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Abstract—In this paper, we study scalable parallel algorithms
for estimating the farness-centrality value of the nodes in a
given undirected and connected graph. Our algorithms consider
approaches that are more suitable for sparse graphs. To this
end, we propose four optimization techniques based on removing
redundant nodes, removing identical nodes, removing chain
nodes, and making use of decomposition based on the biconnected
components of the input graph.

We test our techniques on a collection of real-world graphs for
the time taken and the average error percentage. We further
analyze the applicability of our techniques on various classes
of real-world graphs. We suggest why certain techniques work
better on certain classes of graphs.

I. INTRODUCTION

Centrality metrics offer a numerical perspective on the relative
importance on individual nodes and/or edges of a graph. These
metrics have applications to many problems in social network
analysis, epidemiology, and electrical network analysis [21].
Bavels [3] initiated the study of structural centrality in the
context of social graphs. Popular notions of centrality metrics
include the betweenness-centraltity, degree centrality, Katz
centrality, and farness-centrality [23], [20], [3]. Computing
such metrics on a variety of modern parallel architectures
continues to attract research attention [12], [19]. Since these
metrics usually take a large time to compute especially on
large graphs, there have been recent attempts to also obtain
approximate solutions or estimates to the metrics [20], [6],
[5].

In this paper, we study the farness metric defined on the nodes
of a graph. The farness-centrality of a node v in a connected
undirected graphs G, denoted farness(v)is defined as the sum
of the shortest distances from node v to all other nodes in
the graph. In symbols [24], farness(v) =

∑
w∈V,w 6=v d(v, w)

where d(v, w) indicates the distance of a shortest path from v
to w in G. (The inverse of this quantity is referred to as the
closeness-centrality of node v.)

From the definition of farness centrality, it is easy to note
that the metric can be computed exactly for each node v by
performing a single-source-shortest-path computation from v.
However, as the size of the networks of interest, such as social
networks, is often of the magnitude of millions of vertices,
exact computation faces scalability challenges. Therefore, one

is interested in computing variants of the farness centrality
such as estimates of closeness centrality [12], the top k values
of closeness centrality given a graph G [22], the 1-median of
a graph G, and improving closeness centrality of a node [8].

Building on ideas from sampling techniques of Indyk and
Thorup [17], [26], in a recent paper, Cohen et al. [6] show that
estimates to the closeness centrality of nodes in a graph can
be obtained by combining two popular techniques: sampling
and pivoting. It provides an adaptive error estimator but does
not define the actual error/deviation of estimated values from
the actual centrality values.

In this paper, we study efficient parallel algorithms for obtain-
ing estimates to the farness centrality of all nodes in a given
graph. To the best of our knowledge, this is the first work in
parallel algorithms for estimating farness centrality. Our work
is aimed at real-world graphs that have discernible characteris-
tics such as being sparse, bi-connectivity. Such algorithms that
aim to make use of the characteristics of the input are reported
also by Banerjee et al. [4] for computing shortest paths,
Chaitanya et al. [23] for computing betweenness-centrality
values, and Dutta et al. [9].

Our algorithms aim to address key questions on scalable
estimation of the closeness centrality of nodes in a graph.
We introduce four key optimizations to this end. Our first
optimization targets identical nodes and removes such nodes
from the computation. Two nodes are deemed identical if
they have the same set of neighbors. The second optimization
technique that we introduce targets redundant nodes. A node
is said to be redundant if no shortest paths ever pass through
that node, except as the end points of the path. Our next
optimization targets chain nodes: nodes of degree two that lie
in a maximal path. Computations with respect to these nodes
can use information from computations at the end points of the
chain in a post-processing step. Our final optimization involves
using the decomposition of a graph into its biconnected
components. It is know that biconnected components can aid
in shortest path problems by providing good mechanisms to
extend the shortest paths across pairs of vertices in in one
biconnected component to shortest paths for pairs of vertices
across distinct biconnected components.

