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Preface

Graph algorithms continue to attract research attention for a vareity
of reasons. In the parallel setting, this attention has led to the devel-
opment of a variety of algorithms in the Parallel Random Access Ma-
chine (PRAM) model, huge efforts in engineering parallel algorithms
for graphs,fff libraries of graph centric algorithms, and the like. The
challenges tackled in this body of work has several dimensions in-
cluding algorithmic issues, choice of data structures, load balancing,
synchronization and runtime issues, library

In recent years, there has been tremendous interest in understand-
ing the difficulty of computing on large graphs in parallel. These
difficulties are accentuated by the inability of the memory systems
of modern parallel architectures to handle the irregular read/write
patterns typical of graph computations. Such a scenario presented
researchers with an opportunity to apply principles from algorithm
engnieering.

The discipline of algorithm engineering studies how an algorithm
interacts with its environment including the system architecture and
identifies heuristics

that help improve the performance of algorithms in practice. Such
heuristics can sometimes be used to also offer a theoretical explaina-
tion to the behavior of the algorithm. When applied to graph algo-
rithms, this allows for the possibility that existing PRAM based algo-
rithms can be revisited for identifying suitable heuristics and algorith-
mic optimizations on modern parallel architectures such as multi-core
CPUs and GPUs.

i
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Indeed this has been in research focus over the last decade with
various success stories. Notable among them include the GPU based
algorithms for shoretst paths and spanning trees by Harish and Narayanan
[32, 80], graph exploration on CPUs and GPUs [84, 109], strong con-
nectivity of directed graphs [18].

A specific line of work that emerged in recent years targets specific
domains of graphs and sees how the knowledge of the input can help
identify further optimizations and heuristics to parallel algorithms.

This book attempts to capture this massive body of work from
one specific view point that is motivated by algorithm engineering for
graphs in the parallel setting.

How to Use this Book

This book is aimed at supporting a upper level project-based graduate
elective or a seminar style elective on parallel graph algorithms. The
material in Chapters 1 and 2 is of broad based nature that quickly
aims to introduce the relevant ideas. Chapter 2 provides a primer
on modern parallel architectures. Readers uninitiated in this detail
will require supplementary reading material that is widely available
on the web.

The rest of the chapters can be taken up collectively or as indi-
vidual case studies. There are also no dependencies between Chap-
ters 3 to 7 and efforts have been made to make these chapters as
self-contained as possible. For this reason, the seminar group or the
class can tailor dsicussion around individual chapters or a collection
of chapters.
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Chapter 1

Introduction

In this chapter, we introduce the field of algorithm engineering start-
ing in the sequential computing setting and parallel algorithm engi-
neering along with suitable examples. We then describe the notion
of domain-driven algorithm engineering that is gaining attention in
the parallel computing community. we use standard notation, see
e.g., [46], in describing the asymptotic run time of an algorithm.
All the graphs we mention are simple and undirected. For a graph
G = (V,E), we let the number of vertices (or nodes), |V |, be n and
the number of edges, |E|, to be m. Other terminology with respect
to graphs, such as paths, diameter, degree, cycle, subgraph, will be
defined as needed in the rest of the book. For notation on graphs that
we use without any explicit definition, we use standard notation on
graphs [159].

We assume that the reader is familiar with some of the basic graph
algorithms such as those for traversals, shortest paths, spanning trees,
and the like. The book by Cormen et al. [46] is a good source of such
material.

1



2 CHAPTER 1. INTRODUCTION

1.1 Algorithm Engineering

Algorithm design and analysis tries to analyze the behavior of the al-
gorithm on worst-case inputs, best-case, and occasionally on average-
case inputs. Moreover, these analyses are communicated via the
asympototic behavior of the algorithm. Of these, the worst- and
best-case analysis sometimes corresponds to an input, or a class of
inputs for which the algorithm indeed meets its worst, and best-case
behavior respectively. For average case analysis, the big question
that algorithm analysis has to grapple with is what defines the aver-
age case. Is it that every input is equally likely?, or that a specific
behavior of the input in the context of the algorithm is equally lik-
ley?. These troubling questions mean that the average behavior of an
algorithms is less studied in general. Such gaps are also not likely to
satisfy the inquisitiveness of practitioners as to the practicality of an
algorithm with sound theoretical gaurantees, or the basis to choose
one algorithm over another in practice.

A closely related discipline is algorithm engineering that deals
with the study of algorithms and the computers that are used to ex-
ecute the algorithms. One often tries to understand and evaluate the
options available and make the algorithm benefit from the underlying
architectural characteristics of target machines. In a departure from
average case analysis, algorithm engineering can indicate reasons for
the behavior of algorithms on particular classes of inputs based on
the behavior of the input, compare algorithms for their differences in
behavior across input classes, study the practicalities of various algo-
rithms beyond asymptotics on input of varying scales, and the like.
Often times, it is also possible to observe phenomenon in practice
that can help one formulate conjectures and hypotheses that result in
better algorithms. This is captured by Figure 1.1 that indicates the
scope for algorithm engineering1.

We now provide a concrete example of algorithm engineering via
the work of Crescenzi et al. [49] for finding the diameter of a graph.

1Figure 1.1 is credited to G. Italiano from his slides.
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Figure 1.1: An illustration of the PRAM model.

Traditional algorithms that run in O(mn) time are easy to design
for this problem. One can reduce the time to O(nω) where ω refers
to the exponent of matrix multipliation. In an interesting result,
Crescenzi et al. show that on most real-world graphs one can reduce
the number of BFS traversals required by observing the impact of
prior BFS traversals. In paritcular, denote a BFS tree rooted at node
u of a graph G by Tu. Let the height of Tu be denoted as eccentricity
of u, ecc(u). Define F (u), the fringe set at u as the set of nodes
at maximum distance from u. In other words, F (u) := {v|d(u, v) =
ecc(u)}. If we further define Bi(u) as the maximum eccentriticy
of nodes in F (u), then it can be observed that for any nodes v, w
at distance i and j from u, then d(v, w) ≤ Bi(u). Based on this
observation, Crescenzi et al. show that for any x, i and k such that
x ∈ Fi−k(u) for 1 ≤ i < ecc(u) and 1 ≤ k < i with ecc(x) > 2(i− 1),
there exists a node yx in Fj(u) such that d(x, yx) = ecc(x) with j ≥ i.
This last observation in turn helps in specifying a good termination
condition for the algorithm for finding the diameter of G as follows.

Let y be a node in ∪ecc(u)j=i Fj(u) with maximum eccentricity ecc(y) >
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2(i−1). Then the eccentricity of all nodes in ∪i−1
j=1Fj(u) is not greater

than ecc(y). This indicates that as one traverses the BFS tree Tu in a
bottom-up fashion, at each level i, we can compute the eccentricities
of all its nodes. if the maximum eccentricity e is greater than 2(i−1)
then we can skip traversing the remaining levels as the eccentricities
of all the nodes in such levels cannot exceed e. The running time of
the algorithm based on these ideas is O(nm) in the worst case, as
in the worst case, we have to perform a bfs starting from “almost”
every node of the graph. On most real-world graphs, the algorithm
performs under 1% of the BFSs. For more details, we refer the reader
to [49].

Two important observations are due about the algorithm of Crescenzi
et al. Firstly, the run time of the algorithm is a function of the num-
ber of BFS traversals required which varies significantly based on the
input instance and its properties. Secondly, however, the run time of
the algortihm of Crescenzi et al. [49] meets the worst-case of O(mn)
for various classes of graphs as identified in [49, Section 3]. This sit-
uation best illustrates the scope for algorithm engineering as specific
heuristic approaches can help run the algorithms fast but such be-
havior may not be analyzed in the traditional realm of asymptotic
analysis of algorithms. Some may posit that algorithm engineering
should provide algorithms that not only execute faster in practice
but also base the faster run times via theoretical guarantees. In this
book, we take a lenient view that some of the speed of the algorithms
may not be applicable to all instances, and may not be explained by
sound theoretical guarantees. This view agrees to the view espoused
via Figure 1.1. We feel therefore that algorithm engineering as a field
lies at the boundary of theoretical and practical Computer Science.

1.2 Parallel Algorithms and Parallel Algorithm
Engineering

The recent decades have opened up exciting possibilities for algorithm
engineering with the emergence of parallel computing. One of the
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reasons for this is the widespread availability of parallel architectures
such as the multi-core computers, accelerators such as the GPUs,
and other emerging models such as the Intel Xeon fused CPU-FPGA
architecture, and the like. In addition, parallel computing is now
seen as an essential tool to handle scale issues arising out of ever-
increasing size of data sets that correspond to real-world phenomenon.
Parallel computing is now practiced in various domains starting with
fundamental problems such as sorting to applied areas such as deep
learning and bio-informatics.

This situation has meant that studying the performance of several
parallel algorithms on modern parallel architectures has gained pace.
In the context of parallel algorithms, design and analysis of parallel
algorithms flourished in the earlier decades predominantly in the Par-
allel Random Access Machine (PRAM) model. The PRAM model,
an illustration of which is shown in Figure 1.2 is a natural extension
to the standard RAM model of computation. In the RAM model, we
consider a computer connected to a memory unit via a bidirectional
bus. The PRAM model, see also Figure 1.2, extends this notion by
having several processors share a common pool of read/write memory
via individual bidirectional buses. The PRAM model also assumes
that all the processors are synchronous in nature, and the latency
to read/write any memory cell by any processors is identical. Fur-
ther fine-grained categorization of the PRAM model is introduced by
the support for concurrent reads and writes. In the simplest case,
the model prohibits any concurrent reads and writes, resulting the
EREW PRAM model. The CREW PRAM model supports concur-
rent reads but forbids concurrent writes. The CRCW PRAM models
allow concurrent writes also subject to additional semantics such as
COMMON, ARBITRARY, PRIORITY and the like. For a more de-
tailed background on this model, we refer the reader to the excellent
treatise on parallel algorithms by JaJa [91].

The PRAM model provides wide leverage to algorithm design-
ers. However, the model is not close to practical realizations in many
aspects. To address this issue, several bridging models such as the
Bulk Synchronous Parallel (BSP) model of Valiant [151], the LoGP
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Figure 1.2: An illustration of the PRAM model.

model [52], the QRQW model [71] are also studied. The bridging
models bring in aspects of network latency, thread level work imbal-
ance, and penalty for concurrent operations into the algorithm design
and analysis.

PRAM algorithms have been successful at opening up the inher-
ent as well as latent parallelism in a variety of computations. For
instance, Wyllie [164] highlights a new technique to design an effi-
cient parallel algorithm for the seemingly sequential problem of prefix
sum/scan. However, as the PRAM model hides a lot of details such as
communcation delays, latency of memory reads/writes, syncrhoniza-
tion overheads across the processors, it is often not clear as to the
practical efficacy of the algorithms designed in the PRAM model. It
was quickly observed that assumptions concerning the PRAM model
are not realized in most parallel architectures. For instance, when
one considers the list ranking algorithm of Wyllie [164] via pointer
jumping on a computer that can support only T threads running si-
multaneously, one needs to be watch our for inconsistencies due to
thread scheduling decisions. These can be mitigated by using expen-
sive constructs such as locking or atomic operations which do not
find a place in PRAM algorithms per se. Such additional steps and
other efficient ways to counter these difficulties are part of several
studies [129,135].

To summarize, PRAM algorithms offer a good way to expose the
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parallelism in a problem. However, as the number of concurrent and
simultaneously executing threads do not scale beyond a fixed number,
implementing PRAM algorithms on modern parallel architectures re-
quires incorporating additional techniques that assure correctness, ef-
ficiency in practice, and the like. These issues are addressed in several
ways over a large number of prior works for a variety of problems in-
cluding sorting [105] and matrix multiplication [31].

Parallel algorithm engineering has been helpful in identifying sev-
eral aspects of PRAM based parallel algorithms that have to be rein-
terpreted in how they are implemented so as to ensure correctness,
account for multi-threaded nature of execution and the like. It is
however realized that further gains are possible when one can also
reinterpret steps of the PRAM algorithms depending on the practical
cost of these steps. As an example, consider the optimal list ranking
algorithm designed in the PRAM suggests using an optimal PRAM
algorithm for finding a maximal independent set of a linked list. This
requires O(log n) parallel time and O(n) work. However, Banerjee
and Kothapalli [15] argue that a similar effect can be achieved by
using a Fractional Independent Set (FIS) of a linked list instead of
an MIS given that an FIS can be obtained in O(1) parallel time and
O(n) work. It is true that an FIS has a size that is much smaller than
an MIS but the overall approach works since the smaller size of an
FIS is offset by the quick computation to get an FIS.

1.3 Domain-Driven Algorithms

From the earlier sections, we understand that traditional algorithm
design did not take structural properties of the input into account.
Such properties turn out to be extremely interesting for graph algo-
rithm design and implementation. A recent development to assess
this opportunity is to understand the relation between the structural
properties of the input and the impact on the computation. The ba-
sic premise of such a step is to view the design and development of
a parallel algorithm as being impacted by three parameters: (i) the
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input characteristics, (ii) The architecture of the computing platform,
and (iii) the problem. For instance, if the problem is supposed to be
solved on an accelerator, the choice of algorithm may differ compared
to if the problem is supposed to be solved on a multi-core CPU.

So far, only (iii) and (ii) are the only aspects that were consid-
ered important. The input characteristics, item (i) above, were rarely
considered. The only exceptions are the algorithms for sparse graphs
designed by Johnson (cf. Johnson ). There were instances in the lit-
erature where item (ii) above has been studied exclusively. Greiner
(SPAA 1994) considers modifications to the parallel connected com-
ponents algorithm of Shiloach and Vishkin (Shiolach and Vishkin, )
when implemented on symmetric multi-processor systems. Similar
approaches can be found in Soman et al. [145].

In this book, we make the case for the nature of input to be also
used as an aid in designing and implementing algorithms. We call such
algorithms as domain-driven algorithms where the best algorithm for
a given problem depends also on the nature of input in addition to
the usual parameters of the algorithm and the target architecture.

Domain-driven algorithms can add specific steps to the computa-
tion to address the nature of input they are designed to work for. For
instance, the algorithm may preprocess the input suitably followed by
the computation, and a possible post-processing. A domain-driven al-
gorithm may not only alter the input, but also can call for a different
computation on the altered input with the guarantee that the result
of the new computation on the altered input is identical to the output
of the actual computation on the original input. It has to be noted
that such algorithms may exhibit a good performance only for inputs
coming from specific classes for which it is designed for. For other in-
puts, at best, these algorithms may have the same runtime as the best
possible algorithm for the problem. These algorithms may be more
suitable in either the asymptotic sense or in the practical efficiency or
both for the domain of inputs they are aimed at and possibly meet,
or even exceed, the asymptotic worst case run time on inputs coming
from other domains.

Domain driven algorithms typically benefit from the following
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techniques.

� Reduce: An algorithm can reduce the amount of computation
on inputs from specific domains. In this scenario, an existing
algorithm that has a large worst-case asymptotic bound will
now has a better bound on the run time owing to the reduced
computation.

� Reuse: An algorithm may identify elements of the computation
that can be deduced from the results of other computations
performed by the algorithm. In this case, the results of such
computation can be reused to obtain the results of computation
that has not been performed explicitly. This technique is useful
when computation is expensive but deducing the result of a
computation as a function of the results of other computations
is easy.

� Reinterpret: In this scenario, the domain-driven algortihm may
replace certain steps that are typically expensive in practice
with alternative less expensive steps. It is likely that the result
of the less expensive alternatives do not exactly correspond to
the output of the steps that they replace. In this case, one has to
resort to a post-processing phase that aims to remove the errors
induced by using the results of the non-exact computation. Such
al algorithm will be faster in practice if the post-processing step
also is efficient in practice.

There has been some recent progress in this direction in the field
of parallel computing. One aspect that is making an impact in re-
cent years is to take into account some of the structural properties
of graphs arising from real-world phenomenon such as road networks,
social networks, and web grpahs. Examples of some of these proper-
ties may include being sparse, having a particular distribution of the
degrees of the vertices, having a large number of k-connected com-
ponents for some small k such as 2 or 3, the way distances between
vertices behave, having long maximal paths, and the like. One or
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more of these properties may help in arriving at better algorithms
by either reducing the size of the graph or the space of exploration
thereby reducing the amount of computation, reusing computation
on nodes of degree at least 3 for nodes of degree at most 2, and re-
placing breadth-first spanning trees with randomly chosen subgraphs.
Throughout the book, we will provide more specific examples of such
techniques.

1.4 Relation to Other Fields

We also would like to distinguish the field of algorithm engineering
with other related disciplines. We consider fileds such as programming
for performance, cacghe-oblivious algorithms, and resource-oblivious
algorithms.

1.4.1 Programming for Performance

Programming for performance aims to implement algorithms on tar-
get architectures by also taking into account the behaviour of the
architecture. To this end, one often considers a host of tehcniques
at various levels of the program while most of the algorithm remains
unchanged. Some of these techniques are:

� Program Space Optimizations: To achieve good performance
one has to understand the number of threads to use, thread
group size if applicable, thread work assignment in terms of
affinity and the like. The space of these optimizations could be
highly unstructured so much so that one may have to explore the
entire space to find the best possible values for the parameters
considered. Recently, a few techniques such as roofline opti-
mization [41] that can explore space efficiently are presented.

� Compiler Optimizations: These techniques aim to address is-
sues in code transformation such as loop unrolling, loop switch-
ing, dead code/instruction elimination, tail call elimiation, func-
tion inlining, and the like. (A list of such features the LLVM
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Compiler supports is available at [106].) Additional optimiza-
tions such as register allocation, instruction scheduling, auto-
vectorization are also included in this set but are very dependent
on the target machine.

� Memory Hierarchy Optimizations: These techniques attempt
to understand how to increase the memory system throughput
by addressing issues related to the cache size and cache line
size, memory read and write behavior, cache associativity, inter-
thread read/write affinity and shared caches, and the like.

A good example of illustrating memory hierarchy based op-
timizations is the tiled approach for matrix multiplication as
demonstrated by the CUDA source code [1]. In this case, for
computing the product of two square matrices A and B, the
program fetches parts of the matrices into the shared memory,
uses these parts to compute partial output, and then brings in
the next parts of the matrices into the shared memory. The tile
size is dictated by the amount of shared memory available on
the device.

It can be noticed that many of the above optimizations are often
highly specific to individual architectures and hence the optimizations
cannot be ported to other comparable architectures directly. Further,
there is also a significant dependence on the sequence these optimiza-
tions are applied and the resulting gains in performane [124]. For
these reasons, programs that include the above optimizations are of-
ten handcrafted. It is therefore not surprising that such programs are
often created as part of architecture supported libraries such as the
Intel Math Kernel Library for matrix computations [2], the NVIDIA
cublas library for BLAS routines [21, 118], and the like. This situa-
tion poses a great difficulty for also practitioners as the program has
to change significantly across machine models.
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1.4.2 Cache Oblivious and Resource-Oblivious Algo-
rithms

In a related area, the work on cache-oblivious algorithms aims to de-
sign and implement algorithms that can work well for any memory
hierarchy of a given target architecture. These algorithms are ana-
lyzed by parameterizing the sizes of the individual members of the
memory hierarchy. For instance, M and B are used to denote the
sizes of any two consecutive levels of the memory hierarchy with the
assumption that M ≥ B2. (M is the size of the slower memory.) It
is further assumed that the slower level always transfers B words of
data together to the faster level. Under these mild assumptions, one is
often interested in designing and analyzing algorithms for the asymp-
totic number of cache misses incurred by the algorithm in terms of
the input size and B. One popular design technique in the algorithm
design process is divide and conquer. When using divide and con-
quer, the algorithm recurses on the sub problems and at some point,
the size of the subproblems reduces to fit into B inducing no further
cache misses.

Algorithms for problems such as sorting, matrix transpose, and
matrix multiplication, are desgined in this model by Frigo et al. [63].
While the model is useful for such algorithmic explorations, experi-
mental studies [104] notes that cache-aware algorithms tend to out-
perform the cache-oblivious algorithms. The reasons for this phe-
nomenon include factors beyond the scope of the model such as hy-
perthreading, TLB misses, cache associativity, and the like.

1.4.3 Massively Parallel Algorithms

Distributed computing is one of the traditionally closest fields to par-
allel algorithms. The big difference between the two is the provision of
shared memory in parallel computing whereas in distributed comput-
ing processors that are typically assumed to be identical and commu-
nicate via messages to perform a computation. In most distributed
computing models, the parameter of comparison is the number of
rounds of communication required. More formally, in the distributed
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computing model, we have n processors that are connected with com-
munication links. Computation proceeds in rounds where in each
round, each processor can send messages to each of its neighboring
processors, perform local computation, and receive messages from its
neighbors. The number of such rounds required to perform the com-
putation is measured as the round complexity of the algorithm.

The LOCAL variant of the distributed computing model does not
put any restriction on the size of the messages that can be sent/received
in any one round. It assumes that therefore each link has unlimited
bandwidth and hence the network congestion is completely ignored.
The aspect of locality of information is what is of interest in this
model. In this model, the main question to study is to see how many
rounds of communication are required to solve a given problem by
collecting all the required pieces of information. On the other hand,
the CONGEST model restricts the bandwidth of each link to O(log n)
bits where n is the size of the input.

More recent and practical variants of the distributed computing
include the Map-Reduce model [54], the k-machine model [101], and
the Massively Parallel Compting (MPC) model [97,165], among oth-
ers.

The Map-Reduce model requires all computations to be expressed
via two functions: a mapper and a reducer. The framework allows
for automatically distributing the computation across a set of ma-
chines. The mapper in the Map-Reduce model reads the input data
and processes the data to create a set of <key,value> pairs. These
<key,value> pairs are then fed to the reducer applies another user de-
fined function on these pairs to produce the output. The framework
includes routines to manage the runtime and also resilience to faults.
The Map-Reduce framework is a good way to create a large cluster
out of commodity machines.

The k-machine model can be seen as formalizing the Map-Reduce
model where there are k machines that are connected as a clique with
each link having a bandwidth of B bits. The input is assumed to be
partitioned across the k machines usually in equal volume according
to some model: uniform where each piece of input is mapped to any
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of the k machines with uniform probability, or an adversarial model
where the mapping of input to machines is assumed to be in the
control of an adversary. The parameter of interest is the number of
communication rounds required to solve a given problem.

The Massively Parallel Computing (MPC) model is similar to the
k-machine model in some respects. The MPC model is defined by a
set of machines with each machine limited to at most S words of mem-
ory. The machines are connected pairwise interconnected resembling
an all-to-all communication network. Communication and computa-
tion in this model are synchronous. In each round, each machine can
receive up to S words from other machines, performs local computa-
tion, and sends up to S words to other machines. A key element of
this model is that both the memory upper bound S and the number
of machines used are assumed to be strongly sublinear in the input
size N . In other words, S = O(N1−ϵ), for some constant ϵ, 0 < ϵ < 1.
This restriction allows the model to study modern large-scale compu-
tational problems where the input is simply too large to fit in a single
machine and is much larger than the number of available machines.

For graph problems with n and m denoting the number of nodes
and edges respectively, notice that N = Õ(m + n) where m is the
number of edges and n is the number of nodes of the input graph. The
number of rounds needed to solve many graph problems of interest
varies significantly based on how S relates to the number of nodes
(n) of the input graph. Specifically, three regimes for S have been
considered in the literature.

� Strongly superlinear memory (S = O(n1+ϵ)): In this regime,
it is assumed without loss of generality that the input graph is
highly dense, i.e., m ≫ S ≫ n such that S is strongly sublin-
ear in m. (Otherwise a single machine can solve the problem
using a space-efficient sequential algorithm.) Even though the
input graph is dense, the fact that each machine has O(n1+ϵ)
local memory makes this model quite powerful. For example, in
this model, problems such as minimum spanning tree, MIS, and
2-approximate minimum vertex cover, all have O(1)-round algo-
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rithms [81,97]. Input filtering is a main technique that is useful
in this regime. In filtering, one iteratively sparsifies the input
until the entire problem fits on one machine. Once such a size
reduction is achieved, the problem is solved using a standard
sequential algorithm. For example, for connected-components,
one can just throw out edges locally, preserving the global con-
nectivity, until the graph has size at most s.

� Near-linear memory (S = Õ(n)): Problems become harder
in this regime, but symmetry breaking problems such as MIS,
approximate minimum vertex cover, and maximal matching can
still be solved in O(log log n) rounds [9, 50, 67, 68]. Further-
more, recently Assadi, Chen, and Khanna [10] presented an
O(1)-round algorithm for (∆ + 1)-vertex coloring.

� Strongly sublinear memory (S = O(nϵ)): Given the re-
striction on the space, problems seem to be much harder to
solve in this regime. There are also several open questions re-
lated to the existence of sublogarithmic-round algorithms for
certain graph problems in this regime. For example, it is con-
jectured that the problem of distinguishing if the input graph
is a single cycle vs two disjoint cycles of length n/2 requires
Ω(log n) rounds [69, 165]. However, even in this regime, Ghaf-
fari and Uitto [70] have recently shown that MIS does have a
sublogarithmic-round algorithm, running in Õ(

√
log ∆) rounds,

where ∆ is the maximum degree of the input graph.

1.5 This Book

There exists today a vast body of knowledge that fits in the theme of
semantic parallel graph algorithms across architectures. Various re-
saerchers have used a range of techniques motivated by the properties
of graphs such as having a large number of biconnected components,
having a short diameter, having a scale-free nature of degree distribu-
tions, and the like. Some of the work done by the author in the last
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five years is centered around the design and development of parallel
semantic algorithms for a variety of problems on both graphs and
matrices.

The book considers a wide spectrum of graph problems such as de-
compositions, connectivity, shortest paths, metrics, and enumerative
problems. The intent of this book is to discuss the specific properties
of graphs that enable algorithms for particular problems to work well
in practice.

The rest of the book is organized in the following manner. In
Chapter 2, we provide a brief overview of the data structures used
for representing graphs in parallle programs and also summarize the
features of the parallel archtiectures that are used in the experiments
reported in the rest of the chapters.

In Chapter 3 we start by describing parallel algorithms for ar-
riving at an ear decomposition and ONE MORE of a graph. The
algorithms we present here outperform the current best-known par-
allel algorithms based on the PRAM model.

In Chapter 4, we the study of graph k-connectivity algorithms
for k = 1, 2, and 3. In this case, we also show how even the re-
sult of Cheriyan and Thuirmella [38] that uses multiple breadth-first
traversals is not very conducive in terms of practical performance.
The algorithms presented in Chapter 5 try to use sampling and post-
processing to arrive at the k-connected components of the graph.

In Chapter 6, we study how one can improve the practical perfor-
mance of shortest path algorithms. The solution presented here uses
ideas from Chapters 3 and 4 to speedup existing algorithms for find-
ing the shortest paths of a weighted graph in parallel. Interestingly,
these techniques can be applied to any parallel algorithm for shortest
paths.

In Chapter 7, we focus on various graph metrics such as pager-
ank, diamter, and centrality. We propose techniques for computing
the pagerank of the nodes of a directed graph that aim to identify
nodes that are identical with respect to the computation, halt com-
putation on nodes that coverge, and also propose an ordering of the
computation that helps in faster convergence. The section on comput-
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ing the diameter of an undirected graph is based on the techniques of
Crescenzi et al. [49]. For finding the betweenness-centrality of nodes
in a graph, we will once again use ideas from Chapters 3 and 4 and
from the work of Sariyuce et al. [134].

Chapter 8 discusses work in the direction of enumerating small
sized subgraphs of a given graph such as counting the number of
triangles, or small induced subgraphs, and the like. This chapter is
based on the works of Madduri et al.

The book ends with concluding remarks in Chapter 9.
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Chapter 2

Preliminaries

2.1 A Short Primer on Modern Architectures

Parallel architectures have been in wide use for the last 15 years owing
to multiple factors. The conventional wisdom in computer architec-
tures that fuelled the growth of microprocessors could not be contin-
ued any further. In particular, (i) frequency could not be scaled up
any more in what is termed as the “frequency wall”, (ii) the power
dissipated was growing at an alarming rate in what is termed as the
”power wall”, and (iii) the time it takes to transfer data from the
memory to the CPU is increasing enormously in what is termed as
the “memory wall’. Architects hence had to explore other possibili-
ties such as multi-core CPUs to address the three challenges. These
multi-core CPUs are typically single board designs with multiple cores
on each board. The multiple cores are interconnected via particular
topologies in some cases, and also often share one (or more) cache(s).
We will discuss these in more detail in the subsequent sections.

Around the same time, the growth of accelerators led to their mas-
sive adoption in various applications and domains. NVIDIA GPUs
stood out for reasons such as performance per Watt of power and low
physical cost. Using GPUs for general-purpose computations picked
pace along with sophistication in programming platforms, libraries,

19
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tools, and techniques over the years.

