Kalavagattu, J. Agarwal, A.S. Das, K. Kothapalli, On counting range maxima points in plane, in: IWOCA, 2012, pp. 263–273.
[11] A.K. Kalavagattu, A.S. Das, K. Kothapalli, K. Srinathan, On finding skyline points for range queries in plane, in: CCCG, 2011.
[12] C. Kejlberg-Rasmussen, Y. Tao, K. Tsakalidis, K. Tsichlas, J. Yoon, I/o-efficient planar range skyline and attrition priority queues, in: Proceedings of the

32nd ACM SIGMOD–SIGACT–SIGART Symposium on Principles of Database Systems, PODS 2013, New York, NY, USA, June 22–27, 2013, pp. 103–114.
[13] Y. Nekrich, A linear space data structure for orthogonal range reporting and emptiness queries, Int. J. Comput. Geom. Appl. 19 (1) (2009) 1–15.
[14] Y. Nekrich, G. Navarro, Sorted range reporting, in: SWAT, 2012, pp. 271–282.
[15] F.P. Preparata, M.I. Shamos, Computational Geometry – An Introduction, Springer, 1985.
[16] P. van Emde Boas, Preserving order in a forest in less than logarithmic time, in: FOCS, 1975, pp. 75–84.
[17] C.C. Yu, W.K. Hon, B.F. Wang, Improved data structures for the orthogonal range successor problem, Comput. Geom. 44 (3) (2011) 148–159.
[18] H. Yuan, M.J. Atallah, Data structures for range minimum queries in multidimensional arrays, in: SODA, 2010, pp. 150–160.

http://refhub.elsevier.com/S1570-8667(14)00095-1/bib626C3132s1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib626C3133s1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib62726F64s1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib74616Es1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib74616Es1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib6D756Es1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib6173647265706F7274s1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib617364636F756E74s1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib66697368s1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib7468s1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib616B69776F6361s1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib616B63636367s1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib63617370s1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib63617370s1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib6E656Bs1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib6E656B69s1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib7368616Ds1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib76616Es1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib7975s1
http://refhub.elsevier.com/S1570-8667(14)00095-1/bib617461s1

	Reporting and counting maximal points in a query orthogonal rectangle
	1 Introduction
	1.1 Our contributions

	2 Outline of the paper
	3 Preliminaries
	4 A preliminary solution for Problem 1
	5 The word-RAM data structure for Problem 1
	5.1 Subproblems
	5.2 Construction of the main data structure
	5.3 Emulating fractional cascading for a node with √logn children
	5.4 Query algorithm
	5.4.1 How to ﬁnd the canonical nodes

	6 Solution for Problem 2
	6.1 Outline of the solution
	6.2 A subproblem
	6.3 Analysis of the query algorithm

	7 Solution for the general problem
	7.1 Preprocessing for the main data structure
	7.1.1 Preprocessing phase 1
	7.1.2 Preprocessing phase 2

	7.2 Query algorithm for the main data structure

	8 Query time analysis and correctness proof
	References