We use the above techniques to estimate the farness-centrality
values of nodes in a given graph in parallel. On top of these
techniques, our algorithms use sampling based estimation
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wherein breadth-first traversals from a set of sampled nodes
are used to obtain the exact or an estimate to the shortest path
distance between pairs of vertices. We notice that using our
techniques allows us to obtain the exact distance on more pairs
of vertices and also in a smaller time compared to a random
sampling based approach.

A summary of our results is given below.

• We introduce four optimization techniques to address
scalability challenges in estimating the farness-centrality
values of nodes in a large real-world graph in parallel.
Our techniques include using a biconnected components
based decomposition (B), removing redundant nodes (R),
removing identical nodes (I), removing chain nodes (C),
and sampling (S). Using these techniques allows us to
estimate the lengths of various shortest paths.

• Experimental results on a variety of graph classes in-
dicates that our techniques result in much better esti-
mates than sampling nodes randomly. Further, Figure
4(b) shows that 20% sample nodes are sufficient for our
approach (BRICS) to give nearly better estimates and
running time than a simple random sampling using 30%
of the nodes.

• We also analyze on the applicability of each of the
techniques that we introduce to various classes of graphs
and their structural properties.

A. Related Work

Using the structural properties of graphs to (re)design parallel
algorithms for graphs is a research area that is catching rapid
attention in recent years. This approach has been used by Hong
et al. [16] to detect the strongly connected components of a
directed real-world graph. Similar principles have been used
in the works of [14], [27], [25], [13].

Another popular technique to address scalability challenges
in parallel graph algorithms is use decompose the graph
into smaller subgraph. The widely used graph decomposition
technique Metis [18] decomposes a graph into a specified
number k of subgraphs such that the number of edges that
cross any partition is minimized. This decomposition is can
then be used parallel graph algorithms [11]. However, for
path-based problems such as calculating or estimating farness-
centrality, decomposition via Metis may not be ideal. The
likely presence of cycles that go across the partitions induced
by a Metis decomposition hamper efforts to find exact dis-
tances or estimates to shortest paths.

On the other hand, using a decomposition based on the
biconnected components of a graph for path based problems
is gaining recent attention. Some of the recent works that
make use of such a decomposition include [10], [23]. Bi-
connected decomposition of graph is also used in incremental
betweenness centrality [19].

Some of the recent works that are closest to spirit as the work
presented in this paper is that of Garg and Kothapalli [13]

and Sariyuce et al. [25]. In [13], Garg and Kothapalli propose
optimizations based on identifying identical and redundant
nodes, identifying chain nodes, and also use a decomposition
based on the strongly connected components of a directed
graph to improve the calculation of the pagerank of nodes in
a given graph. Sariyuce et al. [25] show various optimizations
that can help in speeding up various centrality computations
in the sequential computing model.

There are various uses of random sampling method, some
among them are estimating the closeness-centrality values for
all nodes [12], computing top-k closeness-centrality values
[22], and finding the approximate 1-median (a node with
maximum closeness centrality) in a network [26].

II. BASIC APPROACHES

In this section, we review basic ideas from Cohen et al. [6] for
estimating the farness-centrality of the nodes in a graph. In the
following, and the algorithms in the the rest of the paper, we
use farness(v) to denote the estimate to the farness-centrality
of node v.

A. Random Sampling Approach

A simple way to estimate the farness in a graph G = (V,E) is
by using a sampling based technique as shown in Algorithm
1 [6]. In this approach, we first identify a set S of k nodes
chosen uniformly at random from V . For nodes u, v of G, let
d(u, v) denote the shortest distance between u to v. (Since we
assume that G is undirected, d(u, v) = d(v, u).) Subsequently,
we run BFS from each node in S as the source and compute
d(v, w) for every v ∈ S and w ∈ V . To reduce the memory
complexity needed in the computation of algorithm 1, we can
use an array farness, initialized farnessfor all u ∈ V to 0.
While running BFS from v ∈ S, add d(v, u) to farness[u]
and return the sum of distances from start node to all other
vertices. With this approach now we require only O(n) space
(instead of O(nk)) and the computation can be performed in
O(k(m+n)) time. The farness for v ∈ S is exactly computed,
but for u ∈ S\V , farness[u] has the sum of distance of k nodes
instead of n vertices.