In this chapter, we review concepts related to the high-level ar-
chitectures of CPUs and GPUs that we use in experiments in the rest
of the book. As many of these architectures are revised every year or
sooner, we will highlight commonalities across these revisions. Such
a view will help us also help us relate the experiments across machine
models.

2.2 Multi-core Architectures

Multi-core architectures refer to CPUs that house multiple indepen-
dent cores on a single chip. In this chapter, we will focus mostly on
the Intel CPU architecture. From 2007 to 2016, Intel used a tick-
tock model to enhance its multi-core architectures line since the 65
nm fabrication model. Each tick corresponds to a new microarchi-
tecture absorbing advances in manufacturing process technology, re-
ducing the fabrication width. The corresponding tock uses the new
microarchitecture to support additional hardware features in terms
of instructions, thereby improving application performance at the ar-
chitecture level, energy efficiency, and the like. Typically, a tick and
a tock span two years. Below, we summarize the features introduced
at the various tock cycles.

The Intel architecture Yona used the 65 nm fabrication technology
to house two cores with a shared L2 cache of 2 MB. The Intel Penryn
architecture developed with 45 nm fabrication technology CHECK

The 4-core Nehalem architecture developed using the 45 nm fab-
rication technology introduced a simultaneous multi-threading tech-
nique, or hyper-threading such that each core can support two physi-
cal threads of execution. This architecture also introduced SIMD ex-
tensions to the instruction set that benefit programs that have SIMD
nature of computations. The four cores have separate L1 and L2

caches of size 32 KB and 256 KB respectively and share an L3 cache
of size 8 MB.

Using the 32 nm process technology, the Sandybridge, with four
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Figure 2.1: The block diagram of the Intel Nehalem microarchitec-
tures.

cores, included an integrated graphics processor, support for vector
operations, and a shared L3 cache of 8 MB. Besides, it introduced
several instructions that affected the throughput of cryptographic
operations that arise in algorithms such as AES 1 and RSA [131].
This architecture’s cores are interconnected with a ring-based inter-
connect containing separate rings for data, request, acknowledgment,
and snooping.

The 22nm based microarchitecture named Haswell, released in
2013, introduced further enhancements, including support for ad-
vanced vector instructions. These instructions, often called AVX2
Haswell instructions, expand vector operations to 256 bits apart from
scatter/gather and support for shift operations. The microarchitec-
ture also comes with an advanced power-saving mechanism by adding
additional low-power states. Such mechanisms also made it possible
to create form factors supporting thin and light ultrabooks.

Broadwell The Skylake microarchitecture uses the 14 nm manufac-
turing process technology introduced by the Broadwell architecture.

1See https://www.nist.gov/publications/advanced-encryption-standard-aes
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Figure 2.2: The block diagram of the Intel Sandybridge microarchi-
tectures.

Figure 2.3: The block diagram of the Intel Haswell microarchitectures.
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Figure 2.4: The block diagram of the Intel Broadwell microarchitec-
tures.

While the default configuration is for four cores, the architecture ex-
tends up to 18 cores. This architecture extended support for AVX2
instructions to 512 bits compared to 256 bits for Haswell. Further re-
finements to Skylake include the Coffee Lake and Kaby Lake models.

From 2016 onward, the tick-tock model is replaced with a three
step cycle called the process – architecture – optimization model. The
first two steps of the three step cycle are manufactured in the same
process technology regime while the third step introduces improve-
ments in the process technology. Further progress along the 10 nm
process technology is scheduled to release in the second half of 2019.
The code name for this architecture is Cannon Lake.

We use the Intel(R) Xeon(R) E5-2650 CPU in our experiments in
later chapters of this book. The Intel Xeon E5-2650 CPU has 128 GB
RAM and a memory bandwidth of 68 GB/s. It is a dual-processor
where each processor has 10 cores, and each core can process two
threads using hyperthreading. Each core operates at 2.34 GHz, which
can be boosted to 3 GHz using turbo boost technology. It has 64 KB
L1 cache per core, 256 KB L2 cache per core, and a shared 25 MB L3
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cache. It uses PCI Express 3.0 with lane combinations x4, x8, and
x16 that connects processors, PCI lanes, and PCI devices. We use
this CPU for our experiments on multi-core CPUs.

2.2.1 Programming the Intel Multicore

We use OpenMP 3.0 to program the CPU. The OpenMP 3.0 specifi-
cation inlcudes three main components: a set of compiler directives,
a set of runtime routines, and a set of environment variables. Com-
piler directives allow the programmer to indicate parts of code that
can run in parallel, synchronization of work among multiple threads,
distributing the loop iterations across threads, and the like. The run-
time routines allow the programmer to query the (unique) identifier
of a thread, lock handling, querying wall clock time, and the like.
The environment variables allow the programmer to set the number
of threads the program can use, thread wait policy, stack size and the
like. An example OpenMP program using the C language is shown
in Algorithm 2.2.1.

1: #include <omp.h>
2: main(int argc, char *argv[]) {
3: int numthreads, myid;
4: #pragma omp parallel private(myid) {
5: myid = omp get thread num();
6: printf(“Welcome to the book, Happy Reading, from thread %d\

n”, myid);
7: }
8: }

2.3 Accelerators

In this section, we will review existing works that have used a variety
of accelerators, and move on to GPUs and GPU computing.
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2.3.1 Accelerator Based Computing

With the availability of general-purpose programming languages, ma-
ture system software stack consisting of compilers, debuggers, and
related utilities, the CPUs have occupied the core of the computing
space. However, the nature of the CPU execution does not suit all
computational patterns. Using special-purpose hardware helps better
realize certain computational patterns that frequently arise in specific
domains. The name given to such special-purpose hardware units de-
signed for specific computation purposes is coprocessors. Coproces-
sors serve as an auxiliary processor that is separate from the CPU
and extend the CPU functionality. Allowing for coprocessors helps
specialized users enhance their hardware by spending extra money
on custom hardware components. In some cases, with advances in
technology, it is possible to integrate the coprocessor and the main
processor. Often, a coprocessor is transparent to the user, but users
could write instructions that execute directly on a coprocessor in some
cases. These instructions can be in assembly language or some high-
level language. A coprocessor can also sometimes provide a comput-
ing engine that can surpass that of the main processor on a range
of computations because of significant architectural differences. The
floating-point coprocessor is an excellent example of the former, and
the graphics coprocessor is a stand-out example of the latter, as we
shall describe in more detail in Subsection 2.3.1.

Popular hardware coprocessors include floating-point coproces-
sors, network coprocessors, graphics coprocessors, and more recently
cryptographic coprocessors, and a coprocessor for regular expression
matching.

Graphics Coprocessors

Producing images on a computer screen requires a significant number
of graphics operations such as rendering, shading, coloring, culling,
and the like. These requirements also grew as computer gaming
started to become popular. Currently, the demand is in rendering
complex game scenarios at resolutions exceeding that of 60 frames per
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second. Fortunately, over the last four decades, graphics algorithms
and their execution models went through significant improvements so
that real-time rendering is possible at a minimal cost to the user.

In the early days, graphics operations such as drawing lines, wire-
frame diagrams, and bitmaps were made possible by NEC via the
82720 graphics controller and is usable on Intel machines. Over the
1980’s and the 90’s, their functionality includes support for 2D and
3D graphics to hardware-accelerated graphics. Advances in manufac-
turing technologies helped increase the range of tasks that graphics
coprocessors could handle. Software libraries such as OpenGL [162]
were also developed around the same time and, in some cases, sup-
ported by graphics coprocessors.

The nature of graphics computations helped the emergence of
graphics coprocessors immensely. Graphics operations usually are
done in a pipelined manner, starting with pixels, composing them
into triangles, applying surface shading, textures, colors, and the like.
The hardware of early NVidia graphics processors

At present, three key players, Intel, AMD and NVidia dominate
the GPU space. Intel also has been able to achieve a tighter in-
tegration of the GPU onto the CPU motherboard in its Westmere
(CHECK) architecture. Doing so has advantages, including reducing
the communication time between the CPU and the GPU. AMD also
offers the APU (expand), which is also a fused CPU+GPU model.
On the other hand, at present, NVidia is still designing increasingly
more computationally powerful stand-alone GPUs. The latest GPUs
from NVidia called the Kepler or GTX 680, can offer up to 2 TFLOPs
of computing power at its peak.

2.3.2 General Purpose Computing on Graphics Pro-
cessing Units (GPGPU)

In the previous section, we have provided a brief description of var-
ious Intel multi-core CPU micro-archtiectures. This section briefly
describes the graphics coprocessors that gained significant research
attention in the past decade or more. Notably, today’s NVIDIA
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graphics coprocessors offer a raw computational power that exceeds
that of general-purpose CPUs by order of magnitude.

The vast difference is partly due to the fundamental differences
in GPUs’ design principles and CPUs. As GPUs aim at the video
games industry, they require high throughput. Therefore, GPUs need
to feed the data from memory to processors. Therefore GPUs support
memory bandwidth that is far higher than CPUs and includes small
caches that allow faster data access to multiple threads. The CPUs,
on the other hand, are designed to minimize the latency of a single
thread. Such support is possible due to large caches and is called a
latency oriented design.

Typical NVIDIA GPU Architecture The NVIDIA GPUs con-
sist of a set of Streaming Multiprocessors (SMs), each with multiple
Scalar Processors (SPs). A core is another name for an SP. (The name
SMXs replaced the earlier name of SMs). The cores within each SM
have access to a large register set and shared memory. Each SM is
also equipped with multiple functional units to perform arithmetic
operations, control units, and an instruction cache. Each SMX has a
hardware scheduler which schedules 32 threads at a time. This group
is called a warp, and a half-warp is a group of 16 threads that execute
in a SIMD fashion. Figure 2.5 shows a typical GPU architecture. The
latest GPU offering from NVIDIA called the V100, has 5,376 cores
arranged as 64 cores each in 84 SMXs. Table 2.1 shows the number
of cores and SMXs in some of NVIDIA’s recent GPUs.

The Tesla K40C GPU has 2880 compute cores arranged as 192
cores each in 15 SMXs. It has 12 GB onboard memory and 64 KB of
on-chip memory per each SMX. All SMXs share an L2 cache of 1.5
MB.

Memory Hierarchy The NVIDIA family of GPUs comes with a
deep memory hierarchy and offers various memory resources with
varying read and write costs and characteristics. Figure 2.6 shows
the various memory resources of a typical GPU. The entire GPU
card has a global memory that every SM reads/writes. Typical sizes
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Figure 2.5: Memory hiearchy of a typical GPU.
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Figure 2.6: Memory hiearchy of a typical GPU.

of this global memory are of the order of GBs. However, the latency
of this memory depends on the nature of access. Access to this global
memory by a half-warp of threads to a contiguous 128 Byte block
is termed as coalesced access. Under a coalesced access, the average
latency suffered by any thread in a half-warp is small as one transac-
tion from the memory controller suffices to satisfy the requests of the
entire group of threads. On the other hand, if threads in a half-warp
request arbitrary locations in the global memory, then the memory
controller has to perform multiple transactions in serial order, thereby
increasing the latency incurred by such thread groups. This situation
refers to uncoalesced access.

Apart from the global memory, cores in each SMX have access
to a large register file and a common shared memory. The register
file has a large number of 32-bit registers with an access latency of
a few cycles. This large register file allows multiple threads to store
several variables in the registers for faster access. Across generations
of GPUs, the number of registers in the register file have increased
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from a model 32K registers in the Fermi GPU to a massive 256 K
registers in the Tesla family of GPUs.

The shared memory is useful for storing data required in common
by a half-warp of threads in execution. This shared memory is usually
of a few MB orders and arranged in the form of logical banks. Ac-
cess to locations in different banks of this memory by a half-warp of
threads consumes only a few cycles. However, if the locations accessed
by multiple threads in the same half-warp are in the same bank, such
accesses are serialized.

Other members of the memory hierarchy are constant memory
and texture memory. The texture memory and the constant memory
are of the size, usually of multiple KB. These are useful for data that
does not change too often over the execution of a kernel. Data read
from these memories are cached on-chip for faster access. Reads to
the same location in the constant memory by a warp of threads result
in the best possible outcome, whereas reads to different locations by a
warp of threads happen serially. Misses on the cache are served from
the global memory. Texture memory is useful for applications where
memory access patterns of a group of threads exhibit a great deal of
spatial locality.

Programming Model Further, the vast majority of operations
that graphics coprocessors, GPUs in short, provided were dealing
with matrices and vectors. This led researchers to use the opera-
tions supported by a GPU to perform non-graphics based general
purpose computations. This essentially masks general purpose com-
putations as graphics operations. Given that GPUs had massive data
parallelism to offer, in some cases such as sorting [74], database query-
ing [62], these implementations offered a significantly higher through-
put compared to corresponding CPU implementations.

For purposes of illustration, we consider the Terasort work of
Govindaraju et al. [74]. Govindaraju et al. engineered the stan-
dard bitonic sorting algorithm [91] on NVidia 7800 and 7900 GPUs.
One of the main steps of bitonic sorting algorithm is to rearrange
pairs of elements according to the outcome of their comparison. This



2.3. ACCELERATORS 31

step is achieved by a clever use of texture memory, whereas texture
memory is an artefact of graphics processing. Similar efforts can be
seen in other early works on general computing [62, 65] and the like
apart from computer vision related works such as object culling [76],
collision detection [75] and so on.

It can be seen that these early efforts made a strong case for
enhancing the programmability of GPUs via direct support of pro-
gramming languages and associated environments. In general, the
big question that faced the community at this stage is to find suitable
high-level abstractions that do not required programmers to write
programs that do not have to involve low-level hardware access.

Stream based programming models offered an intermediary step
in this process. Academic projects such as Brook [30] and Sh [110],
and related commercial versions such as Microsoft Accelerator and
RapidMind2 in general attempt to view the GPU as a streaming pro-
cessor. In this model, a program consists of data elements, streams,
and kernels. Kernels are the functions that are applied to a set of data
elements in an input stream, thereby producing an output stream.

The CUDA API allows a user to create many threads to execute
code on the GPU. Groups of these threads form logical blocks, and a
collection of blocks make up a grid. Tuples of up to three dimensions
provide numbers to blocks in a grid. This numbering can be useful
to number each thread uniquely and use such a thread number to
map to data elements. Each SM gets blocks to execute. The number
of blocks that an SMX gets to execute varies across generations of
GPUs. Table 2.1 shows the numbers for three generations of GPUs.
The blocks themselves consist of logical SIMD groups called warps,
each containing 32 threads on current hardware. An SM executes one
warp at a time. CUDA uses zero-overhead scheduling, enabling warps
that stall on memory fetches to swap with another warp.

A kernel specifies the computations that are to be performed by
the GPU. Before launching a kernel, all the kernel data must be made
available on the GPU global memory by an explicit transfer from the

2acquired by Intel in 2009.
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Resource Tesla Fermi Kepler

SM or SMX 15 16 84
Cores 2880 512 5376

Global memory 24 GB 6 GB 12 GB
Shared Memory 16 KB 48 KB 48 KB

Registers 16384 32768 65536

Blocks per SMX 8 8 16

Table 2.1: Features of generations of NVidia GPUs

CPU memory. This data transfer is done using the PCIExpress links
or the NVLink on custom models. A kernel invocation will hand over
the control to the GPU, and the GPU executes the specified GPU
code on this data. The control returns to the CPU only after the
GPU finishes executing the kernel. Contents of the global memory
are not guaranteed to remain unchanged across kernel invocations.

CUDA v3.1 onward supports recursive kernels. Concurrent exe-
cution of two or more kernels is also supported only from CUDA v?
Concurrent execution enables two or more kernels to share GPU re-
sources via a left-over policy []. Under a typical left-over policy, after
the maximum possible number of thread blocks from a grid have been
assigned to all SMXs, another kernel can make use of any leftover re-
sources by having blocks from the second kernel to be assigned to
SMXs for execution.

Synchronization The user can define barrier synchronization for
all the threads in a block in the kernel code. Apart from this, all
the threads launched in a grid are independent, and the user cannot
control their execution order. Global synchronization of all threads
is possible only across separate kernel launches. For more details, we
refer the interested reader to [1].

Example CUDA Program In this section, we show a quick ex-
ample of a CUDA program.
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__global__ void transposeCoalesced(float *odata, const float *idata)

{

__shared__ float tile[TILE_DIM][TILE_DIM+1];

int x = blockIdx.x * TILE_DIM + threadIdx.x;

int y = blockIdx.y * TILE_DIM + threadIdx.y;

int width = gridDim.x * TILE_DIM;

for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)

tile[threadIdx.y+j][threadIdx.x] = idata[(y+j)*width + x];

__syncthreads();

x = blockIdx.y * TILE_DIM + threadIdx.x; // transpose block offset

y = blockIdx.x * TILE_DIM + threadIdx.y;

for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)

odata[(y+j)*width + x] = tile[threadIdx.x][threadIdx.y + j];

}

2.4 Graph Representations

In the case of sequential computing, graphs are typically represented
in a computer program using the adjacency matrix or the adjacency
list representation. The adjacency matrix of a graph of n vertices
will be a square matrix of size n × n. The entries of the matrix are
either 0, 1 indicating the presence of an edge or a parameter such as
the weight of the corresponding edge. This requires a space in O(n2)
which is prohibitive for large graphs. To remedy the space issue,
one often uses the adjacency list representation of a graph where the
neighbors of a vertex are arranged in a (singly) linked list. These
linked lists of neighbors are then stored in an array of size n with
the ith element of the array storing the linked list of the neighbors
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of vertex numbered i. The space used by this data structure is in
O(m + n) and is therefore space-efficient.

In the parallel setting, one often cannot use pointer based data
structures since memory references may not be all local to a core.
Therefore, the adjacency list representation is not convenient to use.
For space efficiency reasons, the adjacency matrix representation is
also not viable. In the following, we illustrate some of the represen-
tation mechanisms for stroing graphs in parallel programs.

Edge List

The edge list representation of a graph simply stores the list of edges
of the graph. For the graph in Figure 2.7(a), the corresponding edge
list is shown in Figure 2.7(b). Some algorithms may also keep the
edge list in a sorted order as shown in Figure 2.7(c). The space used
by this representaiton is in O(m).

Compressed Sparse Row

In CSR, all the adjacency lists are packed into a single large array.
An array Ea is used to store the adjacency lists where the list for
vertex i+ 1 immediately follows vertex i, for all the vertices in G. An
array Va, stores the starting indices of the corresponding adjacency
lists in Ea. Each of the indices of Va acts as the vertex number of of
the graph. The key advantage of using this representation is that the
graph is stored in a contiguous memory locations and no long strides
are required to go from a neighbor of a certain vertex. This helps in
reducing the memory access irregularity in general. An example is
shown in Figure 2.8.



2.4. GRAPH REPRESENTATIONS 35

Figure 2.7: The edge list and the sorted edge list representation of a
graph.

Figure 2.8: The CSR format for representation.
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Chapter 3

Graph Decompositions

Graph decompositions are a useful concept in parallel algorithms as
they indirectly help break the problem into smaller subproblems. In
this chapter, we study the ear decomposition of graphs. In both these
cases, we show how identifying critical properties of graphs and the
decompositions can help arriving at faster algorithms in practice by
reducing the amount of computation required.

3.1 Ear Decomposition

We start by defining an ear decomposition of a graph, which is a
partition of the edges of the graph. Ear decomposition of graphs has
found applications for testing 2-connectivity and outerplanarity [99].

Definition 1 An ear decomposition of a biconnected graph G = (V,E)
is an ordered partitioning of the edges of G into simple paths (ears)
P0, P1, · · · as follows (see also [126]).

� P0 consists of a single edge uv,

� P0 ∪ P1 is a simple cycle, and

37
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Figure 3.1: An example of an ear decomposition. The labels on edges
in part (b) of the figure indicate the ear number they belong to.

� The end points of the path Pi, for i ≥ 2, are on paths P0, P1, · · · , Pi−1,
and Pi has no other nodes common with the nodes on paths
∪i−1
j=0Pj.

Figure 3.1 shown an example where the labels on the edges indi-
cate the ear number that the edge belongs to. Observe that an ear
decomposition is not unique.

In the context of Definition 1, let us denote by ui and vi the end
points of the ear Pi for i ≥ 0. If for each i ≥ 0, pi and qi are distinct,
then the ear Pi is called an open ear. Otherwise, the ear Pi is closed.
An open ear decomposition of a graph G is an ear decomposition of
G in which every ear Pi for i ≥ 0 is open.

Whitney [160] showed that a graph G has an open ear decompo-
sition if and only if G is biconnected [160]. Tarjan [147] presents
sequential algorithms for obtaining such a decomposition using a
Depth-First-Traversal (DFS) of a graph. Since DFS is known to be
P-Complete, such an approach is not readily amenable to efficient
parallelism. Lov’asz showed that the problem of obtaining an open
ear decomposition is in NC [35,108].

Maon et al. [115], and Miller and Ramachandran [126] adapted the
approach of Lovasz [108] to design an efficient parallel algorithm for
obtaining an ear decomposition of a graph. The basic approach is as
shown in Algorithm 1. The preorder numbers in Line 2 of Algorithm
1 can be computed, for instance, as described in [91] using the Euler
tour technique. Given a graph G and a rooted spanning tree T of G
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Algorithm 1 EarDecompose(G)(from [126])

1: T = SpanningTree(G)
2: Root T at a node r, and label each node in T with its preorder

number
3: for each non-tree edge e = uv in G′ in parallel do
4: Label the edge e with LCA(e)
5: end for
6: Sort the labels of non-tree edges in increasing order as 1, 2, · · ·
7: for each tree edge f = (parent(x), x) of T ′ in parallel do
8: Label f with the label of the nontree edge with the smallest

label whose fundamental cycle contains f .
9: end for

10: Edges with label i form the ear Pi for i ≥ 1.
11: Relabel the nontree edge with label 1 to have label 0.

and an edge e = uv, we use LCA(e) to denote the Least Common
Ancestor (LCA) of the nodes u and v with respect to the tree T .

Using the PRAM model [91], Algorithm 1 has a runtime of O(log n)
and uses O(m + n) work. However, in a practical setting, operations
indicated in the algorithm usually suffer from drawbacks mentioned
below.

� Computing the preorder numbers of the nodes according to T
requires one to use the Euler tour technique [91]. This com-
putation on pointer-based data structures such as linked lists
involve a lot of uncoalesced memory accesses that result in poor
performance on most modern parallel architectures.

� To identify the labels of the non-tree edges, one needs to com-
pute the LCA of the endpoints of every non-tree edge. To
achieve an O(log n) parallel runtime, the algorithm suggests
an O(log n) time and O(n) work preprocessing based on range
minima algorithms for LCA queries. When one considers sparse
graphs where the number of LCA queries are small owing fewer
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non-tree edges, such algorithms can increase the overhead on
the computation.

� The labeling of tree edges also has practical difficulties similar
to those mentioned above.

3.1.1 Our Approach for Ear Decomposition

Let G = (V,E) be a biconnected graph. We start by identifying
edges of G that are redundant to obtain an ear decomposition. These
redundant edges are removed from G to get a subgraph G′. The graph
G′ will have n nodes and at most 2n − 2 edges, making G′ a sparse
graph. We show that an ear decomposition of G′ easily extends to
an ear decomposition of G. To obtain an ear decomposition of G′,
we exploit its sparsity to improve on the practical performance of the
algorithm of Ramachandran [126].

Identifying Redundant Edges

We consider an edge of G as redundant for obtaining an ear decom-
position if e can be included as an ear containing just the edge e.
We call such an ear as a trivial ear. (See also [126]). Cong and
Bader [44] present a characterization for identifying redundant edges
with respect to the biconnectivity of a graph. A necessary and suffi-
cient condition for a graph to have an ear decomposition is that the
graph should be biconnected. Intuitively, edges redundant for the bi-
connectivity of a graph can also be redundant for obtaining an ear
decomposition. Indeed, as we show in the following lemma, bicon-
nectivity and ear decomposition share the same notion of redundant
edges.

Lemma 2 Let T be a rooted BFS tree of a biconnected graph G and
F be a spanning forest of the graph G \T . Then, edges in G \ (T ∪F )
are redundant for the purposes of an ear decomposition.

Proof: Consider the graph T ∪ F . According to the characterization
of Cong and Bader [44], if the graph G is biconnected, so is the
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Figure 3.2: An example of using Lemma 2. In the graph on the left,
we note that edges shown in dashed lines and red color are redundant.
An ear decomposition, as ears P0 through P5, of the graph with the
rest of the edges is shown in the right part of the figure. As the lemma
shows, ears P6 through P9 correspond to trivial ears of the redundant
edges.

graph T ∪ F . Therefore, if G is biconnected, then T ∪ F has an ear
decomposition. Let (P0, P1, · · · , Ps) be an ear decomposition of the
graph T ∪ F .

We claim that, (P0, P1, · · · , Ps, Qs+1, Qs+2, · · · , Qs+k) is an ear de-
composition of G where Qs+i is the edge ei in the graph G \ (T ∪ F )
with k = |E(G \ (T ∪ F ))|.

To this end, notice that a single edge can also be an ear in itself,
which we call as a trivial ear. Hence, each Qs+i, for 1 ≤ i ≤ k, is
a valid ear. The endpoints of Qs+i, for 1 ≤ i ≤ k, belong to the
nodes in ∪sj=1Pj . Finally, it can be noticed that E(G) = (∪si=0Pi) ∪(
∪kj=s+1Qj

)
. Therefore, (P0, P1, · · · , Ps, Qs+1, Qs+2, · · · , Qs+k) is an

ear decomposition of G. Notice that the numbering of edges (ears) in
G \ (T ∪ F ) can be done in an arbitary manner. ⊓⊔

An example is illustrated in Figure 3.2. Since T contains n − 1
edges and F has at most n− 1 edges, the above lemma indicates that
on a graph G of n nodes and m edges, the number of redundant edges
is at least m− 2n + 2. The remaining graph has thus at most 2n− 2
edges.
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Algorithm for Ear Decomposition

The earlier section results indicate that obtaining an ear decomposi-
tion of a graph G can be achieved by obtaining an ear decomposition
of a sparse subgraph G′. In this section, we use properties induced by
the sparsity of G′ to arrive at an ear decomposition of G′ efficiently.
Our algorithm uses a preprocessing step followed by employing the
algorithm of Ramachandran [126] with some changes, followed by a
post-processing step. Algorithm 2 presents our algorithm with a brief
description in the subsequent paragraphs.

Algorithm 2 EarDecompose(G)

1: /* Phase I – Pruning */
2: T = BFS(G)
3: F = SpanningForest(G \ T )
4: G′ = G \ (T ∪ F )
5: /* Phase II – Ear Decomposition*/
6: T ′ = SpanningForest(T ∪ F )
7: for each non-tree edge e = uv in T ∪ F in parallel do
8: Label the edge e with ⟨Level(LCA(e)),#e⟩
9: end for

10: for each tree edge f = (parent(x), x) of T ′ in parallel do
11: LabelTreeEdge(f)
12: end for
13: /* Phase III – Postprocessing */
14: for each edge e ∈ G′ in parallel do
15: Include e as an ear with just the edge e alone.
16: end for

Phase I In Phase I, the pruning step requires a BFS of G and
another spanning forest computation on the graph G\T . For this, we
use the optimized BFS implementation from [114]. As mentioned in
Steps 2–4 of Algorithm 2, we first compute a BFS tree, T , of the graph
G and a spanning forest F of the graph G\T . As mentioned in Lemma
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2, we remove all edges in G\ (T ∪F ) from further consideration. The
remaining graph, G′, has n nodes and at most 2n− 2 edges.

Phase II Since the graph is sparse and has at most 2n − 2 edges,
the number of non-tree edges would be at most n− 1. Thus, we need
to find the LCA for at most n− 1 pairs of nodes. Therefore, we note
that a preprocessing for LCA queries may not be essential. Instead,
the LCA of a pair of nodes u, v can be obtained by walking along the
path from u and v to the root of the tree. This simple technique has
the advantage that we can perform all the LCA queries in parallel.
The one disadvantage of the method is that the time spent for each
LCA query will depend on the LCA node’s distance. However, we
show in a later section that most LCA queries traverse a distance
that is indeed small. (See Table 3.1).

Labeling of Tree Edges Notice that the graph for which we
obtain an ear decomposition has at most 2n− 2 edges of which n− 1
edges appear as tree edges. The remaining n− 1 fundamental cycles
contain the n−1 tree edges. Therefore, we expect that the total lenght
of fundamental cycles, and the number of cycles that pass through any
given tree edge is small on average. This is also verified empirically,
as shown in Table 3.1.