Algorithm 1: Algorithm to implement Random Sam-
pling

1 Function RandomSampling(G, k):
2 Choose si ∈ V (G) u.a.r such that

S = {s1, s2, ...sk}
3 for each vertex u ∈ S do in parallel
4 runBFS(u,G)
5 farness[u] =

∑
v∈V

d(u, v)

6 for each vertex u ∈ V (G)/S do
7 farness[u] =

∑
v∈S

d(u, v)
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Fig. 1. Figures (a), (b), (c) and, (d) show redundant chains nodes, and figures (e), and (f) shows redundant 3D,4D nodes respectively.

A limitation of this approach however is that as the set of
nodes in S are chosen uniformly at random, these nodes do
not offer any insights into how the shortest paths in the graph
behave. So, estimates obtained out of using the nodes in S
tend to be error-prone.

III. OUR APPROACH

In this section we explain the algorithmic techniques which
helps us address scalability and quality issues in estimating far-
ness centrality. The BRICS framework stands for Biconnected
components based decomposition, Redundant nodes, Identical
nodes, Chain nodes, and Sampling. Removal of identical nodes
saves the computation required for nodes whose neighbour
list is same. Chains and Redundant nodes reduce the graph
size and a decomposition based on biconnected components
decomposes the graph G into smaller sub-graphs which are the
bi-connected components of G. Finally, sampling within each
biconnected component allows us to arrive at good estimates
to the farness centrality of nodes.

In our approach, we first form a reduced graph from the
input graph by preprocessing for redundant nodes, identical
nodes, and chain nodes. The reduced graph thus obtained is
decomposed into its biconnected components. From each bi-
connected component Bi, we identify a set Si of ki nodes
chosen uniformly at random among nodes in Bi. The set of
smapled nodes S is set to ∪iSi, and k :=

∑
i ki is the total

number of samples nodes. Subsequently, we run BFS from
each node in Si as the source and compute d(v, w) for every
v ∈ Si and w ∈ Bi. Notice that in our approach the BFS
from a sampled node s ∈ Si is limited to the bi-connected
component Bi. Here d[v] denotes the distance between vertex
v and the source of a BFS Tree, where source can be any
node from Sampled Nodes. We briefly describe each of these
techniques in the following sections.

A. Identical Nodes

Two nodes u, v ∈ V are identical nodes if there have the same
set of neighbors. As u, v has the same neighbor list the BFS
tree constructed with either of u or v as the source node is
identical. This implies that u and v will have the same farness

value i.e farness[u] = farness[v] [24]. A group of identical
nodes will all have the same farness value. Hence, for every
group of identical nodes, we can consider only one of the
nodes in the group as the representative node and remove the
remaining nodes of the corresponding group from the graph.
For every such node u removed, we store its representative.
By hashing the neighbour list of each node, we can find all
the groups of identical nodes.
Fact III.1. Two nodes u, v ∈ V are identical, if both u and
v have same parent in all BFS trees in G with the source of
BFS in V − {u, v}.

Another set of identical nodes we consider corresponds to
nodes in chains with identical end points. Two chains of
nodes c1 = u, a1..., ak, v and c2 = u, b1, ..., b`, v are known
as identical Chains if they have same endpoints and they are
of equal length as shown in Fig. 1(c) where k = ` and nodes
lie in those chains are known as identical chain nodes. Here
farness[ai] = farness[bi] ∀i ∈ [1, `] because any shortest path
length from x to ai is same as x to bi where x ∈ V \ {c1, c2}

Fact III.2. Let i ⊆ IN where IN is a set of nodes which are
either Identical nodes or Identical chain nodes, then closeness
centrality for all the nodes in I will be same and they all lie
in the same BiCC.