Hence, the routine LabelTreeEdge in Line 11 of Algorithm 2
proceeds as follows. We list the edges of each fundamental cycle in an
array A. Given that we know the length of each fundamental cycle
from Steps 7–9 of our approach, we reserve space for each fundamental
cycle in the array and calculate the starting index in the array where
we write the edges of each cycle. In this step, there would be no need
for any synchronization operations.

Each element of the array A is of the form ⟨e, ℓ, f⟩ where e is the
id of a tree edge, ℓ is the level number of the LCA of the endpoints of
the non-tree edge f whose fundamental cycle passes through e. We
now sort the elements of A lexicographically [91]. In the lexicographic
order, all the tuples corresponding to each tree edge e appear contigu-
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ous. Hence, we find the minimum in each group using the segmented
prefix operation [91].

Phase III – Post-processing In this phase, edges pruned in Phase
I will be included in the ear decomposition of G as trivial ears.

3.1.2 Analysis

We now analyse the time taken by Algorithm 2 if it were run as a
sequential algorithm. Phase I involves two BFS traversals and runs
in O(m + n) time. In Phase II, the bulk of the computation is to
assign a label for the edges of the tree T ′. For a non-tree edge uv,
the time taken in this step depends on the maximum distance of
LCA(u, v) to u and to v. This distance is no more than the depth
of the tree T ′, which we denote by d′. Notice that the in the worst-
case, d′ = O(n), however, our experimental results indicate that d′

is usually very small. We refer the reader to [42] for a theoretical
analysis of d′ in random graphs. The time taken for assigning a label
to the tree edges is proportional to the number of fundamental cycles
that pass through a given tree edge, denoted c′. While theoretical
estimates of c′ are not known, in our approach the average value of
c′ is O(1). Phase III runs in O(m) time. So, the overall time for
Algorithm 2 is O(m + nd′ + nc′).

The pruning in Phase I of Algorithm 2 helps in two ways. Firstly,
reducing the number of non-tree reduces to O(n) from O(m), min-
imizesthe impact of using a naive technique to find the LCA of the
end points of non-tree edges. Secondly, the sparse nature of T ∪ F
results in a small c′. A small c′ helps in Algorithm 2 to resort to yet
another simple way to label the tree edges. We show evidence for
these observations in our experiments in the later section.

As a PRAM algorithm, the work done by Algorithm 2 is estimated
as follows. The work done in Phase I is in O(m+n) [22]. In Phase II,
the work done is in O(m+nd′+nc′). Phase III requires work in O(m).
The time taken by Algorithm 2 in the PRAM sense is dominated by
Phase I which requires O(D) time, where D is the diameter of the
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Graph name |V | |E| Edges Avg. ACE
Pruned Dist.

roadNet-CA 2.0 M 2.7M 15 K 10.42 8.18

roadNet-TX 1.4 M 1.9 M 11 K 10.44 7.77

soc-Epinions1 76K 508 K 294 K 2.17 1.89

patents main 241K 560 K 185 K 5.07 5.59

coAuthorsDBLP 299 K 977 K 447 K 2.89 4.2

soc-Slashdot0902 82 K 474 K 371 K 2.44 2.72

caidaRouterLevel 192 K 609 K 284 K 3.4 4.3

scircuit 171 K 479 K 83 K 3.12 4.74

soc-sign-epinions 131 K 841 K 527 K 2.52 1.95

p2p-Gnutella31 62 K 147 K 52 K 4.16 4.17

Random Graphs G(n, p) [25]

G(1M, 10× 10−6) 1 M 10 M 8 M 4.86 9.31

G(1M, 20× 10−6) 1 M 20 M 18 M 3.99 7.79

G(1M, 40× 10−6) 1 M 40 M 38 M 3.68 6.86

G(1M, 80× 10−6) 1 M 80 M 77 M 2.99 5.92

G(2M, 10× 10−6) 2 M 10 M 6 M 5.15 7.6

G(2M, 20× 10−6) 2 M 20 M 16 M 4.98 9.66

G(2M, 40× 10−6) 2 M 40 M 36 M 4.13 8.03

G(2M, 80× 10−6) 2 M 80 M 76 M 3.87 7.3

Table 3.1: List of sparse graphs that we use in our experiments. We
round the number of nodes and the edges to the nearest thousand (K)
or the nearest million (M). The notation G(n, p) refers to a random
graph ( [25]) with n nodes and an edge probability of p. The number
in the column labeled ”Edges Pruned” shows the number of redundant
edges, according to Lemma 2. The column labeled ”Avg. Dist.” shows
the average number of tree edges traversed to find the LCA of the
endpoints of a non-tree edge. The column labeled ”ACE” indicates
the average number of fundamental cycles according to a BFS tree
that pass through a tree edge.



46 CHAPTER 3. GRAPH DECOMPOSITIONS

input graph [22].

Notice that the time required by existing algorithms for obtaining
an ear decomposition run in O(m+ n) time in the sequential setting,
and have a work complexity of O(m+n) in the PRAM model. While
Algorithm 2 has asympototically larger complexity in both these set-
tings, we note that the constants involved in the asymptotic analysis
and also other system level issues play a role in the practical perfor-
mance as we will see in the following section.

3.1.3 Experimental Results

In this section, we use an NVidia Tesla K40c GPU attached to an
Intel(R) Xeon(R) E5-2650. See Chapter 2 for more details of these
architectures to study the performance of Algorithm 2. We run our
experiments on both the GPU and the CPU mentioned above and
compare the performance of Algorithm 2 to that of existing algo-
rithms.

Datasets

We use the graphs listed in Table 3.1 for our experiments. The graphs
include both real-world graphs from [4] and also Erdos-Reyni random
graphs [25] generated using the RMAT generator [37]. Since we re-
quire the graph to be biconnected to have an ear decomposition, we
make the graphs in Table 3.1 biconnected by adding additional edges
as needed. We also remove self-loops and make all the graphs undi-
rected.

Results

We show the performance of our algorithm to that of [126] on a GPU
and also on a multi-core CPU.Figure 3.3(a) and 3.3(b) show the ab-
solute runtime as well as the speedup of our algorithm to that of [126]
on the K40c GPU and the E5-2650 CPU, respectively. To better un-
derstand our algorithm’s performance, we also add the pruning step
from Algorithm 2 to the algorithm of Ramachandran [126]. We label
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Figure 3.3: Performance of our ear decomposition algorithm on real-
world graphs (a) using the K40c GPU and (b) on the Xeon E50-2650
CPU. The last label ”Average” indicates the average speedup on the
dataset from Table 3.1.
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this modification as “ [126] with Pruning” in the plot in Figure 3.3(a)
and 3.3(b).

We show the speedup on the secondary Y-axis. Note that the Y-
axes are on a logarithmic scale. Notice that our algorithm performs
2.3x and 2.02x better than the algorithm of [126] on GPU and CPU
respectively. On adding the pruning step to the algorithm of [126],
our algorithm outperforms this variation by a factor of 1.54 on GPU
and 1.74 on CPU. This indicates that our performance gains are due
to both the pruning step and other algorithmic enhancements to that
of [126].

As the number of edges increases, Phase I of our algorithm removes
a bigger number of edges, reducing the work in the latter phases
resulting in a better speedup. Our experiments on random graphs
in Figure 3.4(b) and also 3.4(b), where we keep the number of nodes
fixed at 1 M and 2 M nodes and increase the number of edges, support
this observation.

Comparison with respect to Bader et al. [13] Table 3.2 shows
a comparison between our algorithm and the PRAM algorithm. For
this comparison, we use a dataset similar to the one used by Bader et
al. [13], which has the following types of graphs: regular lattices, reg-
ular triangulation graphs, and random planar graphs. Figure 3.5(a)
and (b), respectively, show an example of the regular lattice and regu-
lar triangulation. The graph generator LEDA [113] is used to generate
these graphs. We set |V |= 8192 number of vertices as in [13] and eight
threads for processing to keep the comparison fair. As shown in Table
3.2, our algorithm is performing better than that of [13] except in the
case of regular lattices. This behavior on regular lattices is due to the
large average number of tree edges traversed to find the LCA of the
endpoints of non-tree edges.
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Figure 3.4: CPU Performance of our ear decomposition algorithm on
random graphs (a) using the K40c GPU and (b) on the Xeon E50-
2650 CPU. The last label ”Average” indicates the average speedup
on the dataset from Table 3.1.
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Figure 3.5: Part (a) shows regular lattice RL and part (b) shows
regular triangulation RT graph.

Graph name |V | |E| OUR [13] Avg.
Dist.

Random Graph A 5965 7686 0.791 1.9 4.21
(Planar)

Random Graph B 8192 16375 1.030 1.9 3.67
(Planar)

Random Graph C 8192 24570 1.345 1.9 3.39
(Planar)

Random Graph D 8192 24570 1.349 1.9 3.38
(Planar)

Regular Triangulation 8192 24551 1.422 1.9 4.12

Regular Lattice 8192 16199 15.0128 1.9 90

Table 3.2: Table shows the comparison of our algorithm to that of [13].
Columns three and four show the time (in ms) for OUR approach and
that of [13]. The last column indicates the average number of tree
edges traversed to find the LCA of the endpoints of a non-tree edge.



Chapter 4

Graph Connectivity

Finding whether a graph is k-connected, and the identification of its
k-connected components is a fundamental problem in graph theory.
For this reason, there have been several algorithms for this problem
in both sequential and parallel settings.

4.1 Introduction

Finding whether a graph is k-connected and obtaining the k-connected
components of a graph is a fundamental problem with a variety of
applications including planarity testing [79], isomorphism in planar
graphs [86], network analytics [27, 73, 154], clustering [33] and data
visualization [5]. It is therefore not surprising that several researchers
have explored this problem in various settings such as sequential algo-
rithms [38,47,87,96,147], parallel algorithms [82,96,100,116,137,147],
and implementations [36,45,142,153], and also distributed algorithms
[121]. Most of these algorithms use graph traversal techniques to
create one (or more) spanning tree(s) and use the properties of the
spanning trees to test the k-connectivity of the graph and obtain its
k connected components.

In particular, in the parallel setting, PRAM algorithms that re-
quire poly-logarithmic time and work in O(m + n) are known for
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k = 1, 2, 3, and 4 [82,96,116,137,147]. However, in practice, the con-
stants hidden in the big–O notation are significantly high for k ≥ 2.
Therefore, algorithms that run faster in practice are sought after.

In this chapter, we first review some of the existing parallel al-
gorithms for connectivity and graph biconnecitivity. Due to its var-
ied applications, testing graph k-connectivity has been a problem of
immense research interest. Early PRAM algorithms for testing the
connectivity of a graph were proposed by Hirschberg et al. [82] and
Shiloach and Vishkin [137]. The algorithm of Shiloach and Vishkin
is shown to run in O(log n) time using O(n + m) work in the PRAM
model. Several experimental studies on finding the connected com-
ponents of a graph are based on this algorithm [77,140,145].

The first PRAM algorithm for finding the 2-connected components
of a graph in parallel is given by Tarjan and Vishkin [128]. This
algorithm reduces the problem of finding the 2-connected components
of a given graph to finding the connected components of an auxiliary
graph. The construction of the auxiliary graph is shown to be in
O(log n) time using O(m + n) processors. It is identified by Bader
and Cong [45] that the process of constructing the auxiliary graph is
however quite slow in practice. Bader and Cong [45] proceed to use
a formulation akin to that of Cheriyan and Thurimella [38] and show
a speed-up of up to 2x on a variety of graphs on multi-core CPUs.
More recently, Slota and Madduri [142] proposed that one can test
the biconnectivity of a graph by performing multiple BFS traversals
on multi-core CPUs. This result has been subsequently improved
by Chaitanya and Kothapalli [36]. The approach of Chaitanya and
Kothapalli [36] is then adapted to work on GPUs by Wadwekar and
Kothapalli [153].

4.1.1 Organization of the chapter

The rest of the chapter is organized as follows. Section 5.2 presents
our technique in brief. Sections 5.4–5.5 discuss our approach applied
to the problem of 2, and 3-connectivity respectively. The chapter
then ends with concluding remarks in Section 5.6.
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4.2 Existing Algorithms

We review in brief some of the parallel algorithms that are most rel-
evant to our present work.

4.2.1 Shiloach-Vishkin Algorithm [138] for Graph Con-
nectivity

A common feature of all parallel algorithms for connected components
is to maintain a partition of the vertices of the graph so that nodes
in the same partition belong to the same connected component. The
partition is refined iteratively and termination is achieved when no
further refinement to the partition is possible. Initially, each node is
in its own connected component, and hence its own partition. The
partitions are also typically maintained as trees with the root of the
tree serving as a representative of that partition. Different algorithms
[19,83,139] differ in the processing done during each iteration.

The Shiloach-Vishkin algorithm [139] involves iterative grafting
and pointer jumping operations. In each iteration, if (u, v) is an edge
in the graph, then, under certain condition, the trees containing nodes
u and v are combined to form a single tree. This process is called
grafting. Further, during each iteration, pointer jumping is applied
to reduce the height of the resulting trees. The algorithm terminates
when all the trees in the forest are stars, and each node is assigned
to one star. In each iteration the following steps are performed:

� Grafting trees: For each edge uv so that parents of u and v
are different, one node changes parent, if parent of either u or
v is the root of its tree and the parent of the other node has a
lower index than the former.

� Grafting star trees onto other trees: This is done to re-
duce the depth of the resultant trees. The trees are checked to
ascertain whether they are stars or not by allowing nodes which
are at a depth of 2 or larger with respect to the root of the tree
to mark its parent and the parent of its parents as members of
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non stars. Thus all the nodes which are not part of a star will
be marked by this process. This step reduces the worst case
complexity of the algorithm.

� Single pointer jumping: One step of pointer jumping is done
to reduce the depth of the trees.

It is shown by Shiolach and Vishkin that this algorithm runs in
O(log n) time using O(m + n) operations. Figure 4.1 provides an
illustration of the running of the Shiloach and Vishkin algorithm.

4.2.2 Tarjan-Vishkin Parallel Algorithm (TV) [149] for
Graph 2-Connecitivity

The algorithm of Tarjan and Vishkin for identifying the biconnected
components in G is designed for the PRAM model [149] and requires
O(log(n)) time with O(n + m) processors. The main steps in the
Tarjan-Vishkin algorithm are as follows. A rooted spanning tree T
for the input graph G is constructed (For notations interested reader
can refer to [158]). Using T , two functions low, the lowest vertex
that is either a descendant of v or adjacent to the descendant of v
by an edge in G \ T , and high, the highest vertex that is either a
descendant of v or adjacent to the descendant of v by an edge in
G \ T , are computed for each vertex v ∈ G. These functions help
define an auxiliary graph G′ where the nodes of G′ are the edges of
G. The edges of G′ are defined as follows.

� An edge connecting vertices uw and vw in G′ is added to E(G′)
whenever there is a tree edge u→ w with u as the parent of w
and a nontree edge vw with pre(v) < pre(w) where pre(.) is the
preorder number of a vertex according to the tree T .

� An edge connecting vertices uv to xw in G′ is added to E(G′)
whenever there is a tree edge u → v with u as the parent of v
and a tree edge xw with x as the parent of w and a nontree edge
vw with v and w not having an ancestor-descendant relationship
in T .
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(a) Initial Graph (b) First Hooking and Complete
Pointer Jumping

(c) General Hooking (d) Pointer Jumping for inner
nodes

(e) Pointer Jumping for leaf nodes (f) Final Hooking

(g) Final Pointer Jumping

Figure 4.1: The typical iterations of our algorithm are shown in the
figures. The base graph goes through the iterations as shown in the
figures (c) through (f). The first graft (c), Pointer jumping (d), second
iteration follows the same method as shown in (e) and (f), where all
the nodes in the graph are connect to a single node.
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� An edge connecting uv to vw in G′ whenever there is a tree edge
u → v with u as the parent of v and a tree edge vw with v as
the parent of w and a nontree edge joins a descendant of w to
a non-descendant of v in T .

The idea behind the definition of G′ is such that the connected
components of G′ are the biconnected components of G. To this end,
Tarjan and Vishkin show that for edges that lie on some cycle of
G, their corresponding vertices in G′ are all in the same connected
component of G′.

4.2.3 Cong and Bader [44] Improvement to TV (TV-
filter)

An experimental study by Cong and Bader [44] provides an improve-
ment to the Tarjan-Vishkin ( [149]) by removing non-essential edges
in its computation. This leads to a significant reduction in comput-
ing low, high values and connected components computation. In
particular, they define an edge e as non-essential for biconnectivity
if removing e does not change the biconnectivity of the component it
belongs to. They show that edges of G that are not in a BFS tree
T and are also not in a spanning forest F of G \ T are non-essential.
However, in this algorithm, T must be a BFS tree, which can be diffi-
cult to compute in parallel compared to a simple spanning tree. The
runtime for the Cong-Bader approach is O(dia + log n) where dia is
the diameter of the graph. The algorithm is as follows.

4.2.4 BFS-BiCC

The BFS-BiCC algorithm [94] is an improvement over Cong-Bader’s
approach [44] on sparse graphs. This algorithm is similar to that
used by Eckstein [51]. A rooted BFS tree T of the input graph G
is constructed. To identify the articulation points, the BFS-BiCC
algorithm considers every vertex u and performs a BFS on the graph
after removing its parent P (u) (according to T ) from the graph G.
During this process BFS-BiCC algorithm keeps track of the level of
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Algorithm 3 Cong-Bader(G)

1: procedure Cong-Bader(Graph G)
2: T ← BFS(G) /*Phase I*/
3: F ← BFS(G\T)
4: G

′ ← (F∪T)
5: Biconnected Components = TarjanVishkin-Parallel(G

′
)

/*Phase II*/
6: for all e = (w,v) ∈ G \ (F ∪ T ) do /*Phase III*/
7: label e to be in biconnected component containing w and

p(w)
8: end for
9: end procedure

vertices reached from u. If any vertex w with level L(P (u)) or less
is reached and u has a path to all its siblings after the removal of
P (u), then P (u) is not an articulation point. The main drawback
of this approach is that it performs BFS from all the vertices of the
graph. While there are optimizations introduced to stop some of
these breadth-first traversals, there exist graphs on which such early
stopping cannot be done and on such graphs, Algorithm BFS-BiCC
from [94] suffers heavily.

4.2.5 Color-BiCC

The Color-BiCC algorithm [94] is an improvement over the Cong and
Bader approach [44] on sparse graphs. This is an iterative strat-
egy that is similar to recursive doubling used to compute connected
components in undirected graphs as well as weakly and strongly con-
nected components in directed graphs [143]. Let par(v) signify the
parent articulation point that separates the vertex v from the root.
This algorithm aqis based on the observation that any two vertices
in a biconnected component will have their least common ancestor
set to the par(v). The goal of this approach is to color all vertices
in the biconnected component with a parent level articulation point
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that is separating the vertex from the root. As we will show in Figure
4.7 that the Color-Bicc algorithm is heavily dependent on the struc-
ture of the graph and can be slower than the sequential Tarjan [148]
approach in some cases.

4.3 Our Approach for a GPU Algorithm for
Graph Connectivity

Connected components is considered an irregular memory access al-
gorithm (irregular algorithm), which is not a good fit for the GPU
computational model which relies heavily on regularity of memory
access. The CUDA Programming Guide [1] provides a detailed de-
scription of the effects of irregular and regular memory access on GPU
performance.

The focus of any algorithm designed for the GPU relies on reg-
ular/coalesced memory accesses and increasing computation, focus-
ing on data movement in the shared memory. The requirements for
connected components and GPU computational model are thus or-
thogonal to each other. Thus mapping the connected components
algorithm on to the GPU is non trivial.

The work presented here tries to reduce irregular memory access
based on the guidelines of algorithms of [19,78,139]. While designing
the algorithm, the following pronciples were considered,

� Reducing Atomiic operations

� Reducing the overhead caused by the 64 bit reads for the end
points of the edges

� Allowing partial results from previous iterations to reduce re-
dundant computations

We have focused on developing an algorithm that reduces irregular
memory accesses, and allows transfer of information from one itera-
tion to the next, hence streamlining the algorithm.
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The Shiloach-Vishkin algorithm as proposed [139] may not be
quite suitable on modern architectures such as the GPU. One of the
reasons for this is the excessive number of irregular reads during the
grafting and the pointer jumping steps. An important point to be
noted here is that the average number of iterations till which an edge
is active is large. Also, if an edge has taken part in a grafting step
once, it is not necessary that it cannot participate in another itera-
tion of grafting. Hence, we require a method that requires an edge
to participate in grafting atmost once. The number of reads of the
full edgelist should be minimal, and the pointer jumping step is fur-
ther optimized. In this section, we devise ways to handle the given
constraints, thereby improving the performance on the GPU.

Our adaptation follows three main steps: 1) Hooking 2) Pointer
Jumping 3) Graph Contraction. Hooking is the time intensive op-
eration in the algorithm. It tries to connect elements of the same
component together. Pointer jumping tries to find the root node for
each component after the hooking step. The fundamental building
blocks of our algorithm are as follows:

1. Hooking: Hooking is the process of selecting a vertex as the
parent of another. For each edge, if the two ends lie in differ-
ent components, it tries to connect the root nodes of the two
components. The orientation of the connection is based upon
the labels of the indexes. The orientation is varied across iter-
ations. As the hooking process is randomized, the sensitivity
to vertex labels is reduced. We use the alternating orientation
hooking process as mentioned in HY1 of [78]. In even iterations,
the node with lower label selects the node with higher label as
its parent and the reverse happens in odd iterations. Figure
b,c and f in Figure 4.1, represent the hooking steps of the algo-
rithm, note that in the first iteration, the node attaches to the
neighbour instead of the parent of its neighbour.

2. Pointer Jumping: Instead of one step of pointer jumping as
originally proposed in the Shiloach-Vishin algorithm [139], we
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perform complete pointer jumping. In complete pointer jump-
ing, each tree is reduced to a star in every iteration. Figure
?? illustrates the difference. INCLUDE A FIGURE HERE. We
add that the HY1 algorithm of Greiner [78] also uses complete
pointer jumping.

Further, when we use complete pointer jumping, notice that
nodes in a tree are at only two levels: root node and internal
nodes or leaf nodes. Also, after a tree is grafted onto another
tree, only the root nodes in one tree have to perform pointer
jumping. This is illustrated in Figure d and e of Figure 4.1.
This helps in improving the performance on the GPU.

Though the number of iterations required remains the same as
SV [139] and AS [19], we observe that the number of read write
operations decrease significantly.

3. Graph Contraction using Edge Hiding: Explicit graph
contraction requires large amount of data movement across the
global memory of the GPU, which is a costly operation. The
time taken by such a process only increases the run time of
the algorithm. Hence an implicit method of hiding edges from
the graph is used. As edges are only active in the hooking
stage, edges which are known to be in the same component are
inactivated in the next stage of hooking.

Theoretically complete algorithm is presented in Algorithm 4.2.
Our algorithm can be seen as a modification of HY1 of [78] for the
GPU. The algorithm presented here runs in worst case of O(log n) it-
erations, and O(log2 n) time, doing O((m+n) log n) work on a PRAM
model. The pointer jumping step takes a total of O(n log n) of work,
using O(log2 n) time.

4.4 Our Approach for BiCC on Sparse Graphs

In this section we present a simple yet efficient algorithm for identify-
ing the biconnected components of graph G. Our algorithm is based



4.4. OUR APPROACH FOR BICC ON SPARSE GRAPHS 61

Begin
Initialize Parent[i] = i;
while All edges are not marked do

for each edge (u, v)
if edge is unmarked and Parent[u] ̸= Parent[v]

max=max{Parent[u],Parent[v]};
min=min{Parent[u],Parent[v]};
if iteration is even Parent[min] = max;
else Parent[max] = min;

else Mark edge (u, v);
end-for

end-while
Multilevel pointer jumping();

end.

Figure 4.2: Algorithm for Connected Components

on our experimental evidence that identifying bridges of a graph in
a parallel setting is a much easier and simpler task. Based on the
above observation, we initially decompose the graph into maximal
2-edge-connected components G1, G2, · · ·. For each such component,
Gi, i ≥ 1, we construct an auxiliary graph G′

i where articulation
points in Gi translate to bridges in G′

i. Therefore, identifying the
bridges of G′

i allows us to identify the articulation points of Gi, and
hence those of G. Using this information, we then identify the bicon-
nected components of G.

We develop two results (Lemmata 3, 4 and 5) below that will help
us present our algorithm. Towards this, let T be a rooted BFS tree of
G and LCA denotes the least common ancestor. Each non-tree edge
(u, v) in G \ T is a cross edge that connects two different branches of
a tree. For an edge e to be a bridge, e must be part of BFS spanning
tree and e cannot be on any cycle induced by the non-tree edges
(u, v) ∈ G \ T .

Now, consider the graph G′ obtained by removing the bridges of
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G. The resulting graph consists of maximal 2-edge connected com-
ponents G1, G2, · · · , such that for each pair of vertices u, v in the
same 2-edge-connected component, there are at least two edge dis-
joint paths between u and v. We can now treat each such component
independently and in parallel to identify the articulation points within
each component. These will also be articulation points of G.

Let G be a 2-edge-connected graph and TG be a rooted BFS tree
of G. We use the notation Vlca(G) to denote the set of vertices that
are the LCA of the end points of some non-tree edge of G according
to a given BFS on G. We can classify the vertices of G into two
categories as follows.

1. Potential articulation points: We will prove shortly that all the
vertices Vlca(G) belong to this category. A subset of the vertices
in Vlca(G) is the set of articulation points of G.

2. Non-articulation points: These are the set of safe vertices whose
removal does not disconnect the graph. All the vertices v ∈
V (G) \ Vlca(G) belong to this set.

The above categorization is supported by the following lemma
which shows that vertices not in Vlca(G) cannot be articulation points
in G.

Lemma 3 Let G be a 2-edge-connected graph and let T be a BFS tree
of G. If v is an articulation point of G, then v ∈ Vlca(G).

Proof: On the contrary, assume that a vertex v is an articulation
point and is not the LCA of any non-tree edge of G. If v is on
only one cycle in G, then v cannot be an articulation point. So, we
assume in the rest of the proof that v is on at least two cycles in G.
Let C1, C2, · · · , Ck be the fundamental cycles induced respectively by
non-tree edges e1, e2, · · · , ek ∈ G \ T and pass through vertex v. Let
Ci and Cj be any two cycles from the set {C1, C2, ...., Ck} induced by
non-tree edges ei and ej respectively. Let vertices x, y be LCA of the
endpoints of ei and ej respectively. It is evident that x and y should
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be the ancestors of v as v lies on both the cycles and v /∈ {x, y}. The
relation between x and y can be categorized as follows.

� x = y: In this case the two cycles Ci and Cj share the same
LCA say x and also the vertex v. This implies that Ci and Cj

share at least an edge (as there are at least two vertices, x and
v, common to both Ci and Cj). So, even after the removal of v,
all edges belonging to Ci and Cj remain in a single biconnected
component. Hence, v is not an articulation point.

� x ̸= y, z = LCA(x, y), and z ̸∈ {x, y} : As x and y are ancestors
of v there is a path x to v and v to y in T . As z is the ancestor
of x and y there is a path z to x and y to z in T . This concludes
that there is a path from z ↭ x ↭ v ↭ y ↭ z which leads to
a cycle in T . However, T is a BFS tree and cannot have cycles.
Therefore, our assumption that v is an articulation point is not
valid.

� x ̸= y and LCA(x, y) ∈ {x, y}: Without loss of generality, we
will assume that y = LCA(x, y). Let Ci and Cj be any pair
of cycles induced by non-tree edges ei and ej and pass through
v with LCA(ei) = x and LCA(ej) = y. Since y is a proper
ancestor of x, there is a path from x ↭ v (in T and also in
G) that is common to Ci and Cj . This ensures that there is at
least an edge common between the cycles Ci and Cj . Similar to
the case where x = y, this allows us to argue that even after the
removal of v, all edges of Ci and Cj remain in a single connected
component. Since the above holds for any pair of cycles passing
through v, v is not an articulation point.

⊓⊔
The above lemma indicates that we only have to check whether

vertices in Vlca(G) of G are articulation points in G. To find these
articulation points, we now construct an auxiliary graph G′ as follows.
Let TG be a BFS tree of G. We use the notation LCA(e) to refer to
the LCA of the end points of the edge e. (Such a notation is used in
other earlier works too [126]).



64 CHAPTER 4. GRAPH CONNECTIVITY

Initialize V (G′) = V (G) and E(G′) = E(G). For every non-tree
edge e in G \ TG, compute the LCA(e) = x. Let b1 and b2 be the
neighbours (also called as base vertices) of x in the fundamental cycle
induced by e. We now remove the edges xb1 and xb2 from G′, add an
alias vertex for vertex x as x′ to G′, and add edges xx′, x′b1, and x′b2
to E(G′). All other edges in G with end points as x, b1 or b2, remain
unchanged. Also, if k cycles C1, C2, · · · , Ck induced by the non-tree
edges e1, e2, · · · , ek, respectively share any of the base vertices, then
their common LCA vertex, say v, cannot be an articulation point
with respect to the cycles C1, C2, · · · , Ck as all these cycles share at
least an edge. Thus, we create only one alias vertex v′ in the auxiliary
graph for v with respect to the above k cycles.

The alias vertices and edges with one end point as an alias vertex
have the property that articulation points of G are transformed as
bridges in the auxiliary graph G′ as we will show shortly. An example
of the construction of the auxiliary graph is shown in Figure 4.3. In
Figure 4.3, we consider a BFS of the graph in Figure 4.3(a) with z
as the source vertex, and edges wx and ts as the non-tree edges. In
the following, we show that bridges in G′ can be used to identify the
articulation points of G.

Lemma 4 Let G be a 2-edge-connected graph, TG a rooted BFS tree
of G with root as r, and G′ be the auxiliary graph of G constructed
as earlier. For vertices u in G′ with u ̸= r, u is an articulation point
of G iff u is an end point of some bridge uv in G′ with u ∈ G and
v ̸∈ G.

Proof:

(only − if) ⇐: Consider a vertex u which is not an articulation
point in graph G with u ̸= r. We will show that any edge of type uu′,
where u′ is the alias of u, cannot be a bridge in auxiliary graph G′.

Let C := {C1, C2, · · · , Ck} be the cycles that pass through vertex
u in G. The relation between vertex u and the such cycles can be
categorized as follows.
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Figure 4.3: Figure (b) shows the auxiliary graph for Figure (a). Edges
wx and ts are kept as non-tree edges and the rest of the edges are
tree edges according to a BFS starting from vertex z as the source.

� u is not the LCA of any of the end points of non-tree edges that
induces cycles in C: In this case, no alias vertices are introduced
in G′ due to u. Therefore, bridges with u as one end points does
not exist in G′. (Note that G is already 2-edge-connected and
has no bridges).

� u is the LCA any two non-tree edges that induces cycles Ci and
Cj in C: According to the construction of G′, two alias vertices
ui and uj are introduced in the auxiliary graph G′. Further,
two edges uui and uuj are also added to G′. An example is
illustrated in Figure 4.4.

Let x and y be any two distinct vertices on the cycles Ci and
Cj respectively. Since u is not an articulation point in G, there
must be some path Pxy in G′ between x and y that does not
pass through u as shown in Figure 4.4. The path Pxy along
with paths Pyuj , Pujui , and Puix forms a simple cycle in G′. This
indicates that edges uui and uuj on this cycle cannot be bridges
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Figure 4.4: Figure shows the cycle created by paths Pxy, Pyuj , Pujui ,
and Puix. For ease of exposition, the auxiliary graph shown contains
only the changes made with respect to u and not the changes induced
with respect to other vertices.

in G′. So there is no bridge in G′ with one of the endpoint as
u pertaining to cycles Ci and Cj . The above property holds for
any two cycles Ci and Cj .

� u is the LCA of some non-tree edge that induces cycle Ci in C:
Consider the case where the number of cycles through u is at
least 2. By our assumption, u is not an articulation point. Let
u1 be the alias vertex of u. Hence, for some vertex x in Ci that
is not equal to u, and another vertex, say the parent of u, there
is a path that does not go through u. This path along with
edges uu1 and uP (u) mean that the edge uu1 is part of a cycle.
Therefore, in G′, the edge uu1 will not be a bridge.

(if)⇒: Let u be an articulation point of a 2-edge-connected graph G
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and let G′ be the corresponding auxiliary graph. It holds that u has
at least two cycles passing through it and not sharing any of the base
vertices. Let bi and bj be one of the base vertices on two fundamental
cycles. Let x and y be two vertices, both distinct from u, on two such
cycles Ci and Cj that get disconnected by the removal of u. Since u is
an articulation point in G, there exists only one path between x and y
that passes through u, say, x−bi, bi−u, u−bj and bj−y. Let u1 and
u2 be any two alias points created for Ci and Cj . The corresponding
path Pxy(G′) has the form x − b1, b1 − u1, u1 − u, u − u2, u2 − b2,
b2 − y. Since u is an articulation point, there cannot be a path Pxy

between x and y in G (and in its corresponding auxiliary graph G′)
that does not pass through u and its alias vertices. As a result uu1
remains uncovered in any cycle of G′. Hence, uu1 will be a bridge in
G′.
⊓⊔

Lemma 5 Let G be a 2-edge-connected graph, TG a rooted BFS tree
of G with root as r, and G′ be the auxiliary graph of G constructed
as earlier. Vertex r is an articulation point in G iff r is the LCA of
more than one non-tree edge of G′ according to a BFS in G′ from r,
and r is also an end point of some bridge in G′.

Proof: We use Puv(G) to denote a path between vertices u and v in
the graph G.

(only − if)⇐: Notice that since G is 2-edge-connected, vertex r is
on at least one cycle. Further, since r is the root of the BFS tree of G,
for every fundamental cycle that contains r, vertex r is the LCA of the
non-tree edge that induces the cycle. We now make a case distinction
as follows. Now consider the case that more than one cycle passes
through r. Let Ci and Cj be any two cycles through r induced by
non-tree edges ei and ej . In G′, we now introduce two alias vertices
ri and rj and also the edges rri and rrj , along with edges between ri
and rj to the base vertices of Ci and Cj . If r is not an articulation
point, then we notice that there are any two distinct vertices x and y
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in Ci and Cj respectively such that there is a path between x and y
that does not go through r. This path between x and y, Pxy, along
with paths Pxri , the edges rir and rrj , and path Prjy creates a cycle
that contains the edges rri and rrj . Therefore, the edges rri and rrj
cannot be bridges in G′.

(if)⇒: The same argument from proof of (if) part of Lemma 4 holds
true when u is an articulation point and is the root of the spanning
tree.
⊓⊔

Thus, bridges in the auxiliary graph are a good indicator of artic-
ulation points in the original 2-edge-connected graph. Further, it is
relatively easy to find the biconnected components of a graph when
the bridges and articulation points are identified. Our approach also
indicates that the size of auxiliary graph in terms of both the number
of vertices and the number of edges, is more than the size of origi-
nal graph. But, we will see later that for real-world graphs that are
sparse in nature, this increase in size is usually small, and the ad-
ditional increase in run time can be offset by the simplicity of our
algorithm.

4.4.1 Our Algorithm for Biconnected Components

Given Lemmata 3, 4 and 5 we now provide the following algorithm to
identify the biconnected components of a graph G. Algorithm LCA-
BiCC shown as Algorithm 4 describes our approach in a high level as
consisting of 5 steps. In Step 1, we obtain a BFS tree of the input
graph G. In Step 2, we find the bridges of G and also decompose
G into its 2-edge-connected components G1, G2, · · ·. Step 3 onwards,
each such 2-edge connected components is treated independently. In
step 3, for each Gi, an auxiliary graph G′

i is constructed. Step 4
identifies non-tree edges of each G′

i, and Step 5 identifies the bridges
of the auxiliary graph, and hence the articulation points of G. In Step
6, the bridges and the articulation points of G are used to identify
the biconnected components of G.
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Figure 4.5: An example run of Algorithm LCA-BiCC. Graph G is
BFS tree with non-tree edges (shown in step 1). Vertices marked in
a circle in step 2 are the LCA vertices.
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Algorithm 4 LCA-BiCC(G)

1: procedure LCA-BiCC(Graph G)
2: T ← BFS(G) /*Step I */
3: {G1, G2, · · ·} = Bridges(G, T ) /* Step II*/
4: for all Gi i = 1, 2, · · · in parallel do
5: Construct the auxiliary graph G′

i./*Step III*/
6: Identify the non-tree edges in G′

i among the newly
added edges to Gi from Step III/*Step IV*/

7: {H1, H2, · · ·} = Bridges(G′
i, T

′
i )/*Step V*/

8: Check if ri is an articulation point in G′
i

9: Run a connected components algorithm on (G′
i \

Bridges(G′
i, T

′
i )) to identify the Biconnected Components of

Gi/*Step VI*/
10: end for
11: end procedure

The correctness of Algorithm 4 is immediate from Lemmata 3,4,
and 5. An example run of the algorithm is presented in Figure 4.5.
In the following, we elaborate on each step of Algorithm 4.

4.4.2 Step I: BFS on input graph G

We choose an arbitrary vertex r as the source vertex and perform BFS
from r and also root the BFS tree at r. The output of BFS is stored
in two arrays namely L(v) and P (v), where L(v) signifies the level of
the vertex in the BFS spanning tree and P (v) stores the parent of v
in the corresponding BFS tree. For the root r, we set P (r) = −1 and
L(r) = 0.

4.4.3 Step II: Finding the Bridges of G

Recall that an edge in G is a bridge if and only if the edge is not on
any cycle in G. The above property can be modified further to say
that an edge is a bridge if it is not on any fundamental cycle, i.e., on
cycles induced by non-tree edges according to a spanning tree. To
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this end, we consider each non-tree edge e according to the BFS tree
T from Step 1 and mark all edges in T that are in the cycle induced
by e. Algorithm 5 explains the above steps. As shown in Algorithm
5, for each non-tree edge e = xy, we traverse up the tree edges from
x and y till we reach the LCA of x and y. Each edge encountered in
this process is marked. Edges of T that are not marked in the above
process are the bridges of G. Also, end points of these bridges with
degree at least two are articulation points in G.

For each bridge xy identified above with x = P (y), we set P (y) =
−1 that essentially decomposes G into its 2-edge-connected compo-
nents. We return these 2-edge-connected components as the output
of Algorithm Bridges.

Algorithm 5 Bridges(G)

1: procedure Bridges(Graph G, Tree T )
2: for all e = (w,v) ∈ G \ T do
3: Mark the tree edges that we encounter in the process of

computing the LCA(w, v).
4: end for
5: for all e ∈ E(G) do
6: If e is not marked then B ← B ∪ {e}
7: end for
8: Return the connected components of G−B
9: end procedure

We choose to find the LCA of the end points of a non-tree edge by
using a traversal from these end points while more robust algorithms
exist for computing the LCA. In the parallel setting, such algorithms
are studied by Soman et al. [144] as an application of range min-
ima queries. Our choice is however justified by two reasons. Firstly,
most real-world graphs have a low diameter as Table 4.1 shows. As
the number of traversals is upper bounded by the diameter, such
traversals do not pose a serious performance bottleneck. Secondly,
using range minima query to compute the LCA points involves non-
trivial steps that can be computationally intensive compared to simple
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traversal.

4.4.4 Step III: Auxiliary Graph construction

Let G1, G2, · · · , be the 2-edge-connected components of G. As de-
scribed in Section 4.4, we create auxiliary graphs G′

1, G
′
2, · · · corre-

sponding to the 2-edge-connected components of G. (See also Figure
4.5 for an illustration.)

4.4.5 Step IV: Identify non-tree edges among the newly
added edges

In this step, for each 2-edge-connected component Gi of G, i ≥ 1, we
do the following. We consider all the edges added to the auxiliary
graph G′

i and mark them as either edges in the BFS tree or non-tree
edges according to BFS. Notice that we do not have to run a BFS
traversal again on G′

i, and can extend the BFS on Gi to identify the
non-tree edges.

In particular, consider a vertex u which is the LCA of a non-tree
edge e and vertices v and w are the children (neighbors) of u in the
BFS tree T that are on the cycle induced by e. As part of the auxiliary
graph construction, we add a vertex u′, and edges uu′, u′v, and u′w.
We delete edges uv and uw. Such vertices v and w can now be end
points of edges added during the construction of the auxiliary graph.
Each such vertex v picks one of the alias vertices of its parent in the
BFS of G′. The remaining edges between v and alias vertices will be
marked as non-tree edges.

4.4.6 Step V: Identifying Articulation Points of G

In this phase we use the Algorithm 5 for identifying the bridges in
each of the graphs G

′
1.G

′
2, · · ·. For each such bridge e = xy, notice

that one of the end points is a vertex that is not in G and is added
to the corresponding auxiliary graph during Step 3 of the algorithm.
Such vertices are the articulation points of G.
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4.4.7 Step VI: Finding the Biconnected Components of
G

In this step, we utilize the information of bridges identified in Step V
to identify the biconnected components of G. Let F ′ denote the forest
of auxiliary graphs generated after the removal of bridges identified
on auxiliary graph G′. We invoke connected components algorithm
on F ′ and rename each alias vertex in F ′ to its original to get the
biconnected components of G.

Analysis: We analyze the work done in Algorithm LCA-BiCC
as follows. BFS requires O(n + m) work, and finding the bridges in
both original and auxiliary graph requires O(dT ) per non-tree edge.
where dT is the depth of the BFS tree. So the total work done for all
non-tree edges is O(mdT ). Rest of the steps such as constructing the
auxiliary graph, finding the connected components (Step VI) all can
be done in time O(m + dT ) time. Thus, the algorithm in the worst
case takes O(mdT ) time in a sequential setting.

However, as observed in Table 4.2, the average number of traver-
sals towards the root of the tree required in identifying bridges is often
much smaller than the depth of the BFS tree. This is the reason why
our algorithm is a nearly linear (in m and n) in time.

4.5 Implementation Details

In this section, we describe the implementation details of our algo-
rithm. We also justify our choices made during the implementation.

We use the compact adjacency list representation(CSR), to repre-
sent the graph in the memory. In this representation all the adjacency
lists are packed together into a single large array. An array Ea is used
to store the adjacency lists where the list for vertex i+1 immediately
follows that of vertex i for all vertices in G. An array Va, stores the
starting indices of the corresponding adjacency lists in Ea. CSR rep-
resentation helps in reducing the irregularity memory access. For a
detailed description, an interested reader can refer to [17].
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We perform the following program optimizations while implement-
ing Algorithm LCA-BiCC. The performance of Algorithm LCA-BiCC
is influenced by factors such as the depth of the BFS tree produced
in Step I, the time taken to identify vertices in Vlca in Step II, and
the size of the auxiliary graph constructed in Step III. We use the
heuristic based approach of selecting the largest degree vertex as the
source of the BFS to minimize the depth of the BFS spanning tree.

To minimize the time taken to identify the LCA vertices, we intro-
duce the following optimization. Consider a non-tree edge, e = (u, v)
with both u and v performing a walk towards the root of the tree. If
both u and v encounter a tree edge that is marked by another non-tree
edge, say f , then it holds that LCA(e) = LCA(f). Therefore, we stop
the walks originating from u and v. These optimizations also reduce
the size of the auxiliary graph.

We note that Lemmata 3, 4 and 5 can be modified suitably to
work with any spanning tree. Using any spanning tree in Algorithm
5 requires one to associate level numbers to vertices in the tree. How-
ever, using a BFS tree allows to obtain the required level numbers as
part of the BFS traversal and no additional computation is required
for the same. Therefore, we chose to present the lemmata and the
algorithms in terms of a BFS tree.

4.6 Experimental Results

4.6.1 Platform

We use an Intel i7 980x processor with 8 GB main memory as the
experimental platform to test our results. The 980x is based on the
Intel Westmere micro-architecture. This processor is from the In-
tel family with each core running at 3.4 GHz and with a thermal
design power of 130 W. The i7-980X has six cores and with active
SMT(hyper-threading) and can handle twelve logical threads. Be-
yond the memory, the i7-980x has a three level cache structure with
an L1 cache per core of 64 KB split into two halves for instruction
and data, an L2 cache per core of size 256 KB, and a shared L3 cache
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of size 12 MB.

4.6.2 Datasets

We experiment on a variety of real-world and synthetic datasets. For
simplicity purposes, directed edges were considered undirected. Mul-
tiple edges and self loops were removed. The input graphs are as-
sumed to be a single connected component. If not they are made
connected by adding explicit edges. We experiment with real world
graphs from the dataset of University of Florida Sparse Matrix collec-
tion [4] and SNAP database [3]. These matrices can be converted to
graphs naturally. A list of the instances we consider are given in Table
4.1. Synthetic graphs were generated with the GTGraph suite [12]
using the default parameters.

Graph name Source |V | |E| Diameter

web-google [89] 916,428 5,105,039 23

Webbase [161] 1,000,005 3,105,536 27

Roadnet-PA [89] 1,090,920 3,083,796 794

Roadnet-CA [89] 1,971,281 5,533,214 863

web-Stanford [93] 281,903 2,312,497 745

Wb-edu [89] 9,845,725 57,156,537 511

amazon [89] 262,111 1,234,877 29

Great-Britan [89] 7,733,822 16,313,034 9340

asia-osm [89] 11,950,757 25,423,206 48,126

Patents [89] 3,774,768 16,518,948 29

Table 4.1: List of graphs that we use in our experiments.

4.6.3 Results on Real World Graphs

We study the results of our approach on the graphs mentioned in Ta-
ble 4.1. We will demonstrate both the relative and absolute speedup
compared to prior work on the same platform and analysis of our
algorithm with respect to the graph computations involved in it.
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Overall Improvement We consider the overall improvement ob-
tained by our approach compared to the best known implementation
for finding the biconnected components on the same platform. In
Figure 4.6, the baseline we use for comparison is the best runtime
achieved by either of Algorithm BFS-BiCC and Algorithm Color-
BiCC reported in [94].
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Figure 4.6: Comparing the overall performance improvement of our
approach with respect to a baseline implementation. The Y-axis
shows the ratio of the time taken by the baseline to our implementa-
tion.

As can be observed from Figure 4.6, Algorithm LCA-BiCC out-
performs the baseline by a factor of 2.45x on average. As claimed
in [94], the best of the above two algorithms is an improvement over
the results of [44]. So, we expect that Algorithm LCA-BiCC too
would outperform the results of [44].

Figure 4.7 shows the absolute times taken for all the three algo-
rithms on the real world graphs. It is visible from Figure 4.7 that the
run time of Algorithm BFS-BiCC and Algorithm Color-BiCC can
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Figure 4.7: Figure shows the absolute runtime of Algorithm LCA-
BiCC and Algorithms BFS-BiCC, Algorithms Color-BiCC from [94]
(in left-to-right order of bars) on graphs listed in Table 4.1. Note that
the Y-axis is in log-scale.

vary hugely across instances and it is not possible to determine a-
priori which algorithm might perform better among the two as both
are heavily dependent on the structure of the graph.

Understanding the Results One can analyze the improvement
is in terms of the basic steps in each of the algorithms under com-
parison. Algorithm BFS-BiCC [94] does, in principle, n BFS com-
putations. There are however several optimizations that Slota and
Madduri [94] introduced to ensure that several of these BFS compu-
tations do not visit all the vertices. On the other hand, Algorithm
LCA-BiCC performs only one BFS computation (Step 1) and one
connected components computation (Step 6), apart from two calls
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Figure 4.8: Profile of time taken across various steps of Algorithm
LCA-BiCC.

to Algorithm Bridges (Steps 2 and 5) to find the bridges of a given
graph. The rest of the computation is to construct the auxiliary graph
G′. During Algorithm Bridges, the end points of each non-tree edge
march up the tree using the parent pointers. As described before, the
number of traversals for each end point of a non-tree edge is upper
bounded by the depth of the BFS tree produced in Step 1. The depth
of a BFS tree is also related to the diameter of the graph, and it is
observed that most real-world graphs have a low diameter. The di-
ameter of the graphs used in our experiments is also shown in Table
4.1.

Further, we also computed the average number of traversals needed
by each end point to locate the LCA. The average number of traversals
along with the depth of the BFS tree constructed in Step 1 are listed
in Table 4.2 for the graphs from Table 4.1. It can be noticed that
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the average number of traversals needed is smaller than the depth of
the BFS tree and is under 10 in all the graphs. This small number of
traversals on sparse graphs is what also helps in keeping the runtime
of our algorithm low.
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Figure 4.9: Figure shows the time taken to identify bridges in a graph
G using our algorithm (Algorithm 5 and the algorithm of Tarjan and
Vishkin [149]).

We study the size of the auxiliary graph constructed in Step III
of Algorithm LCA-BiCC. Since an auxiliary graph is constructed for
each 2-edge-connected component of G, we measure the sum of the
sizes of the auxiliary graphs constructed with respect to each 2-edge-
connected component of G. It is noted that the maximum increase in
number of vertices at 25% and 20% occurred on the graphs roadnet-
CA and roadnet-PA respectively. For all the other graphs from Table
4.1, the number of vertices increased by under 5%. For each vertex
added to the auxiliary graph, there are two edges removed and three
edges that are added to the auxiliary graph. Thus, the increase in
the number of edges is equal to the number of newly created vertices.
In terms of relative increase, the number of edges had a maximum
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increase on the above instances again, at 8% and 7% respectively,
and in all other instances from Table 4.1, the increase in the number
of edges is under 3%. This shows that the actual increase in the
size of the auxiliary graph is rather marginal and does not affect the
performance of Algorithm LCA-BiCC in a significant manner.

Profiling and the Choice of the Source Vertex We finally show
the time taken in each step of Algorithm LCA-BiCC as a percentage
of overall time. Such a study shows the relative cost of each of the
steps of the algorithm. The results of study are shown in Figure 4.8.
Some of the improvement of Algorithm LCA-BiCC can be attributed
to the fact that finding the bridges of a graph is a much easier task
in a parallel setting. As shown in Figure 4.8, this step on the original
graph G takes under 16% of the overall time on average, and takes
under 20% on average on the auxiliary graph G′. These are labeled
as Steps II and V respectively in Figure 4.8.

Note that Tarjan and Vishkin [149] also outline an approach to
identify the bridges, their algorithm is usually more time consuming
as it involves computation of functions low(v) and high(v) (as defined
in Section4.2.2). Using the two functions low and high, a tree edge
in T from v → w is marked as a bridge if and only if w ≤ low(w)
and high(w) ≤ w + nd(w) − 1 where nd(w) refers to the number
of descendants for a vertex w. To illustrate the simplicity of our
approach for identifying bridges on sparse graphs, we consider some
graphs from Table 4.1 and perform identification of bridges using
our approach (Algorithm 5) and also the approach of Tarjan and
Vishkin [149]. The time taken for both these approaches is plotted in
Figure 4.9. As can be seen, our approach outperforms that of Tarjan
and Vishkin.

In practice we have observed that unlike BFS-BiCC and Color-
BiCC our LCA-BiCC approach is not heavily impacted by the choice
of the source vertex while constructing the BFS spanning tree. The
difference in the run time of Algorithm LCA-BiCC when a vertex of
the highest degree is chosen as the source vertex versus an arbitrary
source vertex is usually under 10% on the graphs from Table 4.1. On
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the other hand, as reported in [94], and also as witnessed in our ex-
periments too, Algorithm BFS-BiCC from [94] is significantly affected
by the choice of the source vertex for all graphs listed in Table 4.1
and those considered in [94].

Graph name %of LCA vertices BFS depth avg # LCA-traversals

web-google 3.31 12 1.09

Webbase 0.31 16 2.5

Roadnet-PA 15.02 534 9.91

Roadnet-CA 14.90 554 9.09

web-Stanford 1.90 727 2.82

Wb-edu 11.91 319 9.81

amazon 8.20 23 6.47

Great-Britan 2.96 6841 7.55

asia-osm 2.93 38,793 4.93

Patents 1.97 17 3.91

Table 4.2: List of graphs along with the average number of traversals
made per non-tree edge. The column labeled “% of LCA vertices”
indicates the number of vertices that are in Vlca as a percentage of
the total number of vertices.

4.6.4 Results on synthetic graphs

Figure 4.10 shows the speedup obtained by Algorithm LCA-BiCC
on synthetic graphs. These graphs were generated using GTGraph
suite [12] with default parameters. In Figure 4.10, graph rand pM qM
refers to a random graph generated with p million vertices and q mil-
lion edges. We obtained an average speedup of 2.53x with respect to
the best of BFS-BiCC and Color-BiCC [94].
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Figure 4.10: Comparing the overall performance improvement of our
approach with respect to best of BFS-BiCC and Color-BiCC. The Y-
axis shows the ratio of the time taken by the baseline to LCA-BiCC
algorithm.

4.7 Further Improvements

In this section we present a simple yet efficient optimization for Al-
gorithm BFS-BiCC [94] for identifying the biconnected components
of graph G. Our improvements is based on two observations. Firstly,
we make use of the observation from Section 7.2.1 that identifying
the bridges in a graph is an efficient operation, especially in a parallel
setting. Bridges also help in partitioning a graph into its 2-edge-
connected components that can be processed independently. Sec-
ondly, given a 2-edge-connected graph, we use Lemma 3 to discard
vertices that are certainly not articulation points and work with a
small subset of potential articulation points. We call the vertices that
are certainly not articulation points as non-essential vertices. Such a
notation with respect to edges was also used by Cong and Bader [44].
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Figure 4.11: Speedup obtained by Algorithm LCA-BFS-BiCC over
Algorithm LCA-BiCC and Algorithm BFS-BiCC ( [94]), for the
graphs from Table 4.1.

We use the above two observations to modify Algorithm BFS-
BiCC from [94]. Unlike Algorithm BFS-BiCC, we do not examine
each vertex for its possibility to be an articulation point. The BFS-
BiCC approach is limited only to potential articulation points. Rest
of the details are similar to that of Algorithm BFS-BiCC. As can be
seen from Table 4.2, since the percentage of LCA vertices is small
in most real-world graphs, we expect that our modifications to Algo-
rithm BFS-BiCC would result in an improvement.

Our algorithm, called Algorithm LCA-BFS-BiCC, is shown as Al-
gorithm 6. Some of the steps such as computing a BFS tree (Step
I), finding the bridges of G (Step II) are identical to that of Algo-
rithm LCA-BiCC. In Step III, we limit the call to Procedure BFS-
L described by Madduri et al. [94, Algorithm 6] to only vertices in
Vlca(Gi) for each i. In Step III, once we identify the articulation
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Algorithm 6 LCA-BFS-BiCC(G)

1: procedure LCA-BFS-BiCC(Graph G)
2: T ← BFS(G) /*Step I*/
3: {G1, G2, · · · , } = Bridges(G,T ) /*Step II */
4: for all Gi, i = 1, 2, · · · , in parallel do /*Step III*/
5: for all v ∈ Gi do
6: Articulation(v) = false; visited(v) = false
7: end for
8: for all u ∈ Vlca(Gi) \ ri do /* ri is the root of
9: the BFS tree of Gi */

10: v ← P (u)
11: if Articulation(v) = false then
12: l ← BFS-L(G,L, v, u, visited) /*BFS-L refers to

[94, Algorithm 6]*/
13: if l ≥ L(v) then
14: Articulation(v)← true
15: end if
16: end if
17: end for
18: Check if ri is an articulation point
19: Identify the Biconnected Components of Gi using the Ar-

ticulation Points of Gi /*Step IV*/
20: end for
21: end procedure
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points of each Gi, we use a step similar to that Step VI of Algorithm
LCA-BiCC to identify the biconnected components of G.

4.7.1 Experimental Results

We use the experimental platform as described above in Section 4.6.
We compare the results of LCA-BiCC algorithm with optimized BFS-
BiCC approach on graphs given in Table 4.1.

In Figure 4.11, we show the improvement obtained by Algorithm
LCA-BFS-BiCC compared to Algorithm LCA-BiCC. On average, Al-
gorithm LCA-BFS-BiCC is about 1.46x faster compared to Algorithm
LCA-BiCC. Figure 4.11 also shows the improvement obtained by Al-
gorithm LCA-BFS-BiCC over the BFS-BiCC algorithm of [94]. Cen-
tral to the improvement obtained by Algorithm LCA-BFS-BiCC is
the idea that we have to perform BFS from only vertices in Vlca.

To understand the extent of improvement of Algorithm LCA-BFS-
BiCC over Algorithm BFS-BiCC, we note the following. From the col-
umn labeled “% LCA Vertices” of Table 4.2, we see that in general,
real-world graphs have a small percentage of vertex that are in Vlca.
So, we expect significant performance gain for Algorithm LCA-BFS-
BiCC. However, Figure 4.11 indicates the performance gain of Algo-
rithm LCA-BFS-BiCC does not match the corresponding expected
gain. For instance, if a graph has 10% of vertices in Vlca, one can
expect a 10x improvement in the run time of Algorithm LCA-BFS-
BiCC compared to that of Algorithm BFS-BiCC of [94]. This is not
the case in general for the following reasons.