B. Chain Nodes

Our preliminary experiments shows that real world graphs
have a significant number of nodes of degree one and two.
(See also Table I). Such low degree nodes lead to formation of
chains C = (u, a1, a2, ..., a`, v) where all the nodes between
u, v have degree two. There are 4-types of chains as shown in
Fig. 1(a)–(d). We label each kind of chain as follows.

• Type-1: A chain with one of the end point as 1-degree
node as shown in Fig. 1(a) which is a redundant chain.

• Type-2: A chain where the two end points are same which
forms a cycle as shown in Fig. 1(b) is a redundant chain.

• Type-3: if k > ` as shown in Fig. 1(c), then c1 is known
as redundant chain and c2 is non-redundant chain where
c1 = u, a1..., ak, v and c2 = u, b1, ..., b`, v. In this case
for simplicity let us assume we have only two paths
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between u and v that is via c1 and c2 if we want a
shortest path from u to v we will always take the path
via c2 which means all the 2-degree nodes in c1 could
be removed safely from the graph G and in Fig. 1(d) all
the chains are redundant as there is a direct edge between
two vertices.

• Type-4: All identical chains (explained above) are redun-
dant leaving one identical chain as non-redundant.

It is clear that all redundant chains can be removed safely
from the graph G without making G disconnected. However,
since the above classification is not non-overlapping, we have
to ensure that the type of chain is identified as only belonging
to one of the four types. Whenever a chain is removed from
input graph or the reduced graph, it has to be stored in some
data-structure so as to set the farness values in post processing.
To further optimize, as we know that all the shortest paths pass
through u in Type-1 chains, so contribution of all nodes can
be calculated directly to increment farness[w] by (|ci| − 1)×
(d[u] + |ci|/2), where ci is the ith chain of Type-1, |ci| says
number of nodes in chain ci and d[u] is distance from node u
to the source vertex w. Similarly, farness of nodes in chains
of Type-1 can be estimated using Fact III.4.

Algorithm 2: Get chain nodes contribution

1 for each chain u v ∈ C do
// Let u v : u− a1 − a2 − ...− a` − v

2 a0 = u; a`+1 = v
3 if deg v = 1 then
4 for ∀ai do
5 d[ai] = d[ai−1] + 1 where i ∈ [1, ` + 1]

6 else
7 if |d[u]− d[v]| ≥ ` then
8 for ∀ai do
9 d[ai] = d[ai−1] + 1 where i ∈ [1, `]

10 else
11 if d[u] < d[v] then
12 (u, v) = (v, u)// swap u and v

13 `m = d[u]− d[v] + (`− d[u] + d[v])/2
14 for ∀ai do
15 d[ai] = d[ai−1] + 1 where i ∈ [1, `m]

16 for ∀ai do
17 d[ai] = d[ai+1] + 1 where i ∈ [l, `m]

Fact III.3. Let c ∈ C be a chain with end points as u and
v such that deg(u) > 2 and deg(v) = 1 then farness[w] =
farness[u] + d(u, v)× |S|.
Fact III.4. Let v be one degree node then farness[v] =
farness[neighbour of v] + |S|.
Fact III.5. Let c be a chain ∈ C with end points as u and
v then it is not necessary that both the vertices lie in same
BiCC.

C. Redundant 3 and 4 degree nodes

While removing nodes of degree 1 and 2 seems to be simple
in the context of centrality computations, see also [25], we
proceed with such techniques by also considering cases where
we can remove nodes of a higher degree too. In particular, we
notice that real-world graphs have nodes of degree 3 and 4 that
are also redundant. We say RN is set of redundant nodes and a
node v ∈ RN of degree 3 is redundant if the three neighbours
of v are mutually neighbors of each other as shown in Fig.
1(e). In such a case, no shortest paths go through v except
for those that start or end at v. Similarly we say a node v
of degree 4 is redundant if every neighbour of v is connected
with at least 2 other neighbours of v as shown in Fig. 1(f).
In this case all the shortest paths go through v can also go
through neighbours of v which means removing v will not
affect graph connectivity and doesn’t disturb any shortest path
length. Therefore, we can ignore v in the computations of
farness centrality.