Algorithm BFS-BiCC introduces optimizations such as truncat-
ing the BFS-like traversals that are deemed unnecessary, invalidating
the vertices of an already established biconnected component, and
the like. Algorithm LCA-BFS-BiCC also benefits from these op-
timizations. However these optimizations mean that in Algorithm
BFS-BiCC, even though most BFS traversals are terminated early
on, there is still redundant work that is removed by using Algorithm
LCA-BFS-BiCC. For experimental purposes, when the above men-
tioned optimizations from BFS-BiCC are removed, we do notice that
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the speedup achieved by Algorithm LCA-BFS-BiCC compared to that
of Algorithm BFS-BiCC is near the expected speedup.

Also in the BFS-BiCC approach, the choice of root vertex af-
fects the runtime of the level-truncated BFS. Since the percentage of
LCA-vertices (from Table 4.2) are quite low for real world graphs, it
is observed during our empirical study that this choice would have
minimum affect on the overall runtime of LCA-BFS-BiCC.

Results on GPUs Our algorithm GPU-LCA-BiCC is considerably
faster than the BFS-BiCC version with speedups ranging from 5.18x
to nearly 70x. The GPU implementation is at-least 2x faster than its
CPU implementation. The removal of the 2nd and the 3rd pass and
the efficient construction of the alias vertices results in faster GPU
implementation.

BFS-BiCC does BFSs from every point in a BFS tree and checks
whether the children node is accessible to node higher than the parent
if the parent node is removed. If it is, then that node cannot be an
articulation point. However Chaitanya[] proves that only Vlca(G) is
potential set of articulation points. Hence BFS-BiCC can be modified
to include only the LCA points. We implemented this new version
and tested it against our code. The final speedup across all three
implementations is given below.

Relative Speedup of GPU-LCA-BiCC
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It appears that LCA-BFS-BiCC is faster than BFS-BiCC only in
certain cases. In most of the other cases, LCA-BFS-BiCC performs
similar if not worse than BFS-BiCC. This speedup in certain cases
can be attributed to two factors
First, in large sparse graphs, the number of non-tree edges are less
and hence finding LCAs takes very less time. However as graphs be-
come less sparse, finding LCAs itself becomes a complex task in terms
of time. The advantage of working on a smaller subset of vertices is
offset by actually finding the smaller subset of LCAs.
Second, it can be observed that even in cases of large sparse graphs,
LCA-BFS-BiCC although always better, still gives higher speedups
in only certain cases. The following table illustrates the point better.

Table 4.3: Diameter and Timings (ms)
Graph Diameter BFS-BiCC LCA-BFS-BiCC

roadNet-pa 786 86.3 88.15
roadNet-tx 1054 168.69 151.81

netherlands-osm 2554 531.6 216.41
greatBritain 9340 2800 862

asia-osm 48126 380(s) 7.43(s)

One can see that BFS-BiCC slows quite considerably as the di-
ameter increases. However no such slow-up occurs in GPU-BiCC or
LCA-BiCC. BFS-BiCC as mentioned, does BFSs from every vertex
till a higher up vertex is reached. In case of large diameter graphs,
it often results in a single thread traversing upwards in a long chain
of nodes. This causes other finished threads to wait and stalls the
program. LCA-BFS-BiCC has no such traversal by a single thread
upwards a long chain of nodes and is hence unaffected by diameter of
the graph. Besides, finding LCA eliminates majority of vertices from
consideration.

Despite these modifications, GPU-BiCC performs much better
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than LCA-BiCC. GPU-BiCC was also tested for various starting
points. The BFS was run from maximum degree vertex and some
other random vertices. However no substantial change in timings was
observed. GPU-BiCC performs consistently irrespective of starting
point.



Chapter 5

Further Improvements in
Graph k-Connectivity
Testing on GPUs

Several recent sequential and parallel algorithms for k-connectivity
rely on one or more breadth-first traversals of the input graph. It
can be also noticed that the time spent by the algorithms on BFS
operations is usually a significant portion of the overall runtime of
the algorithm.

In this chapter, we study how one can, in the context of algo-
rithms for graph connectivity, mitigate the practical inefficiency of
BFS operations in parallel. Our technique suggests that such algo-
rithms may not require a BFS of the input graph but actually can
work with a sparse spanning subgraph of the input graph. The in-
correctness introduced by not using a BFS spanning tree can then
be offset by further post-processing steps on suitably defined small
auxiliary graphs.

89
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5.1 Introduction

In a remarkable result, Cheriyan and Thurimella [38] showed that
the k-connectivity of an undirected graph can be tested by using a
kn sized subgraph of the graph instead of using the entire graph.

Formally, let Ti for i ≥ 1 is the BFS spanning forest of G \
(
∪i−1
j=1Tj

)
.

Cheriyan and Thurimella show that the graph ∪ki=1Ti is k-connected
if and only if G is k-connected. The graph H := ∪ki=1Ti is said to be a
certificate for the k-connectivity of G. Similar results are also shown
by Khuller and Scheiber [100].

The technique of Cheriyan and Thurimella [38] did improve the
practical performance of parallel algorithms for testing the k-connectivity
of an undirected graph. Evidence for this can be seen from the work
of Bader and Cong [45], Chaitanya and Kothapalli [36], and that of
Wadwekar and Kothapalli [153] for finding the biconnected compo-
nents of a graph on symmetric multiprocessors, multi-core CPUs, and
GPUs respectively. Much of this improvement can be attributed to
the smaller size of the certificate in terms of the number of edges in
the input graph.

However, in general, on large input graphs the time taken to ob-
tain the certificate via parallel BFS operations can be a significant
portion of the total run time. For instance, consider Algorithm N-
GPU-BiCC from [153], which we rename as Algorithm Cert-GPU-
BiCC in this chapter. This algorithm is so far the fastest known
implementation for finding the biconnected components of a graph in
parallel. Algorithm Cert-GPU-BICC performs two BFS traversals on
the graph G to obtain a certificate of size at most 2n − 2 edges for
testing the biconnectivity of G. Figure 5.1 shows the time spent by Al-
gorithm Cert-GPU-BiCC on BFS operations on a set of eight graphs.
As shown in Figure 5.1, these two BFS operations consume on aver-
age 66% of the time spent by Algorithm Cert-GPU-BiCC. It indicates
that to design faster parallel algorithms for graph k-connectivity, one
must relook at the expensive BFS operations.

The inherent difficulty of efficiently performing a BFS traversal of
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a graph led to several researchers identifying numerous algorithmic
and data structure optimizations on various modern architectures.
Some of these include the direction optimizing BFS by Beamer et al.
[20], cache- and data structure optimizations by Chhugani et al. [39]
fine-grained task management based approach on GPUs by Merrill et
al. [114], and graph decomposition based methods by Buluç et al. [34].
Despite these advances, we notice in our study that BFS traversals
still consume a significant portion of the run time of parallel graph
connectivity algorithms.

The large time spent by BFS operations can be attributed to the
fact that a BFS traversal requires assigning vertices to levels such
that for i ≥ 0, the shortest hop distance from the source of the BFS
to any node in level i is i. Arriving at such an assignment in parallel
requires expensive algorithmic/programming constructs such as syn-
chronization, concurrent data structures, and work balancing among
threads.

The above situation inspires us to design parallel graph k-connectivity
algorithms that mitigate the inefficiencies of BFS operations. It must
be noted that certificate based algorithms for graph k-connectivity
are efficient only after obtaining the necessary certificate using k BFS
traversals. Therefore, we suggest designing parallel algorithms that
do not perform BFS operations on large graphs. One way of achiev-
ing this goal is to trade-off the cost of obtaining the certificate to its
accuracy.

In this chapter, we show that by using novel strategies we can
avoid performing BFS on the input graph G. Instead, we use a sparse
spanning subgraph H ′ of the input graph. The subgraph H ′ thus
identified is tested for its k-connectivity. It must be noted that as H ′

may not be an accurate certificate for the k-connectivity of G, the k-
connectivity of H ′ may not provide an answer to the k-connectivity of
G immediately. To make up for this inaccuracy, we include additional
steps on an auxiliary graph F created out of G and the k-connectivity
information obtained from H ′. The auxiliary graph F is constructed
such that G is k-connected if and only if F is k-connected. The sizes
of H ′ and F are usually smaller compared to that of G resulting in a
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Figure 5.1: Figure shows the percentage time spent by Algorithm
Cert-GPU-BiCC (cf. [153]) on BFS operations.

low overall run time.
We implement our approach for testing the 2, and 3-connectivity

and obtaining the 1, 2, and 3-connected components of a graph on
Nvidia GPUs. Our results are summarized in the following.

� For testing the connectivity, and obtaining the connected com-
ponents of a graph our approach results in a speedup of 2.2x
over [153] on a variety of real-world [43] and random graphs.

� For testing the 2-connectivity, and obtaining the biconnected
components of a graph our approach results in a speedup of 2.2x
over [153] on a variety of real-world [43] and random graphs.

� We provide the first known GPU based algorithms for testing 3-
connectivity of a graph and finding the 3-connected components
of a graph.

� For testing 3-connectivity, and obtaining the 3-connected com-
ponents of a graph our approach results in a speedup of 2.1x
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over a corresponding certificate-based approach implemented in
this chapter.

Note that the certificate based approach of Cheriyan and Thurimella
[38] involves three BFS traversals. So, one naturally expects a higher
speedup for our approach on 3-connectivity. However that is not to
be case as the graphs we use have a large number of 3-connected com-
ponents resulting in more time spent in finding the 3-connectivity and
the 3-connected components of F .

We believe that our technique has applications to other graph
problems where one can algorithmically replace structures that are
expensive to compute with simple to obtain and possibly inaccu-
rate structures followed by a post-processing step. Our work there-
fore opens the possibility of reinterpreting important steps in parallel
graph algorithms so as to make them more efficient in practice.

5.2 An Overview of Our Approach

Several recent studies on parallel graph algorithms have explored var-
ied techniques to improve their practical efficiency on multi-core and
accelerator based architectures. Many such studies use well-known
graph computations such as traversals, spanning trees, edge/vertex
decompositions as a subroutine. These algorithms can be summa-
rized as follows. From the input graph G, one obtains a structural
subgraph H such that computation on G can be translated or reduced
to computations on H followed by additional post-processing steps as
required. An example of this can be seen in the work of [58, 119]
where a reduced graph that shrinks all vertices of degree two is used
as the graph H.

The above mentioned approach of computing on a subgraph H
often helps if H is of a smaller size than G. The benefits of the above
stated approach however will be limited if identifying H is expensive
possibly due to strict structural guarantees required on H. As can be
noticed from Figure 5.1, a large portion of time spent in obtaining H
indicates scope for revisiting the approach.
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In this direction, we propose to reconsider the algorithmic impli-
cation of replacing H with a suitable, easy to create structure H ′

such that the computation can be done on H ′ instead of H. In case
the result of the computation on H ′ does not provide a correct result
for the required computation on G, additional steps may be required
depending on the nature of the problem. However, in these additional
post-processing steps, the size of the problem is often much smaller
than the size of the original graph. Therefore, it is expected that the
cost of post-processing is small.

The approach can be seen to have three stages. In Stage I, we
obtain a subgraph H ′ of G. Stage II performs computation on H ′.
An optional Stage III introduces a post-processing step, if required.
The technique as presented above allows for multiple possibilities at
all stages. In Stage I, H ′ can be obtained by (i) uniformly sampling
the input graph G, (ii) by relaxing the structural properties required
of H, (iii) using importance sampling, and the like. In Stage II, the
computation on H ′ is chosen based on the input problem. Depending
on the choices exercised in Stage I and Stage II, we consider the ques-
tion of whether the output of Stage II can lead to the required output
on the original graph. If the output of Stage II is insufficient to arrive
at the final answer, we consider Stage III as the post-processing stage.
In Stage III also, the computation required depends on the nature of
the problem and the utility of H ′. Stage III, depending on the prob-
lem can use possibilities such as iterating, and augmenting the result,
and constructing an auxiliary graph for suitable computation.

We note that as H ′ and H are expected to be of similar size, the
time taken for computing on H and H ′ will not differ significantly.
Hence, for our technique to be useful in practice, the cost of Stages I
and III should be lesser than the cost of obtaining H from G.

Figure 5.2 illustrates the idea of our approach. In Figure 5.2, we
also list some of the possibilities at each stage of the approach. The
particular choice used in this chapter is shown in bold text in Figure
5.2.

In this chapter, we apply our approach to test the k-connectivity
and find the k-connected components of an undirected graph G for
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Figure 5.2: Figure that illustrates our technique in comparison to
other approaches towards practical parallel graph algorithms. The
top path (colored red) represents direct computation that is usually
expensive. The middle path indicates preprocessing via strict struc-
tural subgraphs or constructs that are sometimes expensive to create.
The bottom path (colored green) corresponds to the less expensive
approach proposed in this chapter.

k = 1, k = 2, and k = 3. Cheriyan and Thurimella [38] show that
a subgraph H can be constructed as a certificate for G via k BFS
traversals. (The k-connectivity of H offers a quick way to test the
k-connectivity of G.) As obtaining H via multiple BFS traversals
of the input graph can consume a significant portion of the overall
runtime (cf. Figure 5.1), we show that our approach can be helpful
in arriving at faster parallel algorithms for graph k-connectivity.

5.3 Application to 1-Connectivity

Sutton et al. [146] present modifications to the standard PRAM al-
gorithm of Shiloach and Vishkin [138] to make the algorithm more
suitable on modern parallel architectures. Their modifications are
aimed at addressing the irregular memory accesses of typical PRAM
style graph algorithms. While the algorithm of Sutton et al. also
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uses the basic idea of the algorithm from [138], the main difference
is in avoiding iterating over the same edge several times and using
atomic operations (such as compare and swap) to control concurrent
operations.

The main subroutines in the algorithm of Sutton et al. [146] are
Link and Compress. The subroutine Link is called once for every edge
where it is ensured that for every edge uv of the graph, u and v remain
in the same tree. The subroutine Compress is similar to the pointer-
jumping routine that is popular in parallel algorithms [90,164].

Algorithm 7 Procedures Link and Compress from [146].

1: procedure Link((e = uv, π))
2: π1 = π(u), π2 = π(v)
3: while (π1 ̸= π2) do
4: h = max{π1, π2}, ℓ = min{π1, π2}
5: if Compare and Swap(π(h), h, l) then return
6: end if
7: π1 = π(π(h)), π2 = π(ℓ)
8: end while
9: end procedure

10: procedure Compress((v, π))
11: while (π(π(v)) ̸= π(v)) do
12: π(v) = π(π(v))
13: end while
14: end procedure

Unlike the Shiloach-Vishkin algorithm, the algorithm by Sutton et
al. [146] is sensitive to the order in which edges are processed through
subroutines Link and Compress. In fact, one can create worst-case
example graphs and an adversarial order of processing of edges so
that the Subroutine Link requires O(n) work for some edge uv and
the Subroutine Compress requires a total of O(n2) work. This is in
contrast to the upper bound of O(m + n) on the work performed by
the Shiloach-Vishkin algorithm [138].

In the case of 1-connectiivity, Sutton et al. [146] use a subgraph
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sampling based approach where a subgraph H of G is formed with n
vertices and at most O(n) edges. This subgraph H can be identified
via several sampling methods: choosing uniformly at random, choose
edges having vertices of low degree as an end point, choosing vertices
uniformly at random along with all the neighbors of chosen vertices,
and the like.

Sutton et al. through their experiments show that sampling via
vertices and their neighbors is most inefficient of the above three
choices. Between sampling edges uniformly at random and sampling
edges based on the degree of the end points of the edges, the latter is
shown to perform better. This behavior is true even when one con-
siders how the largest connected component is completely identified
as a fraction of the processed edges.

5.4 Application to 2-Connectivity

Recall from graph theory that a graph G is said to be biconnected,
or 2-connected, if every pair of vertices v, w ∈ V (G) have at least
two vertex disjoint paths between them. The maximal 2-connected
subgraphs of G are called as the biconnected components of G. A
vertex v of G is called an articulation point or a cut point if the
removal of v from G disconnects G. An edge vw of G is called a
bridge or a cut edge if removing vw from G disconnects G. Finding
whether G is biconnected and the biconnected components of G has
applications in networks [27,154], clustering [33], planarity testing [79]
and data visualization [5].

On GPUs, the only known algorithm for this problem is presented
recently in [153]. Algorithm GPU-BiCC from [153] argues that in a
parallel setting, finding the bridges of a graph G is much easier com-
pared to finding the articulation points. Based on this observation,
the algorithm first identifies the bridges of G and separates G into its
2-edge-connected components. (The 2-edge-connected components of
G are its maximal subgraphs such that every pair of vertices in each
subgraph have at least two edge disjoint paths between them). To
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identify the articulation points in each 2-edge-connected component
Gi of G, Algorithm GPU-BiCC builds an auxiliary graph G′

i such that
bridges of G′

i can be used to locate the articulation points of Gi, and
hence those of G. This information is then used to subsequently iden-
tify the biconnected components of G. For further details, we refer
the reader to [153]. Algorithm GPU-BiCC is 4x faster compared to
other parallel approaches [36,142]. On dense graphs, Algorithm Cert-
GPU-BiCC from [153] uses the certificate as defined by Cheriyan and
Thurimella [38] to obtain a further 2x speedup on Algorithm GPU-
BiCC.

5.4.1 Our Approach

As mentioned in the previous section, one can take H as the subgraph
formed by taking the union of a BFS tree T of G and the BFS spanning
tree of G\T . This certificate H will have n vertices and at most 2(n−
1) edges. However, as Figure 5.1 shows, obtaining H is an expensive
step, taking an average of 66% of the total time of Algorithm Cert-
GPU-BiCC. We therefore use our approach as outlined in Section 5.2
by replacing H with a suitable H ′.

To this end, we start with H ′ as a kn sized spanning subgraph
of G for an appropriately chosen constant k and proceed to find the
biconnected components of H ′. As H ′ may miss including certain
edges critical to answer the biconnectivity of G, H ′ is not a certificate
for biconnectivity of G. Nevertheless, the biconnected components of
H ′ can be used to create an auxiliary graph F . Each vertex in F
roughly corresponds to a biconnected component of H ′ and edges of
F represent edges between these components. The edges of G\H ′ are
used to add additional edges to F so that F acts as a valid certificate
for the biconnectivity of G. As H ′ is of comparable size to H and the
size of F is expected to be small, our approach can help reduce the
time spent in BFS operations. More formal details of our approach
are presented in the following.
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Figure 5.3: An example run of Algorithm Sample-GPU-BiCC on the
graph in part (a) of the figure.

Our Algorithm

Algorithm Sample-GPU-BiCC for finding the biconnected compo-
nents (BCCs) of a connected graph G is listed as Algorithm 8. An
example of Algorithm 8 is shown in Figure 5.3. Each of the steps of
the algorithm are explained below.

Algorithm 8 Algorithm Sample-GPU-BiCC

1: Input: A connected graph G
2: Output: The Biconnected Components (BCCs) of G.
3: Obtain a subgraph H ′ from G
4: Find the BCCs of H ′ using Algorithm GPU-BiCC.
5: Extract F using the BCCs of H ′ and edges of G
6: Find the BCCs of F using Algorithm GPU-BiCC.

� Step 1 – Obtain subgraph H ′ from G: Recall that H ′ is a kn
sized subgraph of G. We identify H ′ by viewing the edges of

G as an edge list and including every m/knth edge for a total
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of kn edges. Note that no randomness is used as any kn edges
suffice for our purpose.

� Step 2 – Find BCCs of H ′: Once H ′ is obtained, we find the
BCCs of H ′ using Algorithm GPU-BiCC ([Algorithm 6] from
4). These BCCs are used to define the vertices of F .

� Step 3 – Extract F using BCCs of H ′ and the edges of G: In
this step, we create an auxiliary graph F . The BCCs of H are
treated as super-vertices that correspond to the vertices of F .
Recall that a vertex can be part of several BCCs. In particular,
articulation points belong to multiple BCCs. Hence we keep
such vertices as a separate vertex in F . Two vertices in F are
joined by an edge if there exists an edge vw ∈ E(G) such that
v and w are in different super-vertices of F .

This results in F being a multi-graph. In such cases, since we
need to know if there are at least two edges between nodes in F ,
we need to add at most two edges between any two vertices of
F . For every pair of vertices v, w in F with two edges between
them, we keep only one such edge between v and w, and add
an auxiliary vertex v′ and edges vv′, v′w to F . By doing so, F
is now a simple graph.

We note that as the edges of G are all used to define the edges of
F , F acts as a certificate for the 2-connectivity of G. In other
words, if vertices x and y have more than one vertex-disjoint
path between them in G, then either x and y belong to the
same super-vertex of F or the super-vertices of F that contain
x and y have more than one vertex-disjoint path between them.
The former happens when all the edges on at least one cycle
containing x and y is in H ′. The latter happens when no cycle
containing x and y is in H ′ in which case, the edges of the
cycle(s) that are not in H ′ induce edges in F that ensure that
the super-vertices of F containing x and y have at least two
vertex-disjoint paths.
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� Step 4 – Find BCCs of F : In this step, we find the BCCs of F us-
ing Algorithm GPU-BiCC [153]. The biconnected components
identified in this step can be used to identify the biconnected
components of G.

5.4.2 Implementation Details

We implement Algorithm Sample-GPU-BiCC on a GPU. For BFS on
a GPU, we use the implementation from [114] that uses a fine-grained
task management strategy. According to our approach, these BFS
operations are done on subgraphs H ′ and F thereby requiring lesser
time. This is followed by identifying the Least Common Ancestor
(LCA) of the end points of every non-tree edge. Here, we launch one
thread for every non-tree edge. Generating F requires a lookup of
the edge list of G along with the information of BCCs of H ′. This is
easily implemented on a GPU by assigning a thread to every edge of
G. We therefore note that Algorithm Sample-GPU-BiCC is amenable
to a GPU-based execution where a massive thread pool is supported.
We arrange the threads into blocks with 1024 threads per block.

5.4.3 Experimental Results and Discussion

Experimental Platform

The experimental platofrm we use in our experiments in the K40c
GPU, a summary of which is presented in Chapter 2.

Dataset

The graphs we use for our experiments are taken from real-world
datasets [43], random graphs following the Erdős-Rényi model [24]
generated using the GTGraph generator [12]. All the graphs we con-
sider are undirected and unweighted. Directed graphs are made undi-
rected by removing the direction on the edge. Graphs that are not
connected are augmented with additional edges to make them con-
nected. Key properties of the graphs are shown in Table 5.1.
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Table 5.1: Graphs used in our experiments. In the table, the letter K
(resp. M) stands for a thousand (million).

Graph Description NodesEdges

Real-World Graphs [43]

nd24k 3D Mesh, ND set. 72K 14.3M

kron18
kronecker,

DIMACS10
262K 10.5M

rm07r 3D viscous case 381K 37.4M

coPaperDBLP
coauthor citation

network
540K 15.2M

bone010 3D trabecular bone 986K 36.3M

dielFilterV3
High-order vector

finite element
method in EM

1.1M 45.2M

Random Graphs

rand-Bicc1 1 BCC 1M 75M

rand-Bicc2 10000 BCCs 1M 75M

Results

In this section we compare our implementation of Algorithm Sample-
GPU-BiCC to that of Algorithm N-GPU-BiCC [153]. The over-
all improvement in performance on the graph listed in Table 5.1 is
shown in Figure 5.4. Algorithm Sample-GPU-BiCC achieves a speed-
up ranging from 1.47x to 3.35x compared to Algorithm Cert-GPU-
BICC [153]. The average speedup as shown in Figure 5.4 is 2.2x.
All the above experiments were run with k = 4. The time spent by
our approach on BFS operations is listed on the top of each bar. As
can be noted, this time is on the average only 15% of the total time
indicating that our approach is successful in mitigating the practical
inefficiency of BFS operations in the context of parallel graph bicon-
nectivity algorithms. The graph nd24K has a high speedup of 3.35x
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as it is dense and is biconnected. Even a small sample of edges keeps
almost all the nodes in a single BCC. For the graph coPaperDBLP,
the lower than average speed-up can be attributed to its graph struc-
ture and the sampling strategy used. In this case, H ′ has several long
chains of vertices of degree two. This increases the BFS time and the
subsequent time for finding the BCCs of H ′.

Figure 5.4: Figure showing the time taken by Algorithms Cert-GPU-
BiCC and Sample-GPU-BiCC on the graphs listed in Table 5.1. Num-
bers on the right bars indicate the percentage of time spent by Algo-
rithm Sample-GPU-BiCC in BFS operations. The Secondary Y-axis
gives the speedup of Algorithm Sample-GPU-BiCC over Algorithm
Cert-GPU-BiCC.

To study the impact of the choice of k on the performance of Al-
gorithm Sample-GPU-BiCC, we plot time taken by our algorithm on
two graphs from Table 5.1 as we vary k. The results of this experiment
are shown in Figure 5.5 and 5.6 for graphs kron18 and coPaperDBLP
respectively. When k is small, the size of H ′ is small. As a result,
the time taken in Step 2 is small. However, if only few edges of G
are included in H ′, the number of biconnected components found in
Step 2 tends to be high. Therefore, the size of F grows, resulting in
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Step 4 consuming more time. On the other hand if the value of k is
high, the size of H ′ is high. As a result, the time taken in Step 2 is
high. But, since more edges have been included in H ′, the size of F
decreases thereby making Step 4 relatively faster. Steps 1 and 3 are
not significantly impacted by the choice of k and hence omitted from
Figures 5.5 and 5.6. In Figures 5.5 and 5.6, the vertical line at k = 4
indicates that the minimum for total time is achieved at k = 4.

Another factor to be noted is that the size of F , shown in Figures
5.5 and 5.6, indeed decreases as we increase k. This is in tune with
our original motivation that doing a BFS on such a small graph will
be significantly better than doing a BFS on G. The BFSs on smaller-
sized H ′ and F combined are cheaper than a BFS on G. (Obtaining
a certificate from G requires 2 BFSs on G, not one). The above
discussion suggests that k should be chosen appropriately. We see
from Figures 5.5 and 5.6 that a good value of k is around 4 while
values of k between 3 to 5 offer a similar result in general.

Figure 5.5: Figure represents the time taken by Algorithm Sample-
GPU-BiCC on the graph kron as k is varied. Tuples on the line
labeled “Total Time” show the number of vertices and edges of F in
thousands at k = 1, 4, 9, and 14.
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Figure 5.6: Figure represents the time taken by Algorithm Sample-
GPU-BiCC on the graph coPaperDBLP as k is varied. Tuples on the
line labeled “Total Time” show the number of vertices and edges of
F in thousands at k = 1, 4, 9, and 14.

Discussion

In this section, we summarize a few important points concerning our
approach.

� Obtaining H ′: We observe that H ′ can be generated in sev-
eral other ways such as a uniformly-at-random process on the
edges, a selection based on degree of the vertices, and other such
strategies. We found that using randomness to obtain H ′ is not
necessary to make our approach work. With a deterministic
post-processing phase, we believe that one should focus more on
trying to reduce the overall run time instead of getting a “good”
H ′. In all the approaches, the impact on the performance was
almost similar. Hence we use deterministic sampling.

� Certificate based approaches: From the work of Bader and
Cong [45] and also that of Cheriyan and Thurimella [38], it is
apparent that using a certificate for testing the biconnectivity
of a graph is practically efficient. In our approach, as the graphs
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H ′ and F are very sparse, such a certificate is not required and
Algorithm GPU-BiCC is enough.

5.5 Application to 3-Connectivity

5.5.1 Overview

Recall that a graph is said to be triconnected, if every pair of ver-
tices v, w ∈ V (G) have at least three vertex disjoint paths between
them. The maximal 3-connected subgraphs of G are called as the
triconnected components of G. A separating pair in a graph G is a
pair of vertices v, w such that removing v and w from G disconnects
G. Graph triconnectivity has applications in networks [73] and in
determining isomorphism in planar graphs [86].

Hopcroft and Tarjan [87] presented the first sequential algorithm
for finding the triconnected components of a graph. The algorithm
from [87] is based on the depth-first traversal (DFS) of a graph. Given
that DFS is a P-complete problem [90], this approach would not be
parallelizable in the PRAM sense. Over the years, few PRAM style
parallel algorithms have been presented for finding the triconnected
components of a graph. Ramachandran and Vishkin [128] present
a PRAM algorithm for testing triconnectivity that runs in O(log n)
time using O(n + m) work. Miller and Ramachandran [116] extend
the work from [128] to also obtain the triconnected components of a
graph using O(log2 n) time and O(n + m) work on a CRCW PRAM.
Their algorithms make use of the ear decomposition of a graph and
define an auxiliary graph for every ear of G. These auxiliary graphs
are then used to check the 3-connectivity of G followed by finding
the 3-connected components of G. To date, the algorithm of Miller
and Ramachandran is the fastest PRAM algorithm for identifying
the triconnected components of a graph in parallel. These algorithms
[116,128] can be recast to use the result of Cheriyan and Thurimella
[38]. Vishkin and Edwards [59, 60] study parallel implementations
of 2- and 3-connectivity algorithms on the XMT architecture [152]
and compare how these XMT implementations scale with increasing
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number of cores.

In this chapter, we implement the algorithm of Miller and Ra-
machandran [116] on a GPU and also extend our approach from Sec-
tion 5.2 for the graph triconnectivity problem. We start by briefly
describing the algorithm of Miller and Ramachandran [116].

5.5.2 The Algorithm of Miller and Ramachandran for
Graph Triconnectivity

The algorithm of Miller and Ramachandran [116] is based on an
open ear decomposition of a graph. An open ear decomposition of
a graph G(V,E) is a partition of E into ordered edge-disjoint paths
P0, P1, P2, ... such that P0 is a simple cycle and every other path Pi,
i ≥ 1, has its endpoints on previous paths (ears) and no internal ver-
tices of Pi lie on Pj , for j < i. Since a vertex cannot be internal to
two ears, an open ear decomposition provides scope for traversing the
graph in parallel. In addition, Miller and Ramachandran [116] prove
that the two vertices from any separating pair in a biconnected graph
are non-adjacent vertices of some ear Pi.

As a result, Miller and Ramachandran start with an open ear
decomposition of a biconnected graph. The algorithm then generates
the bridges for every non-trivial ear in parallel. (An ear is non-trivial
if it has at least three vertices.) For a given subgraph S, the bridges
with respect to S is a partition V (G \ S) such that two vertices are
in the same class if and only if there is path connecting them without
using any vertex of S. For the graph in Figure 5.7(a) the bridge
graph of ear P1 is shown in Figure 5.7(b). Each such bridge is then
compressed into a single vertex as indicated by vertices B1 through
B5 in Figure 5.7(c). This single vertex is connected to the original
ear through the same attachments as the corresponding bridge. This
step is shown in Figure 5.7(c). This is done for every bridge for every
non-trivial ear in parallel. The bridge graph is simplified into an ear
graph by merging bridges which share the same attachments on an
ear as shown in Figure 5.7(d).

The ear graph for every ear is further simplified by merging inter-
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Figure 5.7: Figure showing the stages in the algorithm of Miller and
Ramachandran [116]. The numbers on edges in part (a) of the figure
show the ear that the edge belongs to.

lacing bridges into an non-overlapping graph, called a star graph. All
separating pairs can be easily discovered through a star graph. Fig-
ure 5.7(e) shows the formation of a star graph from the corresponding
ear graph and the subsequent separating pairs with respect to a sin-
gle ear. This process is done across the graph for all ears in parallel.
Once the separating pairs are identified, the triconnected components
are generated by splitting the graph into Tutte splits [150] for every
separating pair. The entire algorithm is shown in run in O log2 n)
time using O(n+m) work in the CRCW PRAM model. We refer the
reader to [116] for further details.
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5.5.3 Triconnectivity on GPU

To the best of our knowledge, there is no known GPU based algorithm
for the graph triconnectivity problem. In this section, we provide
a GPU based implementation for the algorithm of Miller and Ra-
machandran [116]. A brief summary of our implementation is given
below. Henceforth, we refer to our GPU implementation for tricon-
nectivity as Algorithm GPU-TriCC listed as Algorithm 9.

Algorithm 9 Algorithm GPU-TriCC

1: Input: Biconnected graph G
2: Output: Triconnected components of G
3: Find an open ear decomposition of G
4: for all every nontrivial ear Pi do
5: Construct the bridge graph from bridges
6: Obtain the ear graph Gi(Pi) from the bridge graph
7: Coalesce the interlaced ear graph into a star graph G∗

i (Pi)
8: Identify the separating pairs from G∗

i (Pi)
9: end for

10: Use Tutte splits to obtain the triconnected components

We employ Ramachandran’s [127] popular ear decomposition al-
gorithm for generating the open ear decomposition. Our ear decom-
position requires two graph traversals and a sorting of edge list. Ob-
taining bridges and the subsequent bridge graph requires a connected
components algorithm. We use Soman et al. [145] GPU implementa-
tion for the same. The ear graphs are generated through a divide and
conquer approach as mentioned in [116]. Assuming r ears, the first
step in the divide and conquer approach generates the ear graph for
the first and the last r/2 ears. Connected components of the ith stage
are utilized at the (i+1)th stage as we narrow down to generating the
ear graph for every individual ear. Every ear graph is then coalesced
in parallel to generate the star graph. Coalescing involves resolving
all overlapping attachments in the ear graph. Separating pairs can be
easily identified once the star graph is generated as shown in Figure
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5.7(e). The graph is then split into upper split and lower split graphs
for every separating pair (a, b) on the ear Pi. The upper split and
lower split graphs are a division of vertices belonging to ears Pj , j < i
and ears Pk, k > i. Miller and Ramachandran [116] prove that each
of the split is biconnected and every other separating pair lies either
in the upper split graph or in the lower split graph but not in both.
Hence this procedure is applied recursively till no separating pair is
present in either of the split graphs generated. Thus the triconnected
components of G are identified.

Notice from the algorithm of [116] that the bulk of the work done
can be associated with each ear subsequent to obtaining an open ear
decomposition. As every graph G has m − n + 1 ears, the number
of edges in G heavily impacts the performance. Hence a reduction in
the size of the graph through use of certificates provides scope for a
better performance. To this end, we make use of the idea of Cheriyan
and Thurimella [38]. Accordingly, a certificate for triconnectivity of
G is obtained as the union of T , F1 = BFSSpanningForest(G/T )
and F2 = BFSSpanningForest(G/(T ∪ F1)), where T is a BFS tree
of G. The graph H := T ∪ F1 ∪ F2 is then provided as the input
to Algorithm GPU-TriCC. This modification is named as Algorithm
Cert-GPU-TriCC and is listed as Algorithm 10.

Algorithm 10 Algorithm Cert-GPU-TriCC.

1: Input: Biconnected graph G
2: Output: Triconnected Components of G
3: T := BFS(G)
4: F1 := BFSSpanningForest(G/T )
5: F2 := BFSSpanningForest(G/(T ∪ F1))
6: H := T ∪ F1 ∪ F2

7: Run GPU-TriCC on H
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Results

On a collection of real-world graphs listed in Table 5.1 along with the
random graphs of Table 5.1, we study the performance of Algorithms
GPU-TriCC and Cert-GPU-TriCC. The random graphs are generated
to have a particular number of TCCs as shown in Table 5.1. The GPU
used for these experiments is an Nvidia K40c GPU (cf. Section 5.4.3).
From Figure 5.8, we can observe that Algorithm Cert-GPU-TriCC is
on an average 5x faster compared to Algorithm GPU-TriCC.

Figure 5.8: Figure showing the time taken by Algorithms GPU-TriCC
and Cert-GPU-TriCC on the graphs listed in Table 5.2. Numbers on
right bars indicates the percentage of time spent by Algorithm Cert-
GPU-TriCC in BFS operations.

In Figure 5.8, we show the percentage of the time spent by Al-
gorithm Cert-GPU-TriCC in obtaining the certificate H using three
BFS traversals of G. As can be observed from Figure 5.8, Algo-
rithm Cert-GPU-TriCC despite being 5x faster than Algorithm GPU-
TriCC, spends nearly 63% of total time in obtaining H. The high cost
of procuring the certificate leads us to try our approach from Section
5.2 for this problem.
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5.5.4 Our Approach

As discussed and shown in the previous section, the three BFS traver-
sals required to obtain a certificate H for testing the triconnectivity
of a graph take up almost 63% of the total time. A suitable H ′ can
reduce the initial cost of three BFSs. We begin with a kn sized ran-
dom subgraph H ′. However, as is the case in biconnectivity, H ′ can
miss out out on some critical edges required for triconnectivity. It is
not a valid certificate yet. We then find the TCCs of H ′. The TCCs
are treated as super-vertices. These super-vertices form the vertex set
of an auxiliary graph F . The edges of the rest of G are then used to
define the edges of F . In order to keep the size of F small, the graph
F is refined to ensure that at most three edges are present between
any two vertices of F . Finally, the TCCs of F are identified which
correspond to the TCCs of G. The algorithm is explained in-depth
in the following.

Our Algorithm

Algorithm Sample-GPU-TriCC for finding the TCCs of a connected
graph G is listed as Algorithm 11. Each of the steps are explained
below.

Algorithm 11 Algorithm Sample-GPU-Tricc

1: Input: Biconnected Graph G
2: Output: Triconnected components of G
3: Obtain a spanning subgraph H ′ from G
4: Find the TCCs of H ′

5: Extract F using the TCCs of H ′ and edges of G
6: Find the TCCs of F

� Step 1 – Obtain a spanning subgraph H ′ from G: As in the case
of Algorithm Sample-GPU-BicC, we identify H ′ by viewing the
edges of G as an edge list and including every m/knth edge for
a total of kn edges. Note that no randomness is used as any kn
edges suffice for our purpose.
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� Step 2 – Find the TCCs of H ′: We find the TCCs of H ′ us-
ing Algorithm GPU-TriCC. Since H ′ is a sampled subgraph, it
may not be biconnected. However, Algorithm GPU-TriCC only
requires the ears and not their numbering. Therefore, we mod-
ify the ear decomposition algorithm of Ramachandran [127] to
find an open ear decomposition within individual biconnected
components. Due to this modification, the ears are identified
correctly, though they may not be correctly numbered.

� Step 3 – Constructing F using the TCCs of H ′ and edges of
G: The TCCs of H ′ are compressed into super-vertices. Since a
vertex in a separating pair can belong to multiple triconnected
components, vertices in each separating pair are treated as inde-
pendent super-vertices. These super-vertices form the vertices
of F . The edges of F are identified in three steps. First, an
edge is added between two nodes of F if there exists an edge
vw ∈ E(G) such that v and w are part of different TCCs of H ′.
In second step, F is filtered to ensure that no more than three
edges are present between any two vertices of F . This is done
to keep the size of F as small as possible. In the third step,
we convert F to be a simple graph. To this end, for every two
nodes in F with more than one edge between them, we split
each such edge by introducing auxiliary vertices.

Similar to the arguments provided in Section 5.4.1, we note that
the graph F has the property that if vertices a, b, c of G have at
least three vertex-disjoint paths between them in G, then either
they belong to the same super-vertex of F , or the super-vertices
of G containing these vertices have at least three vertex-disjoint
paths between them in F . Therefore, F can be used to identify
the triconnectivity and the triconnected components of G.

� Step 4 – Find the TCCs of F : We run Algorithm GPU-TriCC
on F to generate the TCCs of F . These components can be
used to identify the triconnected components of G.
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5.5.5 Implementation Details

As can be noticed from [116], for the graph triconnectivity problem,
some computations such as BFS and LCA traversals are common
to the biconnectivity problem. In this case too, on the GPU, we
therefore use the BFS implementation from [114]. Open ear decom-
position is implemented through sorting and LCA traversals. Sorting
is performed using Thrust library [6]. LCA traversals are done by as-
signing a thread to every non-tree edge. Generating the bridge graph
for every ear involves finding the connected components of various
appropriately defined subgraphs. For this purpose, we use the GPU
based algorithm from Soman et al. [145]. Generating the star graph
with respect to every ear and the subsequent identification of tricon-
nected components can also be done on a GPU by expressing the
computation as a sequence of multiple kernels.

5.5.6 Experimental Results, Analysis, and Discussion

The experimental platform we use for our experiments is described in
Section 5.4.3. We scheduled the above algorithm on 1024 threads per
blocks.

Dataset

We use two different datasets for our experiments. We use the real-
world datasets [43] from Table 5.1. In addition, we use random graphs
generated according to the Erdos-Renyi model [24] that have a fixed
number of TCCs. All the graph we consider are undirected and un-
weighted. Key properties of the graphs are shown in Table 5.2.

Results

We compare the performance of Algorithm Sample-GPU-TriCC to
that of Algorithm Cert-GPU-TriCC. As noted earlier, Algorithm Cert-
GPU-TriCC is to the best of our knowledge, the fastest algorithm on
GPUs for finding the triconnected components of a graph.
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Table 5.2: Graphs used in our experiments for triconnectivity. In the
table, K refers to a thousand and M refers to a million.

Graph Nodes Edges Description

Real-World Graphs

Same as in Table 5.1

Random Graphs

rand-Tricc1 500K 30M 1 TCC

rand-Tricc2 500K 30M 10000 TCCs

Figure 5.9: Figure showing the time taken by Algorithms Cert-GPU-
TriCC and Sample-GPU-TriCC on the graphs listed in Table 5.2.
Numbers on the right bar indicate the percentage of time spent by Al-
gorithm Cert-GPU-TriCC in BFS operations. The secondary Y-axis
gives the speedup of Algorithm Sample-GPU-TriCC over Algorithm
Cert-GPU-TriCC.

Figure 5.9 shows the time taken by Algorithm Sample-GPU-TriCC
on the graphs listed in Table 5.2. As can be observed, Algorithm
Sample-GPU-TriCC achieves a speedup of 2.1x on average over Al-
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gorithm Cert-GPU-TriCC. Moreover, the percentage of time spent in
BFS operations by Algorithm Sample-GPU-Tricc is now on average
17%. The value of k is set at 4 in this experiment.

We now proceed to study the performance of Algorithm Sample-
GPU-TriCC as k is varied. On graphs rm07r and rand-Tricc1, Fig-
ures 5.10 and 5.11 respectively show the results of this study. As k
increases, the size of H ′ increases resulting in increase in the time
taken by Step 2. On the other hand, the decrease in the size of F
with increasing k reduces the time taken in Step 4. The choice of k is
to be made considering this trade-off. From our experiments, we note
that k = 4 is a good choice in the case of triconnectivity. In Figures
5.5 and 5.6, the vertical line at k = 4 indicates that the minimum for
total time is achieved at k = 4. However, values of k between 4 and
6 offer a near equal minimum.

Figure 5.10: Figure represents the time taken by Algorithm Sample-
GPU-TriCC on the graph rm07r as k is varied. Tuples on the line
labeled “Total Time” show the number of nodes and edges of F in
millions at various values of k.

Discussion

One can observe in Figure 5.10 and Figure 5.11 or even in Figure 5.6
and Figure 5.5 (in Section 5.4), that the time spent in Step 4 does
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Figure 5.11: Figure represents the time taken by Algorithm Sample-
GPU-TriCC on the graph rand-TriCC1 as k is varied. Tuples on the
line labeled “Total Time” show the number of nodes and edges of F
at various values of k.

not decrease significantly with increasing k. This is due to the fact
that after some k, most of the biconnected/triconnected components
of G are identified via H ′ alone.

In general, Algorithm Cert-GPU-TriCC involves more BFS opera-
tions than Algorithm Cert-GPU-BiCC. Thus, it seems that Algorithm
Sample-GPU-TriCC should benefit more from our technique than Al-
gorithm Sample-GPU-BiCC. However, as shown in Figure 5.4 and
Figure 5.9, our technique results in a near similar speedup in both
cases. This is due to the reason that for the graphs we considered in
our dataset, and in general, we expect more triconnected components
than biconnected components. So, the size of the auxiliary graph F
generated using our technique is larger in the case of triconnectivity
as compared to biconnectivity.

5.6 Conclusions

In this chapter, we studied how parallel graph connectivity algorithms
can be improved by reducing the time spent in BFS operations. Our
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results indicate that a significant gain in performance can be obtained
by reinterpreting algorithms to perform BFS on graphs that are much
smaller in size compared to the input graph. We believe that our
approach can be useful in other settings too. As our results show
promise, in future, we want to also understand how to theoretically
analyze the speedup that can be obtained using our approach.



Chapter 6

Shortest Paths in Graphs

We now study ideas for shortest paths in graphs.

6.1 Our Approach for APSP

We start with graphs that are biconnected (Section 6.1.1) and extend
our approach to graphs that are not biconnected in Section 6.1.2.

6.1.1 APSP for Biconnected Graphs

We now present our algorithm for APSP on biconnected graphs using
the technique of ear decomposition. Algorithm 12 describes a brief
pseudocode of our three phase algorithm followed by the details of
each phase. The label {cpu,gpu} in Algorithm 12 is used to indicate
that the corresponding task is computed in a heterogeneous manner
on both the GPU and CPU. The labels {cpu} (resp. {gpu}) are used
to indicate tasks that are executed solely on the CPU (GPU).

Preprocessing

Let G be a sparse and biconnected graph. It is known that a bicon-
nected graph possesses an ear decomposition. An ear decomposition

119
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Algorithm 12 APSP(G)

1: /* Phase I: Preprocessing */
2: {gpu}: Gr = Reduce(G)
3: /* Phase II: Processing */
4: {cpu,gpu}:
5: for each s ∈ V (Gr) do
6: DIJKSTRA(Gr, s) /* Find shortest paths from s */
7: end for
8: /* Phase III: Post-processing */
9: {cpu,gpu}:

10: for each s ∈ G \Gr in parallel do
11: UPDATE DISTANCE(s).
12: end for

of a graph G = (V,E) is a partitioning of the edges of G into simple
paths (ears) P0, P1, · · · , as follows (see also [126]).

� P0 is an edge uv,

� P0 ∪ P1 is a simple cycle, and

� The end points of path Pi, for i ≥ 2, are on the paths P0, P1, · · · , Pi−1,
and path Pi has no other nodes common with the nodes on the
paths ∪i−1

j=0Pj .

In such a decomposition, nodes of degree two, except possibly
those on ear P0, appear on exactly one ear. We show that such nodes
of degree two can be removed from G. We call the resulting graph
of G as the reduced graph Gr. One can formalize the notion of the
reduced graph Gr = (V r, Er,W r) as follows. The nodes of Gr are the
nodes of G that have a degree at least three. Two nodes v and w in
Gr are neighbors if and only if v and w belong to a common ear P of
G and have no nodes of degree three or more in between them on the
ear P . The weight of an edge vw in Gr set as the sum of the weights
of the edges vx1, x1x2, · · · , xiw in G such that nodes x1, x2, · · · , xi are
consecutive vertices on P with degree two in G and are in between v
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and w on the ear P in G. For a node xi, i > 1, of degree two on
ear P = (x1x2 · · ·xk) in G, we define functions left and right of xi in
Gr, denoted Left(xi) and Right(xi), as the nodes of degree at least
three on P that are closest to xi towards x1 and xk respectively. For
instance, in the above example with v, x1, x1, x2, · · · , xi, w being on
the same ear in that order with v and w having degree more than 2
and the xis having degree of 2, Left(x) = v and Right(x) = w.

Notice that during the construction of the reduced graph, there
could be multiple edges between nodes in the reduced graph. In this
case, since we are interested in shortest paths, we retain the edge with
the shortest weight and discard the remaining edges.

Phase II: Processing

In this phase, we find the shortest paths between all pairs of nodes
in the reduced graph Gr. From each node v in Gr, we essentially
run the algorithm of Dijkstra [48] that finds the shortest paths from
v to all other nodes t in Gr. In short, we obtain all the shortest
path values Sr[s, t] | ∀{s, t} ∈ Gr We use the GPU implementation
of Dijkstra’s algorithm due to Harish et al. [80]. On CPU, we run
multiple instances of Dijkstra’s algorithm from different vertices of
Gr. Each instance of Dijkstra’s algorithm is run on an individual
thread. The algorithm of Dijkstra is preferred over other shortest path
algorithms for reasons including the ability to run each instance of
Dijkstra’s algorithm independently by a thread and the work involved
in Dijkstra’s algorithm depends linearly on the number of edges in the
graph.

Post-processing

In this phase, we use the shortest paths in Gr to compute the shortest
paths across all pairs of nodes in G. Consider the shortest paths
originating from a node x in G\Gr with Left(x) = ℓx and Right(x) =
rx (refer to Figure 6.1). For paths from x that end at nodes y with
Left(x) = Left(y) and Right(x) = Right(y), the shortest xy path is
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Figure 6.1: The shortest path between nodes x and y has to use one
of ℓx or rx to leave the ear P = (a · · · ℓx · · ·x · · ·x · · · rx · · · b) and one
of ℓy or ry to enter the ear Q = (c · · · ℓy · · · y · · · ry · · · d). If the four
pairwise shortest paths between ℓx, rx, and ℓy, ry are given, marked
with double lines in the figure on the right, the shortest path from x
and y can be obtained as the shortest among the four possible paths.
In the figure on the left, nodes completely filled appear in the reduced
graph and shaded nodes are removed in Stage II of preprocessing.

either the unique xy-path along P that does not use ℓx and rx, or the
path x − ℓx − rx − y. Paths from x that end at nodes y such that x
and y have different Left and/or Right nodes, have to necessarily go
via ℓx or rx.

Let S[s, t] store the weight of the shortest path between s and t
in G. Clearly, for all u, v ∈ V r, S[u, v] = Sr[u, v] since the reduced
graph preserves shortest-path distances between vertices of degree at
least 3. To compute shortest path S[x, v] between any v ∈ V r and any
x ∈ V \ V r, consider the ear P on which x lies and let Left(x) = ℓx
and Right(x) = rx (v may coincide with ℓx or rx). We can compute

S[x, v] = min
{
Sr[ℓx, v] + wt(x, ℓx), Sr[rx, v] + wt(x, rx)

}
Now we consider the most general case of computing S[x, y] for

nodes x, y ∈ V \V r. For this case, let ℓx, rx and ℓy, ry be the Left and
Right nodes of x and y respectively (ℓx may coincide with ℓy or ry,
and similar reasoning applies to rx). Using the same idea as above,
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we can compute

S[x, y] = min


wt(x, ℓx) + Sr[ℓx, ℓy] + wt(ℓy, y),
wt(x, ℓx) + Sr[ℓx, ry] + wt(ry, y),
wt(x, rx) + Sr[rx, ℓy] + wt(ℓy, y),
wt(x, rx) + Sr[rx, ry] + wt(ry, y)


The call to UPDATE DISTANCE(s) in this phase essentially com-

putes S[s, t] for all t ∈ G by using the appropriate formula described
above.

6.1.2 Extension to General Graphs

As we are interested in large sparse graphs, it is very likely that our
graphs are not 2-connected or even 2-edge-connected. Quite con-
trary, large sparse graphs arising out of real-world phenomena tend
to have several 2-connected components of varying sizes. In such a
scenario, such graphs do not have a ear decomposition as being 2-
edge-connected is a necessary (and sufficient) condition for having an
ear decomposition [126].

To make use of Algorithm 12, in a preprocessing step we start
by partitioning G into its biconnected components G1, G2, · · · each
of which is 2-connected. We now obtain an ear decomposition of
G1, G2, · · · , and obtain their respective reduced graphs Gr

1, G
r
2, · · · ,.

Let Ar
1, A

r
2, · · · , denote the set of articulation points (APs) in Gr

1, G
r
2, · · · ,

respectively. We let a = |∪iAr
i |. The quantity a denotes the number

of articulation points in G.
In the processing step, we now find the shortest paths between

pairs of nodes in each Gr
i individually, and in parallel. We store

the computed results in a table Ai that stores the shortest distance
between pairs of nodes in Gi.

Our post-processing is now spread across two stages. In Stage 1,
for each i = 1, 2, · · · we extend the shortest paths between pairs of
nodes in the ear graph Gr

i to shortest path between pairs of nodes
in Gi. This is done as described in Section 6.1.1. These results are
also stored in tables Ai for i = 1, 2, · · ·. To compute shortest paths
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across pairs of nodes in different biconnected components we proceed
as follows.

In Stage 2 of post-processing, we use the notion of the block-cut
tree of a graph as described in [16]. The block-cut tree B of a graph
G has nodes corresponding to the biconnected components of G. An
edge exists between two nodes v and w in B if the corresponding
biconnected components in G share an articulation point. We use
the block-cut tree to find the shortest distance from each articulation
point to every other articulation point in G. These results are stored
in a table A of size a × a. We use A to compute distance between
nodes of different biconnected components, Gi and Gj .

For nodes n1 ∈ Gi and n2 ∈ Gj | i ̸= j, d(n1, n2) = min(d(n1, a1)+
d(a1, a2) + d(a2, n2)) where a1 and a2 are the AP’s corresponding to
Gi and Gj which are on the path from Gi and Gj .

6.1.3 Implementation Details

In our heterogeneous implementation of the processing and the post-
processing step, we notice that work balancing is needed between the
CPU and the GPU. Since a static approach for work balancing can
fall short of the desired work balance, we use our custom work queue
(from [88]). The workunits correspond to the processing (resp. post-
processing) with respect to each biconnected component of the graph.
For reasons of efficiency, the work units are sorted according to the size
of the biconnected component and arranged in sorted order so that
the GPU starts accessing the bigger workunits. If the graph is already
biconnected and we are using Algorithm 12, then the workunits can
correspond to the processing required with respect to a vertex. As
is done in [88], the CPU and the GPU access workunits from the
queue from either end points, and also in proportion to the number
of threads supported on the CPU and the GPU.

Since the matrix A is needed by both the CPU and the GPU in
the post-processing step, the matrix A is kept in the memory of both
the CPU and the GPU. This forces us to limit our experiments to fit
the available space on the GPU. One advantage of our method is that
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the space used to store all the shortest path values is in O(a2+
∑

i n
2
i )

where ni refers to the number of nodes in Gi. In most sparse graphs,
the above quantity is usually much smaller than O(n2) that is required
to store the shortest path values. See also Table 6.1 for evidence for
this phenomenon.

6.1.4 Results and Analysis

In this section, we show experimental results of our algorithm and also
compare the results with related approaches. We start by describing
our experimental platform and the datasets used.

Our Experimental Platform

mention CPU, GPU details. Refer to Chapter 2.

Datasets

We experiment on two datasets: general graphs and planar graphs.
General graphs for our experiment are taken from the dataset of
sparse graphs from the University of Florida Sparse Matrix Collec-
tion [53]. These graph come from domains such as geometric, so-
cial networks, collaboration, and peer-to-peer networks. The planar
graphs shown in Table 6.1 were generated using the OGDF frame-
work [40] using methods that generate connected graphs. Some of
the characteristics of the graphs considered are listed in Table 6.1. It
can be observed that our dataset has a good diversity. The size of
the graphs ranges from 10 K to 130 K, and the number of nodes of
degree two range between 0% to 60%. Further, the size of the largest
BCC as a percentage of edges also varies between 80% to 98%.

Results

We now compare the results of our algorithm labeled as “Our Ap-
proach” with two related approaches: the approach of Djidjev et
al. [56] that works for planar graphs, and the approach of Banerjee et
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Table 6.1: List of sparse graphs that we use in our experiments. In the
column labeled ”Largest BCC (%)”, we show the number of edges in
the largest BCC of the graph as a percentage of the number of edges
in the graph. The column labeled ”Nodes Removed (%)” shows the
percentage of the nodes removed by our algorithm during the pre-
processing step. The column ”Our’s memory” lists the total memory
used by our algorithm as compared to the total memory that is used
in APSP shown in the column labelled ”Max Memory”. Note that
storage requirements are shown rounded to the nearest MegaByte
(MB).
Graph |V |E| #BCCs Largest Nodes Our’s Max

BCC (%) Removed Memory Memory
(% |E|) (% |V |) (MB) (MB)

Graphs taken from [53]

nopoly 10K 30K 1 100 0.018 443 443

OPF 3754 15K 86K 1 100 1.98 873 909

ca-AstroPh 18K 198K 647 98.43 15.85 970 1344

as-22july06 22K 48K 13 99.9 77.60 851 2012

c-50 22K 90K 1 100 52.04 651 1914

cond mat 2003 31K 120K 2157 80.52 26.88 1826 3705

delaunay n15 32K 98K 1 100 0 4096 4096

Rajat26 51K 247K 5053 95.17 32.92 7176 9934

Wordnet3 82K 132K 156 98.92 77.24 4663 26071

soc-signs- 131K 841K 609 99.7 67.86 12932 66294
-epinions

Graphs generated using the OGDF framework [40]

Planar 1 19K 54K 46 99.55 12.42 1278 1296

Planar 2 25K 64K 164 93.65 5.63 1627 1881

Planar 3 30K 70K 298 96.53 19.72 2068 2275

Planar 4 36K 94K 175 98.37 18.56 3890 4074

Planar 5 41K 128K 223 95.63 16.34 4350 4942
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al. [16] that works for general graphs. We start by briefly describing
these approaches.