Algorithm 3: Get redundant nodes contribution

1 for each u ∈ RN do
2 d[u] = min(d[v] ∀v ∈ neighbour[u]) + 1

Fact III.6. Let u ∈ RN then x ∈ BiCCi ∀x ∈ neighbour(u)
Fact III.7. Let u ∈ RN then u will not be a part of any
shortest path if u is neither source nor destination.

Let (v1, v2, v3...vk) be a set of redundant nodes then according
to Facts III.6 and III.7, we can remove all the redundant
nodes by storing their neighbours for post processing. Later on
by using this information about neighbours we can estimate
farness[vi] and contribution of vi in farness of sample nodes.
Algorithm 3 explains how all the contribution of redundant
nodes are taken.

Algorithm 4: Procedure for the Cumulative Technique
Data: Graph G = (V , E) and k
Result: Estimated farness value of v ∈ V
/* find Identical Nodes */

1 IN = getIdenticalNodes(G)
2 GR = G - IN
/* find 1,2-Degree Redundant Nodes */

3 CN = getRedundantChains(GR)
4 GR = GR - CN
/* find 3,4-Degree Redundant Nodes */

5 RN = getRedundantNodes(GR)
6 GR = GR - RN
/* Construct Block Cut-Vertex Tree */

7 BCT=constructBCT(GR)
8 farness = processBCT(BCT , IN , CN , RN , k)

D. Putting Together Everything

Starting from the input graph G, we apply the optimizations
mentioned in the earlier sections to arrive at the reduced graph
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Fig. 3. Bottom up traversal wx,y , dx,y are weight and dCarry where x,y
are blockID and cutVetexID respectively. sdi,j is the sum of distances from
rep. node i to all nodes in block j, dist(u, v) is the distance from vertex u
to vertex v in Graph

GR. We then apply the Bi-Connected Component decompo-
sition on the reduced graph GR and construct the Block Cut-
Vertex Tree (BCT)[15], where the nodes of the BCT are the
bi-connected components of GR and cut-vertices of GR. Two
nodes Bi, Bj in the BCT are connected with a common node
called a cut point. A small illustration is given in Fig. 2. The
two major benefits of BCT representation is that the shortest
paths from nodes of GR in one BiCC to nodes in another
BiCC go through some cut point which implies that BFS runs
can be restricted to one block instead of a complete reduced
graph GR and the complete contribution of one block node
can be computed from the cut point.

Algorithm 4 explains the reduction techniques used for cu-
mulative approach and the order in which they are used.
As indicated, we apply the removal of identical nodes (IN )
followed by the removal of chain nodes (CN ), followed by
the removal of redundant 3D and 4D nodes (RN ), and then

construction of BCT. Algorithm 5 explains how nodes are
processed in the BCT. Here, each (BiCC) block has four types
of nodes.

• Cut Vertices : Articulation points in Block Cut-Vertex
Tree.

• Sampled Nodes : Non-Articulation points chosen for
sampling.

• Non-Sampled Nodes : Non-Articulation points which are
not sampled.

• Removed Vertices : Removed vertices in previous reduc-
tion techniques.

The four steps involved in implementation of processing nodes
for estimating farness centrality in BCT are as follows

Step 1: All the removed vertices except few redundant chains
lie in the same BiCC from Facts III.2, III.5 and
III.6. We process removed vertices to the blocks they
belongs in BCT leaving those chains with endpoints
in different BiCCs.

Step 2: Now, every block has their own cut vertices, removed
vertices and for getting sampled and non-sampeld
nodes we need to choose k% of nodes in random
from that block which includes cut vertices. Now, run
BFS in parallel for each sample nodes in BiCCs.