Comparison with Djidjev et al. [56] for planar graphs The
algorithm of Djidjev et al. [56] works as follows. As part of their
approach, Djidjev et al. [56] starts by partitioning the input graph
into k parts using the METIS decomposition [98]. The partitioning
is used to define a boundary graph that contains nodes of the input
graph that are the end points of edges that go across partitions. Once
the shortest paths in each partition are obtained, the boundary graph
is augmented with edges uv such that u and v are in the same partition
and the weight of the edge uv is set to be the shortest distance between
u and v as computed in the previous step. The shortest paths in the
boundary graph are computed in a recursive fashion followed by the
shortest paths in each partition. For further details we reader can
refer to [56].

It is worthwhile to note that while the algorithm presented by
Djidjev et al. [56] works for any general graph, the approach is ef-
ficient for particular classes of graphs, including planar graphs with
the property that the number of vertices in the boundary graph is
guaranteed to be small. For this reason, their experimental results
are shown only for planar graphs.

The speedup achieved by our implementation on planar graphs
compared to Djidjev et al. [56] approach is shown in the Figure 6.2.
It contains the overall timings for our implementation along with
Djidjev’s for planar graphs on the Y1-axis on the right. The Y2-axis
denotes the speedup achieved by our algorithm. An average speedup
of 2.2x achieved is mentioned in the right most column of the Figure.
As most planar graphs contain a good percentage of degree-2 vertices,
we conclude that our approach for real world planar graphs is more
beneficial compared to [56].

Comparison with Banerjee et al. [16] The algorithm provided
by Banerjee et al. [16] works by decomposing the graph as follows.
Given an input graph G, it constructs a block-cut tree for G. It then
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Figure 6.2: Figure displays the absolute time taken by our approach,
labeled ”Our Approach” compared to [16] for general graphs and [56]
for planar graphs.

computes the shortest paths within each biconnected component and
later extends the computation of shortest paths across the blocks.
The algorithm also optimizes the run time by removing the iterative
pendants vertices. That is, it initially removes vertices of degree-1
from the graph. It then checks if the degree of any vertices adjacent
to the vertices removed in the first iteration, degenerates to 1. This
method, though reduces the computation time compared to other
existing algorithms for real world sparse graphs, it does not effectively
benefit from the degree-2 vertices present in the graph. Also this
model requires more storage compared to our approach. For further
details interested reader can refer to [16]. To illustrate our algorithm’s
computational efficiency we compare our results with Banerjee et al.
[16] for general graphs.

Figure 6.2 shows the relative improvement of our approach com-
pared to Banerjee et al. [16] implementation for general graphs. The
plot contains the overall timings for both the implementations on the
Y1-axis on the left. The timings displayed on the Y1-axis are on
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Figure 6.3: MTEPS achieved by our algorithm, labeled ”Our Ap-
proach” and that of [16] for general graphs and [56] for planar graphs.

a logarithmic scale. The Y2-axis denotes the speedup achieved by
our algorithm with respect to that Banerjee et al. [16]. The average
speedup achieved is 1.7x.

Another way to study the scalability of parallel graph algorithms
is to use the metric MTEPS standing for Million Traversed Edges
Per Second. This metric is computed as the ratio of the product
of the number of edges and number of vertices over the time taken
in seconds. A higher MTEPS indicates a more scalable algorithm.
Figure 6.3 provides the MTEPS achieved by the approaches of Djidjev
et al. [56] and Banerjee et al. [16] on planar and non-planar graphs
respectively in comparison to our approach. We finally note that we
are limited in this comparison by the space available on the GPU
although our approach needs lesser space compared to that of both
[16,56].
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Chapter 7

Computing Metrics on
Graphs

A class of graph computations that have become popular in recent
years are based on metrics on graphs. Metrics on graphs assign a
value to the nodes and/or edges of a graph based on certain criteria.
Computing metrics on nodes of a graph is an essential step in under-
standing the properties of the graph. In this chapter, we concentrate
on metrics such as diameter, pagerank and betweenness-centrality in
sections 7.1 to 7.3 respectively.

7.1 Diameter

Summary of Crescenzi et al. TCS 2013 in parallel.

7.2 Pagerank

Pagerank as a metric is being used to measure the importance of
nodes in not only web graphs but also in social networks, biological
networks, road networks, and the like. The core of the computation
of pagerank can be seen as an iterative approach that updates the
pageranks of nodes until the values converge.

131
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However, as real-world graphs such as road networks and the web
have a large size, one needs to design efficient techniques to address
the challenges of scale. In addition to parallelism that can be ex-
ploited, it is important to also look for specific properties of graphs
and their impact on the algorithm.

In this section, we present four algorithmic techniques that opti-
mize the pagerank computation on real-world graphs. The techniques
are presented with the aim of exploiting the nature of the real-world
graphs and eliminating redundancies in the pagerank computation.
Our techniques also have the advantage that with little extra effort
one can quickly identify which of the techniques will be suitable for a
given input graph.

We implement our algorithm on an Intel i7 980x CPU running 12
threads using OpenMP Version 3.0. We study our techniques on four
classes of real-world graphs: web graphs, social networks, citation
and collaboration networks, and road networks. Our implementation
achieves an average speedup of 32% compared to a baseline imple-
mentation.

7.2.1 Introduction

Pagerank computation introduced by Brin and Page [120] is consid-
ered to be a fundamental advancement in the development of search
and related technologies. Informally, the pagerank computation as-
signs a rank to every webpage where the rank indicates the importance
of a web page. Pagerank type metrics have since become popular
and are used in evaluating the relative importance of nodes in other
classes of networks including social networks, citation networks, bio-
logical networks, road networks, and the like [72]. It is therefore not
surprising that there has been a lot of research interest in the past
decade on pagerank computation [29,57,95,102,132,163], to mention
a few.

The pagerank computation proceeds in iterations and in each it-
eration the current pagerank of each node is updated by using the
pagerank of its incoming neighbors. The computation stops when the
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pagerank values at all nodes change only by a small value across
successive iterations. In each iteration, along each directed edge
e = (u, v), a fraction of the pagerank value of u is transferred to
the new pagerank value of v. This computation offers opportunities
for optimization where certain edges of the graph can be identified
as redundant for one or more iterations. These optimizations can be
achieved by a deeper understanding of the structure of popular real-
world graph classes such as web graphs, road networks, and citation
networks.

There have been a number of works on parallel algorithms to
compute the pagerank of nodes in a graph. However, some of the
techniques are directed only towards web graphs e.g., [8, 57, 95] and
may not translate to other real-world graphs. With pagerank being
used for other purposes beyond its original intent [72], it is important
to have an efficient algorithm for pagerank computation for several
classes of real-world graphs.

It is to be noted that as real-world graphs increase in size, several
scalability issues come to the fore in the process of algorithm design
and implementation. Exploiting the parallelism in the computation
provides only a limited succor. Hence, one needs to deploy efficient
techniques to address the scalability issue arising out of the large sizes
of the real-world graphs. Such a line of investigation has been pursued
recently in finding the strongly connected components by Olukotun et
al. [85], graph traversals and shortest paths [14,55], graph connectivity
[64, 94], and the like on a variety of multicore and heterogeneous
execution platforms.

In this section, we present techniques to identify and eliminate
the redundancies in the pagerank computation. We name our tech-
niques with the acronym STIC-D for SCC and Topological Ordering,
Identical Nodes, Chain Nodes, and Dead Nodes. The first technique
makes use of the observation that sparse directed graphs tend to have
a large number of strongly connected components (SCCs). Further,
we observe that the block graph of a graph plays a big role in how
the pagerank values of nodes converge to their final values. We call
this technique as SCC and Topological Order. Our second technique,
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called Identical Nodes is based on identifying nodes with an identical
incoming neighbourhood. It can be observed that such nodes have an
identical pagerank value, hence the computation can be done for only
one of the nodes in every class of identical nodes. Our third tech-
nique, called Chain Nodes is based on the fact that one can shortcut
nodes along paths as their contribution to the computation of pager-
ank can be captured by a succinct formula. We also introduce a fourth
technique based on approximation, called Dead Nodes, that involves
retiring nodes that do not have a big change across iterations.

While each of the above techniques are simple, there are additional
challenges we address to translate these techniques to efficient algo-
rithms. Note that the pagerank computation itself has near-linear
work in practice. For most real-world graphs of varying sizes, the
number of iterations required for the pagerank computation to con-
verge is usually less than 100. This means that the preprocessing
time and any post-processing time required as part of the proposed
optimizations have to be very light-weight so as not to offset the gains
accrued from the proposed optimizations. Further, it is likely that a
specific subset of the above techniques will be appropriate for a given
graph. As we aim for techniques that are general-purpose, one also
needs to have fast, simple, and effective mechanisms that can identify
the applicable techniques for a given graph.

To validate our techniques, we consider four types of real-world
graph classes: web graphs, social networks, citation and collabora-
tion networks, and road networks, and show that our techniques can
improve the computation of pagerank by a factor of 32% on average.

Motivation

One of the key motivations of our work is to understand the struc-
tural properties of real-world graphs and their impact on algorithms.
Specific to the computation of pagerank, we seek properties that can
allow us to reduce the number of computations that are invoked for
each node of the graph. In this direction, we first note that real world
graphs being sparse in nature tend to have several strongly connected
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S. No. Graph Name No. nodes No. SCCs Source

1 soc-LiveJournal1 4,847,571 971,232 [3]

2 wiki-Talk 2,394,385 2,281,879 [3]

3 webbase-2001 118,142,155 41,126,852 [23]

4 Stanford Berkeley 683,446 109,238 [4]

5 GAP-twitter 61,578,415 27,970,913 [3]

Table 7.1: The number of strongly connected components in five real-
world graphs.

components (SCCs). Figure 7.1 shows evidence for the same for some
real-world graphs. As can be noticed from Figure 7.1, real-world
graphs have a large number of SCCs with a small size, and very few
SCCs of a large size. This property indicates that a decomposition
based on SCCs can be useful in parallel algorithms for pagerank com-
putation.

Now, consider two SCCs H1 and H2 of a graph G such that nodes
in H2 have some incoming edges from nodes in H1. It can be noticed
that nodes in H2 can start computing the pagerank only after nodes
in H1 have converged to their final pagerank value. This property
establishes a topological order in which the SCCs of G can be pro-
cessed during the pagerank computation. Further, once nodes in H1

converge to their final pagerank values, their contribution to nodes
in H2 does not change across iterations of the pagerank computation
for nodes in H2. These observations form the basis of two of our
techniques.

Other structural properties of real-world graphs that we make
use of in this work include identifying nodes with identical incoming
neighborhoods and also nodes that lie on long directed paths. We
show in the subsequent sections that these structural properties offer
good reduction in the amount of computation required to arrive at
the pagerank values of nodes in a graph.
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Related work

Computing metrics on graphs in parallel has been witnessing a re-
newed interest in recent years. In the context of pagerank, Broder et
al. [28] characterized the structure of web graphs as having a bow-tie
nature with one large strongly connected component that also has a
large number of incoming and outgoing edges. Arasu et al. [8] use
the characterization of Broder et al. [28] and represent the pagerank
computation as solving a set of independent matrix equations on a
block upper triangular matrix. Kamvar et al. [95] extend the char-
acterization from Broder et al. [28] to partition the input graph into
blocks where a block corresponds to a collection of nodes that are
also physically related in the context of a web graph by being in the
same domain. They proceed to compute a page rank within each
block, called the local pagerank, a pagerank for the blocks called as
BlockRank, and finally the global pageranks using the local pager-
anks and the BlockRanks. It is to be noted however that the final
ranks computed by Kamvar et al. [95] are approximate ranks and can
differ from the pagerank values as computed without using the block
structure of the graph.

Similar approximation based approaches can be seen in the work
of SiteRank by Wu and Aberer [163], the U-Model work of Broder
et al. [29], the ServerRank work of Wang et al. [157], and the Hos-
tRank/DirRank work of Eiron et al. [61]. Kohlschutter et al. [102]
extend the results of Kamvar et al. [95] to obtain exact pageranks.
But one limitation of these works [61, 95, 102, 157, 163] is that their
algorithms are tailored for web graphs and may not work well for
general purpose graphs. As pagerank and related computations gain
prominence in other domains, generic techniques are of interest.

Parallel computation of pagerank on other emerging architectures
such as GPUs has been studied by Duong et al. [57]. The work of [57]
does not introduce any algorithmic optimizations in the computation
of pagerank. On the other hand, we believe that our algorithmic
techniques will be applicable to other architectures too.

Some of the techniques that we propose are found to be relevant
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in computing centrality metrics on graphs. For instance, Sariyuce
et al. [134] use graph decomposition into biconnected components,
removing identical nodes and nodes of degree one, to compute the
betweenness-centrality measure of nodes in a graph.

Expressing the pagerank computation as a Markov chain and solv-
ing for the steady state transition probabilities of the underlying
Markov chain is a mechanism used by many authors. Pandurangan
et al. study such an approach in the distributed setting [132].

Organization of the Section

The rest of the section is organized as follows. In Section 7.2.2, we
give an algorithmic background for pagerank. We present the baseline
algorithm in Section 7.2.2. In Section 7.2.3, we present the algorithmic
techniques. Section 7.2.3 covers the implementation details of the
algorithm. Experimental results are presented in 7.2.4.

7.2.2 Preliminaries

Let G = (V,E) be a directed graph with n = |V | vertices and m = |E|
edges. Let IN(u) denote the set of nodes that have an incoming edge
to u. Let outdeg(u) denote the number of edges from u to other
nodes. The pagerank of a node u, denoted pr(u), is then given as
follows.

pr(u) =
∑

v∈IN(u)

contribution(v → u) +
d

n
(7.1)

In Equation 7.1, d is called the damping constant and has its gene-
sis in the manner in which pagerank is usually interpreted. The pager-
ank values represent a probability distribution where the pagerank of
a node denotes the probability of a random walk to visit that node.
The damping constant d can be interpreted as the probability that
the random walk stays at the same node in the next step. The value
of d is taken to be 0.15 usually. The quantity contribution(v → u) is
defined as follows.
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contribution(v → u) = (1− d) · pr(v)

outdeg(v)
(7.2)

One can also combine Equations 7.1,7.2 to arrive at the following
simplified equation.

pr(u) = (1− d) ∗
∑

v∈IN(u)

pr(v)

outdeg(v)
+

d

n
(7.3)

Using this formula, we get a pagerank distribution of nodes of a
graph. However this formula is cyclic in nature as two nodes can make
contributions to each other if they are part of a directed cycle. One
way to resolve this dependency is to apply the formula from Equation
7.3 iteratively over all the nodes until the pagerank values converge.
We say that the pagerank values of nodes have converged when there
is very little change in their values across an iteration. This can be
measured by a function such as the maximum difference of pagerank
values or the total difference of pagerank values across an iteration.

Baseline Algorithm

Algorithm 13 translates Equation 7.3 into an iterative pagerank com-
putation. We refer to Algorithm 13 as the baseline algorithm against
which we compare our techniques.

We initialize the error as ∞ and the initial pagerank values of all
nodes to d

n . For reasons of efficiency of parallel computation of pager-
ank, in Algorithm 13, for each node u, the new pagerank value of u is
computed as the sum of contributions from the incoming neighbors of
u. The variable Threshold1 is a constant that reflects the accuracy
of the pagerank needed by an application.

Lines 12–17 iterate over all the nodes in parallel. Each node up-
dates its pagerank based on the contributions of its incoming edges.
Lines 18–21 calculate the error function as the L1 norm of the change
in the pagerank values of nodes across one iteration. The variable
error is used to decide whether to proceed for the next iteration or
declare convergence.
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Algorithm 13 Base Pagerank(G)

1: procedure Main(Graph G = (V,E), Array outdeg )
2: pr=Compute((V,E), outdeg)
3: return pr
4: end procedure
5:

6: procedure Compute(Graph G,Array outdeg )
7: error =∞
8:

9: for all u ∈ V do
10: prev(u) = d

n
11:

12: end for
13: while error > threshold1 do
14:

15: for all u ∈ V in parallel do
16: pr(u) = d

n
17: for all v ∈ V such that (v, u) ∈ E do

18: pr(u) = pr(u) +
prev(v)

outdeg(v)
∗ (1− d)

19: end for
20: end for
21: for all u ∈ V do
22: error = max(error, abs(prev[u]− pr[u]))
23: prev(u) = pr(u)
24: end for
25: end while
26: return pr
27: end procedure
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7.2.3 Our Algorithmic Techniques

In this section, we describe our algorithmic techniques that help
speedup the pagerank computation by eliminating redundancies. The
acronym STIC stands for our techniques based on SCCs and Topo-
logical Ordering, Identical Nodes, and Chain Nodes. In brief, the
SCCs and Topological Ordering breaks the pagerank computation
into computations on smaller subgraphs that are strongly connected
and processed in a particular order. The Identical Nodes optimiza-
tion refers to eliminating the redundant computation for nodes with
an identical incoming neighborhood. The Chain Nodes optimization
shortcuts directed paths by a directed edge that connects the end
points of the path. More details of these optimizations are presented
in the following sections.

SCC and Topological Ordering

Recall from Equation 7.3 that in an iterative computation pagerank
values of nodes depend cyclically on one another. It is also to be
observed that if the pagerank value of all incoming neighbors of a
node v converge, then the pagerank value of v will also converge by the
next iteration. This observation can be extended to a decomposition
of a directed graph into its strongly connected components. For a
directed graph G = (V,E), a maximal subset of vertices U ⊆ V such
that every pair of nodes in U have at least one directed path between
them is said to be a strongly connected component (SCC) (cf [46]).
One can also define the block graph H of G where H has one node
for each SCC of G. For two nodes u, v ∈ H, there is an edge from u
to v if and only if there exist vertices a and b in the corresponding
SCCs Cu and Cv of G such that the edge (a, b) ∈ E(G). The graph
H is directed as defined and is also acyclic.

It can be noted that in a topological sort of the nodes of H, if a
node v ∈ V (H) comes after a node u ∈ V (H), then nodes in the SCC
Cv cannot contribute to the pagerank values of nodes in the SCC
Cu. Viewed differently, the pagerank computation will benefit if we
start processing nodes in Cv after the nodes in all SCCs that have an
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Figure 7.1: The SCCs of a graph and our processing order.

incoming edge to v ∈ H converge.

Our SCC and Topological Ordering technique uses the above ob-
servations as follows. In a preprocessing step, we find the SCCs of
the input graph G and perform a topological sort of the block graph
H of G. This results in an ordering of the SCCs of G as C1, C2, · · ·
so that the pagerank values can be computed for C1, followed by C2,
and so on.

Let us call edges that have end points in different SCCs as cross
edges. Figure 7.1 illustrates the above ideas. In Figure 7.1, cross
edges are shown as dashed lines. As Figure 7.1(b) shows, there are
three levels in the topological order of the block graph of the graph in
Figure 7.1(a). We can compute the pageranks of nodes in component
C1, followed by components C2 and C3 in Level 2 in parallel, and
finally component C4 in Level 3.

There is one additional redundant computation that can be iden-
tified as we compute pageranks according to a topological order of
nodes in the block graph. Consider a node a ∈ V (G) that appears in
SCC C of G such that the node u ∈ V (H) corresponding to C has
a rank of r in a topological sort of H. Node a may have incoming
neighbors in SCCs with a rank strictly less than r. In our scheme,
the pagerank value of such nodes would have already been computed
as we process the nodes in component C. Therefore, in the pagerank



142 CHAPTER 7. COMPUTING METRICS ON GRAPHS

Figure 7.2: Figure (b) illustrates identical nodes in the graph in Figure
(a).

computation of node a, the contribution of incoming neighbors of a
in components with rank strictly less than r does not change across
iterations. Hence, the computation corresponding to such cross edges
need be performed only once. In other words, the pagerank of nodes
in SCC C can be initialized to the sum of their contributions from
incoming neighbors from SCCs with a strictly smaller rank than the
rank of C.

Identical Nodes

In this optimization, we notice that the pagerank of a node is com-
pletely dependent on its incoming neighbors. So, it follows that two
nodes that have identical incoming neighbors would also have the
same pagerank value. Indeed, such is the case at the end of each it-
eration also. We therefore call two nodes as identical if they have the
same set of incoming neighbors. The notion of identical nodes allows
one to compute the pagerank of one representative node in every class
of identical nodes. The pagerank value of the representative node for
each class is referred to by all the nodes in that class when they need
the pagerank value.

We illustrate the above in Figure 7.2 where nodes a, b and c have
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u and v as common neighbors. Notice also any two nodes that are
identical will always belong to the same SCC or will be in an SCC of
size one. This helps in the implementation since it will be easy to all
identical nodes will be processed along with the component.

Chain Nodes

This algorithmic optimization concerns nodes along directed paths.
On a directed path P = ⟨u = u0, u1, u2, · · · , uk = v⟩, notice that nodes
ui with 1 ≤ i < k have exactly one incoming and one outgoing node.
Similar to the pagerank computation described in Equation 7.3, it is
now possible to compute the contribution of the pagerank of u to the
pagerank of v in on step instead of propagating the contribution of
u to v via the edges of P in k iterations. Lemma 6 shows the exact
contribution of u to the pagerank of v.

Lemma 6 Let P={u = u0, u1 · · · , uk = v} be a directed path. Then
the contribution of u on v is given as follows.

contribution(u→ v) =
pr[u]

outdeg[u]
∗ (1− d)k

+ (1−d)∗(1−(1−d)k−1)
N

Proof: We prove the lemma by induction. Notice that for k = 1,
the lemma essentially restates Equation 7.2. Assuming the induction
hypothesis for a directed path of length k, we now show the induction
step. By the induction hypothesis, on a directed path u0, u1, · · · , uk,
by Equation (7.1), we can say that:

pr[uk] = contribution(u→ uk) + d
n

pr[uk+1] = contribution(u→ uk+1) + d
n

(7.4)

Also by Equation (7.3) and the fact that the in-degree of uk+1 and
out-degree of uk is one, we get that pr[uk+1] = pr[uk] ∗ (1 − d) + d

n .
From above two equations, we have that contribution(u → uk+1) =
pr[uk] ∗ (1− d).
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Figure 7.3: A directed chain of nodes can be compressed to a single
edge as illustrated in the figure.

By Equation (7.4) and the previous equation, we can get:

contribution(u→ uk+1)

=
(
contribution(u→ uk) + d

n

)
· (1− d)

=

(
pr[u] · (1− d)k

outdeg[u]
+ (1−d)·(1−(1−d)k−1)+d

n

)
· (1− d)

=
pr[u] · (1− d)k+1

outdeg[u]
+ (1−d)−(1−d)k+d

n · (1− d)

=
pr[u] · (1− d)k+1

outdeg[u]
+ (1−d)·(1−(1−d)k)

n

⊓⊔
Figure 7.3 illustrates this optimization. As can be seen, on a

directed path of k nodes, we can remove all but one edge and the end
points of the path.

Using Lemma 6, it is possible to perform two related optimiza-
tions. On the path P , nodes ui for 1 ≤ i < n can be removed from
the graph and hence the pagerank computation. Nodes u and v can
be joined with a directed edge (u, v). During the pagerank computa-
tion, we use the result of Lemma 6 to set the contribution of u to the
pagerank of v.
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Marking Nodes Dead

The final optimization that we introduce is to mark certain nodes as
Dead Nodes. This is done as follows. While calculating the pager-
ank values of nodes a graph using the iterative method, it is likely
that the pagerank values of some nodes do not change considerably
across iterations. We consider the possibility that for such nodes, their
additional contribution to their outgoing neighbors will be minimal.
Therefore, we mark such nodes as Dead Nodes and do not include
them in the subsequent iterations. For reasons of efficiency, for each
node v that is not marked as a dead node, a check is performed every
tnum iterations to identify whether the pagerank value of v changes
beyond a pre-specified threshold (threshold2 in Algorithm 16). If
the change in the pagerank value of v is within the threshold, then
v is marked as a dead node. Further, the computed pageranks using
this optimization differ by less than ±threshold1, indicating that
the computed pagerank values are very close to their actual values.
The value of threshold1 can be adjusted by the application.

Putting Together Everything

Using the observations from Section 7.2.3–7.2.3, we now visualize the
computation of pagerank as a three step process involving preprocess-
ing, the actual computation of pagerank, and post-processing. Post-
processing is required for the optimization corresponding to Sections
7.2.3 and 7.2.3. Algorithm 14 shows the pseudocode of our approach
for pagerank.

Algorithm 14 is arranged as three steps with Algorithm 15, Algo-
rithm 16 and Algorithm 17 forming the preprocessing, computation
and post-processing steps respectively. To simplify our presentation,
we consider the graph G as a weighted directed graph where each
node has a weight. When using the Chain Node optimization, this
weight allows us to set the contribution of the starting node of the
path to the end node of the path as derived in Lemma 6.

In Line 2 of Algorithm 15, the function FindEquinodes returns an
array rep which stores for each node the representative node of the
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Algorithm 14 STIC-D(G)

1: procedure Main(Graph G = (V,E))
{{C11, C12 · ·}, {C21, C22 · ·} · · ·} = SCC+TOPO(G)

2: for i = 0 to levels do
3: for all Cij ∈ {Ci1, Ci2 · · · } in parallel do
4: (Dij , initial, rep)=Preprocess(Cij , G)
5: pr=Compute(Dij , initial, rep)
6: Post-Process()
7: end for
8: end for
9: return pr

10: end procedure
11:

Algorithm 15 STIC-D(G)

1: procedure Preprocess(Graph Ci = (Vi, Ei),Graph G =
(V,E))

2: rep = FindEquiNodes(Ci)
3: if f1(rep, |Vi| , |Ei|) < thres1 then
4: rep[u] = u,∀u ∈ V
5: end if
6: (Di) = Compress(Ci)
7: if f2(|V (Di)| , |Vi| , |Ei|) < thres2 then
8: Di = Ci

9: end if
10: initial = Calinitial(Di, G)
11: return (Di, initial, rep)
12: end procedure
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Algorithm 16 STIC-D(G)

1: procedure Compute(Graph G = (V,E),Array initial,Array
rep )

2: error =∞ , iterations = 0, adead = true
3: prev[u] = 1

n , dead[u] = 1
n ,∀u ∈ V

4: while error > threshold1 do
5: for all u ∈ Vnc s.t rep[u] = u, dead[u] > 0 in parallel do
6: pr[u] = initial[u]
7: for all v ∈ V such that (v, u) ∈ E do
8: if v ∈ Vc and rep[v] = v then

9: pr[v] = initial[v]+
prev[rep[red[v]]]

outdeg[red[v]]
∗weight[v]+

1−d−weight[v]
n

10: end if

11: pr[u] = pr[u] +
prev[rep[v]]

outdeg[v]
12: end for
13: end for
14: iterations = iterations + 1
15: if iterations%tnum = 0 & adead = true then
16: Markdead(pr, dead, threshold2, adead)
17: end if
18: for all u ∈ Vnc with rep[u] = u, dead[u] > 0 do
19: error = max(error, abs(prev[u]− pr[u]))
20: prev[u] = pr[u]
21: end for
22: end while
23: return pr
24: end procedure
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identical node set of which it is a part of. The function f1 in Line
3 of Algorithm 15 calculates the percentage of nodes identified as
identical nodes. If the percentage of identical nodes is below thres1,
this optimization is not included.

In Line 6 of Algorithm 15, the function Compress removes all
nodes of in-degree and out-degree one and their incident edges and
fills the red array which stores for the chain nodes the alias node
from which they should calculate the pagerank in the post-processing
phase. The decision whether to include this optimization is done
based on the function f2 (Line 7) and the threshold thres2.

The function Calinitial (Line 10) sets the initial pagerank values of
nodes in an SCC by considering the pagerank of endpoints of incoming
cross edges whose pagerank converged already.

In Algorithm 16, Vc and Vnc refers to chain and non-chain nodes
respectively. Lines 15, 16 of Algorithm 16 check for dead nodes by call-
ing function MarkDead every tnum iterations. The function Markdead
performs the check by comparing the change in pagerank in the pre-
vious tnum iterations against threshold2. The array dead stores a
negative value if the node is dead or stores the pagerank that is at
most tnum iterations old. The function Markdead also extrapolates
the total number of dead nodes from the number of dead nodes seen
till now and sets the value of adead as false if it less than 8% of n.

Implementation Details

In this section, we describe the implementation details of our algo-
rithm.

We have distributed work between threads while iterating on com-
ponents on same level in parallel by setting a threshold value of 105.
So, if a component has more than 105 edges it would be worked on by
all the threads. The work distribution is same for both the baseline
algorithm and our algorithm.

All our preprocessing steps are using standard sequential algo-
rithms. We use Kosaraju’s algorithm (cf. [46]) for finding the strongly
connected components, and BFS based algorithm for a topological or-
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dering of the block graph. In FindEquinodes, we only consider nodes
with in-degree 1 and 2 as these nodes account for a majority of the
nodes that are identical for the purposes of the pagerank computation.