Step 3: The contribution of distances to each node in one
block from all nodes in every other block can be
computed using a bottom-up and top-down traversal
approach, explained in Algorithm. 6. Each block has
at least one representative node which is an articula-
tion point in the BCT. Each representative node in a
block has a subtree in the BCT. Distance contribution
to the nodes in a block come from the nodes in all its
subtrees trough their respective representative node.
Each representative node has two parameters namely
weight and dCarry, where weight is the number of
nodes in its subtree and dCarry is the sum of distances
from all nodes in that subtree to the representative
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Algorithm 5: Processing in Block Cut-Vertex Tree

1 Function processBCT(BCT , IN , CN , RN , k):
2 Step:1 Process removed vertices in G \GR

among Blocks

3 processRemovedVertices(BCT , IN , CN , RN )
4 Step:2 Parallelise Block computations

5 for each block Bi ∈ B do in parallel
6 initialize(Si, Φ)
7 for each cut vertex cj ∈ Bi do
8 append(Si, cj)

9 ki = [k ∗ |Bi|
|GR| ]− |Si|

10 append( Si, {ki vertices choosen u.a.r in Bi} )
11 Run BFS from sj and store all the

distances

12 for each sampled node sj ∈ Si do
13 BFS(Bi, sj)

14 Step:3 Compute Contributions across Blocks

15 ComputeContributions(BCT ) // Refer Algorithm

6

16 Step:4 Parallelise Computing farness values

17 for each block Bi ∈ B do in parallel
18 Compute farness using contributions of

nodes ∈ Bi and /∈ Bi from Line 13,15

respectively

19 for each vertex v ∈ V (Bi) do
20 Compute the farness value of v

21 for each removed vertex rj ∈ Bi do
22 Compute the farness value of rj

node.

To populate the contributions, we start with leaves
in the BCT and traverse till the root (bottom-up),
accumulating the distance contributions of all blocks
it visits as shown in Fig. 3(a) by using sum of
distances from representative node cvi to all nodes
in block Bj sdi,j through Step-2.

Once reach the root node in BCT, traverse from root
to all the leaves (top-down), by using information
from bottom-up traversal as shown in Fig. 3(b).

Step 4: Using the weight and dCarry of all representative
nodes BiCC has farness values of all nodes in that
BiCC are computed which was shown in Lines 17 -
22 of Algorithm 5.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Platform

We implement our algorithms in C++ using g++ version
5.4.0 compiler with -O3 optimization level and -fopenmp flag
with openmpi version 3.1, we use Xeon(R) CPU E5-2640 v4
processor with 128GB RAM as the experimental platform to

Algorithm 6: Computing Contributions across Blocks
Data: BCT and sum of distances from cut vertices to

blocks (sd)
Result: Arrays of weight and dCarry

1 Function ComputeContributions(BCT):
2 Initialize weight and dCarry arrays with 0’s

/* Bottom Up Traversal */

3 for each cut vertex cv ∈ reverse(BFSOrder) do
4 pb = parent[cv]
5 for each child block cb of cv do
6 weight[pb][cv] += |cb|
7 dCarry[pb][cv] += sd[cv][cb]
8 for each child rep. node rn of cb do
9 weight[pb][cv] += weight[cb][rn]

10 dCarry[pb][cv] += dCarry[cb][rn] +
(weight[cb][rn] * dist(cv,rn))

/* Top Down Traversal */

11 for each cut vertex cv ∈ BFSOrder do
12 pb = parent[cv]
13 for each child block cb of cv do
14 weight[cb][cv] += |pb|
15 dCarry[cb][cv] += sd[cv][pb]
16 for each child rep. node rn of pb do
17 weight[pb][cv] += weight[pb][rn]
18 dCarry[pb][cv] += dCarry[pb][rn] +

(weight[pb][rn] * dist(cv,rn))
19 dCarry[cb][cv] += dCarry[pb][parent[pb]]

test our results, this processor is from the Intel family, which
is based on x86 64 architecture and it has 20 cores with each
core running at 2.40 GHz and with active hyper threading it
can support 40 logical threads. The memory hierarchy has 3
level cache system of Intel(R) Xeon(R) CPU E5-2640 v4, L1
cache size is 32 KB per core, L2 is 256 KB per core and a
shared L3 is 25.6 MB.

B. Dataset

We experiment with four different classes of real-world graphs
namely web graphs, social graphs, community networks,
and road networks. The important characteristics of these
graphs are listed in Table I. In Table I the column BiCC
indicates the information regarding bi-connected components
and #,Max,Avg says Number of bi-connected components,
Number of nodes in largest bi-connected component, Average
number of nodes in a bi-connected component of the corre-
sponding graph respectively, In column Identical, Nodes and
Ch.Nodes indicates number of identical nodes and identical
chain nodes respectively, columns of Redundant and Chain
Nodes indicates number of redundant nodes of degree 3 and
4, and the number of nodes in chainss in the corresponding
graph respectively.

Each graph is made simple undirected, unweighted, and
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Fig. 4. Performance of Graphs on (a) 40% Sampling Rate for both approaches, (b) 20%,30% Sampling Rates for cumulative and random sampling approach
respectively.

connected by removing self loops, multiple edges. Directed
edges are converted to undirected edges and if the graph is
disconnected, we added few edges to make it connected. All
the graphs are from the dataset of University of Florida Sparse
Matrix collection [2] and SNAP database[1].

C. Results

We first briefly describe speedup and quality followed by anal-
ysis of graph classes in which we explain how our optimization
is working for each graph class.

(a) (b)

Fig. 5. (a) Random Sampling and (b) BiCC Sampling Approaches

1) Speedup and Quality: We are interested in finding the time
taken by our approaches along with approximation ratio which
says how our estimated values are closer to actual values. The
approximation ratio AR(v) of node v is calculated as the ratio
between its farness actual(v) and farness estimated(v) values
defined as follows:

AR(v) =
farness estimated(v)

farness actual(v)

where farness actual(v) and farness estimated(v) are the ac-
tual and estimated farness values of a node v respectively. The

average approximate ratio (AR) which is termed as Quality
and calculated as follows

Quality =

∑
v∈V AR(v)

n

Speedup is the ratio of time taken by random sampling to that
of our algorithms, all the algorithm are run with 40 threads
on the machine as mentioned in Section IV-A.

Fig. 4 is generated by taking 20% sample nodes for Cumu-
lative and 30% sample nodes for random sampling, which is
comparison of Random sampling vs Cumulative method across
graph classes for quality and speedup. In Fig. 4 the value
on top of histogram is speed up. On the X-axis the graphs
are arranged according to the classes as listed in Table I. On
an average Cumulative provides better quality than random
sampling for all graph classes, when it comes to speedup on
average we get 2.73 for web graphs, 2.0x for social networks,
1.36x for community graphs and 1.96x for road networks.
This speed up is observed by taking 40% of sample nodes
from reduce graph G. We expect speedup will increase as we
increase the number of sample nodes.

2) Analysis of Graph Classes: To study how speedup and
quality is affected by our techniques on various graph classes,
we configured our algorithm in 3 different ways, C+R says we
reduce graph by applying chain reduction and then followed
by removal of redundant 3 and 4 degree nodes, I+C+R says
reduction of graph by removing identical nodes followed by
C+R and Cumulative approach which includes partitioning of
reduced graph into its Bi-connected components. We observe
that quality is affected only when we partition graph using its
BiCC’s because of it’s nature that the shortest paths from nodes
of G in one BiCC to nodes in other BiCCs go through some
cut point so the contribution of one BiCC could be taken via
it’s cut point as shown in Fig. 5 which result in better quality,
for rest of the techniques, quality remains unaffected. Coming
to speedup, we study in detail below.
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Graph name
|V | |E| Identical Redundant Chain BiCC

Nodes Ch.Nodes Nodes Nodes # Max Avg

Web Graphs

web-NotreDame 325728 1082486 202K 22K 6K 200K 168K 134K 3

web-BerkStan 685230 6650145 228K 22K 35K 106K 63K 490K 12

webbase-1M 1000005 2108301 874K 45K 12.1K 875K 53K 342K 9

Social Graphs

soc-Slashdot081106 77360 469180 15K 294 284 40K 30K 47K 4

soc-Slashdot090216 82168 504230 18K 1.2K 328 41K 30K 52K 4

soc-douban 131580 828255 96K 581 90 125K 103K 51K 3

Community Networks

caidaRouterLevel 192244 609373 48K 12K 3K 5K 45K 132K 5

com-citationCiteseer 268495 1156647 18K 2K 3K 72K 45K 220K 7

com-amazon 334863 925872 28K 3.5K 25K 66K 36K 281K 10

Road Networks

osm-minnesota 2642 3304 8 4 0 1534 143 2.4K 20

osm-luxembourg 114599 119666 257 119 0 101K 24K 88K 6

usroads 29164 284142 9 2 6 2186 173 126K 747

TABLE I
LIST OF GRAPHS WE USED IN OUR EXPERIMENTS

a) Web Graphs: We experiment with three web graphs. We
observe that on average web-graphs have a significant number
of BiCC’s. However, the BiCCs have sizes that have a large tail
– a large number of BiCCs have a very small size. This results
in an overhead in processing these BiCCs during Algorithm
6.
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On average these graphs have 44% of identical nodes (I), 54%
of nodes of degree 1 and 2 (C) and 2.4% of redundant nodes
(R). We expect that all the optimizations, except for using
the BiCC based decomposition, will improve the performance.
The impact of each of the optimizations on web-graphs is
shown in Figure 6. As can be seen applying the BiCC
based decomposition results in a small decrease in the overall
speedup compared to not using the BiCC based decomposition.

b) Social Networks: We experiment on three graphs in the
social network class. These of graphs have a large number
of nodes with degree one and two and do not have a large
number of nodes that are 3 or 4 degree redundant on average.
So we avoid redundant nodes removal optimization. Identical
nodes are 38% on average so we apply this optimization. As
it has good number of BiCC components we apply the BCC
based optimization.
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Fig. 7. Relative Speedup of optimizations on Social graphs

After applying I+C optimization, the number of bi-connected
components reduces to hundreds on an average and largest
component has 72% of nodes of the reduced graphs which
implies that the distribution of nodes in BiCC’s are skewed.
As a result performance is effected but better quality than
random sampling is observed, as shown in Fig. 7.
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c) Community Networks: In the class of community networks,
we consider three graphs. These graphs have a good number
of bi-connected components but on average, one of the bi-
connected component covers 80% of nodes which does not
benefit the speedup yet helps in getting slightly better quality
than random sampling. These graphs have a moderate number
of identical nodes, redundant nodes, and nodes of degree one
and two.

So we can apply all the optimization methods I+C+R to obtain
a reduced graph on collaboration network followed by BiCCs..
As a result the number of BiCC’s come down to of 4K but the
largest component covers 78% of nodes in the reduced graph
on average. Figure 8 shows the relative speedup and quality
achieved by our techniques on community graphs.
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Fig. 8. Relative Speedup of optimizations on Community networks

d) Road Networks: Now we move to our final graph class
road networks. These networks by nature have 70-85% of
nodes with degree one and two. Therefore, when we apply
the chain optimization, we get a good speedup. Further, these
networks has few BiCC’s and the largest BiCC covers in
excess of 90% of nodes on average. For this reason, applying
the BiCC based technique slows down the estimation and
does not guarantee higher quality. These graphs have small
number of identical and redundant nodes thereby implying
that the advantage gained by identifying them is offset by the
preprocessing time.

So we apply only the chain optimization on road networks
and BiCC but the distribution of nodes across components
is skewed because of which much improvement in quality is
not observed but a decent speedup is achieved. Fig. 9 shows
the impact of the optimization techniques applied on road
networks.

V. CONCLUSION

In this paper, we studied the gaps present in basic methods
for estimating farness and proposed the BRICS framework w
to provide better estimates of farness than the basic methods
not only in quality but also in speedup. Our methods take the
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Fig. 9. Relative Speedup of optimizations on Road networks

advantage of structures found in real-time graphs in reducing
the processing time. Extension of this problem to dynamic
setting is an interesting study.
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