The accuracy of the baseline implementation and that of Algo-
rithm 14 is controlled by the value of the variable threshold1. In
our implementation, we set the value of threshold1 to be 10−10. In
Algorithm 15, the values of the various thresholds are set as follows.
The value of thres1 and thres2 are set at 7% and 15% of the size
of the graph respectively by following our empirical observations. In
Algorithm 16, the variable tnum was set to be 22 and threshold2 is

set
threshold1 ∗ tnum

2 ∗ n
.

Algorithm 17 STIC-D(G)

1: procedure PostProcess(Graph G = (V,E),Array
initial,Array rep )

2: for all u ∈ Vc such that rep[u] = u in parallel do

3: pr[u] = initial[u] +
prev[rep[red[u]]]

outdeg[red[u]]
∗ weight[u] +

1−d−weight[u]
n

4: end for
5: for all u ∈ V such that rep[u] ̸= u in parallel do
6: pr[u] = pr[rep[u]]
7: end for
8: end procedure

7.2.4 Experimental Results

In this section we describe our experimental platform, the dataset we
use, and analyze the results of our algorithm.

Platform

We use an Intel i7 980x processor with 8 GB memory as our exper-
imental platform. The 980x is based on the Intel Westmere micro-
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architecture and has six cores with each core running at 3.4 GHz.
With active SMT (hyper-threading), the i7 980x can support twelve
logical threads. The memory hierarchy of the i7 980x has a three level
cache system with an L1 cache of size 64 KB per core, an L2 cache of
size 256 KB per core, and a shared L3 cache of size 12 MB.

Dataset

We experiment on four classes of real-world graph datasets namely
web graphs, social networks, collaboration networks, and road net-
works. The graphs are part of standard datasets [3,4], and important
characteristics of the graphs are listed in Table 7.2. In Table 7.2,
the column SCC’s indicates the number of strongly connected com-
ponents in the graph, and the column Levels indicates the number of
levels in the block graph of the input graph.

Results

We first present the overall speedup results and a study of the time
spent across the phases of Algorithm 14. We then proceed to analyze
each of the four graph classes.

Overall Speedup We calculate the speedup of Algorithm 14 as the
ratio of the time taken by Algorithm 13 to that of Algorithm 14. Both
the algorithms are run in a multi-threaded manner with 12 threads
on the machine described in Section 7.2.4. Each experiment is run
multiple times and the average speedup is used in reporting.

The results of the overall speedup are shown in Figure 7.4. In
Figure 7.4, the phrase “baseline” refers to time taken by Algorithm
13. On the X-axis of Figure 7.4, the graphs are arranged according
to their class as listed in Table 7.2. On an average, we get a speedup
of 77% on web graphs, 28% on social graphs, 13% on collaboration
networks, and 8% on road networks.
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Graph name Source |V | |E| SCCs Levels

Web Graphs

web-Stanford [89] 281903 2312497 29914 141

web-BerkStan [89] 685230 7600595 109406 114

indochina-2004 [122,123] 7414866 194109311 1749052 524

web-Google [89] 916428 5105039 412479 34

web-Notredame [7] 325729 1497134 203609 18

Social Networks

soc-Slashdot0811 [89] 77360 905468 6724 4

soc-Slashdot0902 [89] 82168 948464 10559 3

soc-Epinions1 [130] 75888 508837 42185 10

soc-LiveJournal1 [11,89] 4847571 68993773 971232 24

Collaboration Networks

co-AuthorsDBLP [66] 299067 977676 299067 7

co-Authorsciteseer [66] 227320 814134 30322 7

coPapersCiteSeer [66] 434102 16036720 6372 7

coPapersDBLP [66] 540486 15245729 10244 6

Road Networks

italy osm [4] 6686493 7013978 1470097 2692

great-britain osm [4] 7733822 8156517 2444901 725

germany osm [4] 11548845 12369181 2466406 534

asia osm [4] 11950757 12711603 3511783 10943

Table 7.2: List of graphs that we use in our experiments.
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Figure 7.4: Figure shows the speedup of algorithm on graphs listed
in Table 7.2.

Profile across Phases To understand the differences in the speedup
that our algorithm achieves on various graphs, we first start by study-
ing the relative time spent by our algorithm in the preprocessing
and the actual computation phases. The post-processing time is not
shown as it is noted to be negligible and under 1% of the total time.
The reason behind this is that all our techniques are able to simulta-
neously compute the pagerank of the nodes removed in preprocessing.

The preprocessing time is on an average 25% on web graphs, 11%
on social networks, 17% on collaboration networks and 30% on road
networks. About half of this spent on finding the SCCs and a topolog-
ical order among SCCs. To identify identical nodes, the time spent is
usually under 2%, except for web graphs where it takes nearly 12%.
Identifying identical nodes in web graphs takes more time as there
is usually a large percentage of identical nodes. We observe that in
road networks, both the SCC and Topological Ordering and the pre-
processing time in the Chain nodes optimization step is 14%. This is
because these graphs have a lot of levels as shown in Table 7.2.

In general, the high processing time of our algorithm can be at-
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tributed to the fact that all the preprocessing algorithms are running
as sequential algorithms. The effectiveness of our technique can be
seen by comparing the time taken by our actual computation with
the computation time taken by Algorithm 13. This ratio is on an av-
erage 2.4 on web graphs, 1.45 on social networks, 1.3 on collaboration
networks, and 1.43 on road networks.
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Figure 7.5: Profile of time taken across various steps of Algorithm 14.

Analysis of Graph Classes In this section, we discuss in detail
the effect of our techniques on the graph classes from our dataset.

Web Graphs We experimented with five web graphs. We note that
these graphs have a large number (15% on average) of cross edges,
i.e., edges that have end points in two SCCs. These graphs also have
a large number of SCCs indicating that our SCC and Topological
Ordering optimization should actually improve the performance of
our algorithm by a good factor. Further, we notice that most of
the web graphs do not have long directed paths. Therefore, we do
not apply the chain optimization step on web graphs. On the other
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Figure 7.6: Relative Speedup of optimizations on Web graphs.

hand, these graphs contain a significant portion (18% on average) of
identical nodes. So, we apply this optimization.

The impact of each of the optimizations applied on web graphs is
shown in Figure 7.6. The dead and live optimization works only for
the graphs web-Stanford, web-BerkStan and Indochina-2004. On an
average, we get a 3% speedup with this optimization on these graphs.

Social Networks In the class of social networks, we consider four
graphs. These graphs on average have about 10% of cross edges but
the SCCs themselves are arranged in fewer levels. These graphs also
do not have long directed paths, so this optimization is not considered
for social networks. Some of these graphs may not also have a good
number of identical nodes, so this optimization can be applied only
in specific cases. Figure 7.7 shows the impact of the optimizations
applied on social networks.

Collaboration Networks We now consider collaboration networks.
These graphs are an example of graphs that do not benefit from our
optimizations for several reasons. These graphs have very few cross
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Figure 7.7: Relative Speedup of optimizations on social networks.
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Figure 7.8: Relative Speedup of optimizations on Collaboration Net-
works.

edges, very few levels, and do not have long directed paths. These
graphs however benefit from keeping nodes dead. The overall speedup
on these graphs is quite small as several of our optimizations are
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not applicable in this class of graphs. Figure 7.8 shows the relative
speedup of techniques on collaboration networks.
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Figure 7.9: Relative Speedup of optimizations on road networks.

Road Networks Finally, we move to analyzing road networks.
These networks by virtue of their application domain, have a large
number of levels and also a large number of SCCs. This means that
our SCC and Topological Ordering optimization incurs a huge pre-
processing overhead. In fact, just applying this optimization on these
graphs actually results in a 10% average slowdown compared to the
baseline algorithm.

These graphs also have a small number of identical nodes. So,
the advantage gained by identifying the identical nodes will be offset
by the preprocessing time required. However, these graphs have a
large number of long directed paths. So, the chain node optimization
technique works well on these graphs. Figure 7.9 shows the relative
speedup of techniques on collaboration network graphs.
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7.3 Betweenness-Centrality

The betweenness-centrality measure of a node indicates the relative
importance of each node v of G by considering the number of shortest
path passing through v. Betweenness-centrality as a measure finds
applications in several areas of graph analytics such as those in social
networks [107] and biological graphs [103]. One property that we focus
in this section is that real-world graphs, being sparse in nature, tend
to have a reasonably good number of nodes of degree at most two.
Removing such nodes can be helpful in problems such as computing
the betweenness-centrality of a given graph. However, care is required
to ensure that the centrality values of nodes removed from the graph
can be computed efficiently using the corresponding values at nodes of
degree greater than two. To this end, we use the ear decomposition of
a graph that helps us to systematically identify and bookkeep details
of nodes of degree at most two. An ear decomposition of a graph is
a partitioning of a graph into simple paths that overlap only at end
points. See Figure 3.1 for an example.

We start with biconnected graphs and show that one can use an
ear decomposition of a biconnected graph to improve the practical
efficiency of computing the betweenness-centrality values of nodes in
the graph. In particular, we use the ear decomposition of a graph
to remove nodes of degree two, perform the bulk of the computation
with respect to the remaining graph, and use a post-processing step
where we compute the betweenness-centrality of nodes that were re-
moved and also update the betweenness-centrality values of the nodes
remaining.

Having a post-processing step in our algorithm means that unlike
existing approaches [111,112,133], we need to retain the results from
the processing phase to the post-processing phase. Doing so would
require a large amount of space that far exceeds the space available
on current generation GPUs. To address this problem, we interleave
execution of the processing and the post-processing steps along with
identifying redundant information that need not be stored, and an
orchestration of nodes in the processing step. Using these techniques
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our implementation outperforms existing approaches by a factor of
1.51x speedup on a collection real-world graphs from the UFL dataset
[4].

Finally, using ideas from Sariyuce et al. [134] and Wang et al.
[155] we show how to extend our approach to graphs that are not
biconnected. Our approach achieves a speedup of 1.9x on a collection
of real world graphs from [4]. We note that any improvements to
GPU-based algorithms for breadth first search (BFS) can improve
our results too.

7.3.1 Related Work

Decomposition of graphs into subgraphs is a technique in parallel
graph algorithms that is gaining significant research attention in re-
cent years. Metis [98] decompose a graph into a given number k of
subgraphs such that the number of edges that cross a partition is min-
imized. This decomposition is being used parallel graph algorithms
lately as a subroutine [56]. However, for path-based problems such as
shortest paths and betweenness-centrality, decomposition via Metis
may not be ideal due to the presence of cycles that go across the par-
titions induced by a Metis decomposition. These cycles mean that
computing shortest paths between nodes in two different partitions is
non-trivial.

Parallel algorithms in the PRAM style for obtaining an ear decom-
position are presented by Ramachandran [126] along with applications
to problems such as planarity testing and triconnectivity. Bader et
al. [13] show the results of implementing algorithm [126] on NPACI
Sun E10K machines.

Computing the betweenness-centrality values of nodes in a graph
has seen lot of interest in recent years in parallel computing research.
Most papers [111,112,133,134] use the algorithmic approach of Bran-
des [26]. Sariyuce et al. [134] use a biconnected component decompo-
sition of a graph, compute the betweenness-centrality of a node local
to its biconnected component, followed by a post-processing step for
computing the betweenness-centrality values with respect to the en-
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tire graph. In a sequential computing model, they show that such
a technique results in a speedup of 3.8x compared to Brandes [26].
Wang et al. [155] provided optimizations similar to [134] and achieve
considerable speedup over existing multicore implementations includ-
ing that of the Ligra framework [141].

Optimizing BFS on a GPU focusing on applications such as betweenness-
centrality in unweighted graphs is studied by Sariyuce et al. [133], and
by Bader and Mc. Laughlin [111, 112, 156]. Bader and Mc. Laugh-
lin [111] improved the BFS implementation of Jia et al. [92] and Shi
and Zhang [136]. Bader and McLaughlin perform a BFS with each
node of the graph as the source of the BFS. Each such BFS is run in
parallel on a SMX (SM) of the GPU. The information obtained from
the BFS from v is used to compute the betweenness-centrality of v.
Improvements to GPU BFS shown by Bader and Mc. Laughlin [112]
lead to direct improvements computing betweenness-centrality values
over their results from [111].

7.4 Computing Betweenness-Centrality

In a graph G = (V,E) the betweenness-centrality (BC) of a node
v ∈ V is a measure of the number of shortest paths that pass through
v. Equation 7.5 (see also [26]) captures the above formally where
σst denotes number of shortest paths between s and t, and σst(v) is
number of shortest paths between s and t that pass through v.

bc(v) =
∑

s ̸=t̸=v∈V

σst(v)

σst
(7.5)

Before we present our algorithmic approach for computing the
betweenness-centrality values of nodes in a given graph, we briefly
review the algorithm of Brandes [26] that has been the algorithm
of choice [111, 112, 133, 134] for computing betweenness-centrality in
parallel.
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7.4.1 Brandes Algorithm

Brandes introduced an algorithm to compute betweenness-centrality
that runs in O(n + m) space and O(nm) sequential time. The algo-
rithm of Brandes works in two stages: a forward propagation stage and
an accumulation stage. In the forward propagation stage, from each
node v ∈ V we first obtain the sequence Sv in which nodes are visited
according to the BFS algorithm with source node as v. During this
step, we also store the number of shortest paths from v to other nodes
in V as σv and the parent of each node u in the shortest path tree
rooted at v, denoted as Pv(u). This information is used in the accumu-
lation stage to compute the partial betweenness-centrality of nodes in
Pv by using the dependency relation δ(u) =

∑
w:u∈Pv(w)

σvu
σvw

(1+δ(w)),
where u is the parent of w in the shortest path tree rooted at v and
δ(w) denotes the partial betweenness-centrality of a node w. The
algorithm also uses an array Dv() that contains the length of the
shortest path from v to all other nodes.

7.4.2 The Approach of Bader et al. [111,112]

The main idea of the works of Bader and Mc. Laughlin [111, 112]
is to target GPU specific optimizations to perform multiple BFS op-
erations, one from each node of the graph as a source node. Bader
and Mc. Laughlin [111] use SMX level parallelism and batch the n
BFS operations on the SMXs. Other techniques introduced in [111]
include memory usage optimization, reduction in atomic operations,
and load balancing based on the structure of the graph.

Bader and Mc. Laughlin [112] introduce further optimizations
such as warp level parallelism and warp-level load balancing using
dynamic scheduling. These optimizations result in an improved BFS
performance and a direct improvement over [111] for computing the
betweenness-centrality values of nodes in unweighted graphs.
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7.4.3 Our Approach

Our algorithmic approach to compute the betweenness-centrality val-
ues of nodes in a sparse graph uses the following outline. We start by
considering graphs that are biconnected. Such a graph will have an
ear decomposition as shown by [126, Lemma 2.1]. In a preprocessing
step, we obtain an ear decomposition of the graph. Using the ear de-
composition to perform the necessary book-keeping, we remove nodes
of degree two from the graph. The (partial) betweenness-centrality
values of the remaining nodes according to the original graph are com-
puted by using standard algorithmic techniques. In a post-processing
step we compute the betweenness-centrality values for nodes removed
during the preprocessing step and also update the values for the nodes
that remain after preprocessing. Finally, we show how to extend our
approach to graphs that are not biconnected.

An illustration of our approach for biconnected graphs is shown
in Figure 7.10. In the following, we present a pseudocode of our
algorithm as Algorithm 18 and provide details of the steps in our
algorithm in Sections 7.4.3–7.4.3.

Algorithm 18 Algorithm BetweennessCentrality(G)

1: /* Phase I : Preprocessing */
2: Gr = Reduce(G)
3: /* Phase II : Processing */
4: for each v in Gr do in parallel do
5: (Sv, Dv, σv) = FwdStage(v, G)
6: Accumulate PartialBC(Sv, Dv, σv)
7: end for
8: /* Phase III : Post Processing */
9: for each v ∈ G \Gr do in parallel do

10: lx ← Left(v) , rx ← Right(v)
11: (Sv, Dv, σv) = Sim FwdStage(v, lx, rx)
12: Sim Accumulation(v, lx, rx, Sv, Dv, σv)
13: Update the BC values to the nodes in Gr

14: end for
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Figure 7.10: Figure (a) shows the input graph G with an ear de-
composition where the number on the edges indicates the ear they
belong to. Figure (b) shows the reduced graph Gr. A parallel edge
in the reduced graph between nodes a and c is shown as a dotted line
for illustration purposes. Figure (c) shows the partial betweenness-
centrality values of nodes in Gr computed in the processing phase
of our algorithm. Figure (d) shows the final betweenness-centrality
values for all nodes obtained at the end of the post-processing phase.
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Preprocessing

Let G = (V,E) be a biconnected graph. The Reduce(G) routine
starts by obtaining an ear decomposition of G using Algorithm 2.
In such a decomposition, nodes of degree two, except possibly those
on ear P0, appear on exactly one ear. The resulting reduced graph
Gr = (V r, Er) is defined as follows. The nodes of Gr are the nodes
of G that have a degree at least three. Two nodes v and w in Gr are
neighbors if and only if v and w belong to a common ear P of G and
have no nodes of degree three or more between them on the ear P .
Figure 7.10(a)–(d) shows an example. For a node x of degree two on
ear P = (a1a2 · · · ak) in G, we define functions left() and right() of x in
Gr, denoted Left(x) and Right(x), as the nodes of degree at least three
on P that are closest to x towards a1 and ak respectively. For instance,
in the example in Figure 7.10(b), Left(f) = a and Right(f) = c. (The
terms Left and Right are only mnemonic in nature.)

Notice that during the construction of the reduced graph, there
could be multiple edges between nodes in the reduced graph. In this
case, since we are interested in shortest paths, we retain the edge with
the shortest length and discard the remaining edges. An example
shown in Figure 7.10(b) for purposes of illustration.

Processing

In the processing phase, we compute the betweenness-centrality val-
ues of nodes in Gr. We use the BFS routine from [112] in our pro-
cessing step and perform a BFS in G from each node in Gr as the
source node. Note that the BFS has to be done in the graph G
and not the graph Gr so as to correctly capture the impact of the
multiple edges in Gr on the betweenness-centrality values of nodes
in Gr. Along with each BFS, we perform the forward propagation
stage and the accumulation stage of the algorithm of Brandes. In
the FwdStage routine, for each source node v, arrays Sv, Dv and
σv are recorded as the result of a BFS with v as the source node as
is done in the forward propagation phase. As G is unweighted, Pv is
not computed or stored explicitly and is simulated using the Dv array.
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In the Accumulate PartialBC routine, we use the arrays Sv, Dv,
and σv for each v ∈ Gr computed in the forward stage to compute
betweenness-centrality values of nodes in Gr. However, these com-
puted betweenness-centrality values of nodes in Gr can change in the
post-processing step as the accumulation stage of nodes in G \Gr is
performed. Therefore, we call these values as the partial betweenness-
centrality values as shown in Figure 7.10(c).

Post-processing

In this phase, we compute betweenness-centrality for nodes in G \Gr

and also make updates to the partial betweenness-centrality values
for nodes in Gr.

The routine Sim FwdStage works as follows. Let x be a node in
G \Gr with Left(x) = ℓx and Right(x) = rx. We simulate the actions
of executing the forward stage of Brandes algorithm [26] for node x as
follows. We need to obtain arrays Sx, Dx and σx as part of the forward
stage. For obtaining the array Sx, we start by merging sequences Sℓx

and Srx as follows. Let v and w denote the first node in Sℓx and Srx

respectively. We now compare Dℓx(x)+Dℓx(v) and Drx(x)+Drx(w).
If the former is smaller, then we add v to Sx. Otherwise, we add w to
Sx. Nodes v and w are incremented to be the next node in Sℓx and
Srx depending on which of v or w is added to Sx in this step. (Alike
the procedure Merge in Merge Sort [48]). In a similar fashion, we can
also obtain arrays Dx, and σx from the respective arrays of nodes ℓx
and rx.

Once these arrays are obtained for node x, the accumulation stage
(i.e Sim Accumulation routine) of Brandes algorithm can be sim-
ulated as described in Section 7.4.1. During this stage, the par-
tial betweenness-centrality values of nodes in Gr will be updated as
needed. At the end of the post-processing phase, we therefore have
the final betweenness-centrality values of all nodes in G as shown in
Figure 7.10(d).
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7.4.4 Implementation Details

In this section, we mention some of the important implementation de-
tails of our algorithm. Since we use the implementation from [112] in
Phase II of Algorithm 18, we stand to benefit from all the GPU spe-
cific optimizations that are included in the implementation of [112].

The preprocessing step in our algorithm necessitates a post-processing
step unlike other algorithms [111,112,156]. To run the post-processing
step, as described in our algorithm, we need O(n) Bytes of informa-
tion per node of Gr amounting to O(n ·nr) Bytes where nr = |V (Gr)|.
For even moderate value of n, this amount of space far exceeds the
amount of space available on current generation GPUs.

To alleviate this problem, we run the processing and the post-
processing steps in an interleaved manner. Doing so naively will not
result in any improvement in the space utilization. However, we intro-
duce two novel techniques in our implementation that help us in the
following way. Firstly, in Section 7.4.4, we identify information com-
puted in the processing phase that is not needed in the post-processing
phase. Secondly, in Section 7.4.4, we orchestrate the nodes in Gr as
to when the processing step corresponding to a node is performed
and how long the information thus generated has to be kept in the
memory. This allows us to reuse the limited space effectively.

Classifying Nodes in Gr

We observe that some nodes in Gr do not correspond to the Left()
and Right() of any node in G \ Gr. Thus, nodes in Gr can be par-
titioned into two subsets, V f and V a. Nodes in V f , which we call
as free nodes, are such that their S,D, and σ arrays are not required
by any other node in G \ Gr during post-processing. On the other
hand, nodes v ∈ V a, which we call as active nodes, are such that
arrays Sv, Dv, and σv are required during post-processing. Our stor-
age requirement corresponds to storing the arrays for nodes in V a.
Information computed in the processing phase with respect to nodes
in V f need not be retained for the post-processing phase.

Figure 7.11(b) illustrates the idea of free and active nodes. In
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Figure 7.11: Figure (a) shows the input graph G. Figure (b) shows the
reduced graph Gr. In Figure (b), nodes filled in black color indicate
free nodes and the other nodes are active nodes. The numbers on the
active nodes in Figure (b) indicate the BFS level number with f and
k as the source nodes.

Table 7.2, column 7 shows the number of free and active vertices in
the largest biconnected component of the corresponding graph. For
the graphs listed in Table 7.2, the average number of active vertices
is under 35% indicating that the classification into active and free
vertices is a useful technique to reduce the storage required by our
approach.

Orchestrating Nodes in the Processing Phase

Our technique here involves ordering the nodes in the processing phase
so that we can associate with every node v ∈ V a a lifetime during
which the arrays Sv, Dv, and σv are required in memory for post-
processing. Once the lifetime of a node ends, the space used by its
arrays can be reclaimed.

To this end, let F denote the subgraph of Gr induced by V a.
We now find the connected components of F using standard parallel
algorithms such as those presented in [144]. We also order the con-
nected components of F in some order, say F1, F2, · · ·. Consider a
connected component H of F and define Dep(H) := {x|x ∈ G \ Gr,
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Left(x) ∈ V (H) or Right(x) ∈ V (H)}. Once nodes in Dep(H) finish
their post-processing, the information with respect to nodes in H is
no longer required to be in memory and the associated space can be
reused.

Further, we can seek an order of the nodes within H also as follows.
Consider a subset S ⊆ V (H) and Dep(S). Once the post-processing
of nodes in Dep(S) finishes, the arrays with respect to nodes in S
are no longer needed in memory. We now observe the following with
respect to S and Dep(S).

For a node x ∈ Dep(S), the nodes v := Left(x) and w := Right(x)
are neighbors in H. Therefore, it follows that v and w appear in
either the same level or in consecutive levels of a BFS of H. These
observations allows us to define a order on the nodes of H so that we
can choose appropriate subsets S that reduce the amount of storage
required by our algorithm.

To this end, we perform a BFS in H and arrange the nodes of H
into sets L0, L1, · · · , such that nodes in Li for i ≥ 0 are at a distance
of exactly i from the source node s ∈ H of the BFS. (The choice of
s is immaterial to our discussion.) We can start with S1 = L0 ∪ L1

and compute Dep(S1) as defined. Once the post-processing of nodes
in Dep(S1) finishes, we define S2 = L1 ∪ L2 and perform the post-
processing of nodes in Dep(S2). While doing so, we retain the arrays
corresponding to nodes in L1 in memory and remove those corre-
sponding to nodes in L0. In addition, we have to keep the arrays of
nodes in L2 in memory. In general, when performing post-processing
of nodes in Dep(Si), i ≥ 1, we need arrays for nodes in Li−1∪Li. Thus,
the space required for our implementation is in O(maxi|Li−1∪Li|·n).

Columns 8 and 9 of Table 7.2 show the number of vertices in H
and the maximum number of vertices in any one level of a BFS in H
for the corresponding graph. As can be seen, the maximum number
of vertices in any one level of a BFS in H is quite small compared to
the number of vertices in the largest biconnected component. Recall
that the storage required by our algorithm is at most the number of
vertices in the largest biconnected component of the graph multiplied
by twice the maximum number of vertices in any level of a BFS on
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H. This indicates that the two techniques presented in this section
make our algorithm scalable for large graphs also even on a single
GPU with limited memory.

In our implementation, in the post-processing phase, recall that
for a node x ∈ G \Gr, we compute the arrays Sx using the arrays Sℓx

and Srx where ℓx = Left(x) and rx = Right(x). To do so, we use one
SMX for each node x. Threads within an SMX compute the array
Sx as explained in Section 7.4.3. A similar approach is followed for
computing the arrays Dx, and σx.

7.4.5 Results

Platform

We use the GPU described in Section 7.2.4. For comparison stud-
ies with respect to libraries running on multicore CPUs, we use an
Intel(R) Xeon(R) E5-2650 CPU with 128 GB RAM and a memory
bandwidth of 68 GB/s for our experiments. The E5-2650 CPU is a
dual processor where each processor has 10 cores and each core can
process two threads using hyper threading. Each core operates at 2.34
GHz which can be boosted to 3 GHz using turbo boost technology.
The E5-2650 CPU has 64 KB L1 cache per core, 256 KB L2 cache
per core and a shared 25 MB L3 cache.

Datasets

We experiment with graphs from the dataset of sparse graphs from
the University of Florida dataset [4]. Since we require the graph to
be biconnected, we run algorithms on the largest biconnected compo-
nent of the graphs listed Table 7.3. Since graphs in the dataset from
Table 7.3 have a large biconnected component that spans more than
80% of the edges, as indicated by numbers shown in column labeled
Largest BCC, the size of the graph that we run our algorithm is not
significantly compromised.
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Graph name |V | |E| Largest BCC
|V | |E| %Deg=2 Active |V(H)| maxi|Li|

roadNet-CA 2.0 M 2.7 M 1.57 M 2.34 M 24.0 424 K 41 6

roadNet-TX 1.4 M 1.9 M 1.05 M 1.57 M 25.0 276 K 57 6

soc-Epinions1 76 K 508 K 36 K 365 K 27 8.9 K 5.5 K 62

patents main 241 K 560 K 151 K 474 K 26.1 44 K 3.8 K 61

coAuthorsDBLP 299 K 977 K 198 K 818 K 15.4 36.6 K 4.7 K 99

soc-Slashdot0902 82 K 474 K 51 K 47 K 23.0 11 K 6.4 K 70

caidaRouterLevel 192 K 609 K 132K 541 K 27.3 32.7 K 183 81

scircuit 171 K 479 K 135 K 335 K 13.5 16 K 58 55

soc-sign-epinions 131 K 841 K 58 K 642 K 27.7 12.6 K 8.8 K 95

p2p-Gnutella31 62 K 147 K 33 K 119 K 27.7 10.4 K 5.4 K 26

Table 7.3: List of graphs that we use in our experiments. In this
table, the number of nodes and the number of edges are rounded to
the nearest thousand (K) or the nearest million (M). The last column
indicates the percentage of nodes that are eliminated from the largest
BCC during the preprocessing step.
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Results

We compare the results of our algorithm, labeled as ”OUR” in the
rest of this section, with a wide range of algorithms on GPUs and
multi-core CPUs. The algorithms are listed in the following.

GPU Based Algorithms

� Bader and Mc. Laughlin [112]: This work is currently one
of the fastest for computing betweenness-centrality on a GPU.
We use the software from the authors of [112] in our comparison.
This result is labeled ”BM15” in the rest of the section.

� Gunrock Library [156]: Gunrock is a GPU based library
for graph algorithms, which contains a routine for computing
betweenness-centrality. We use the software from [156] and label
this result as ”GUNROCK” in the rest of this section.

Multi-core CPU Based Algorithms

� APGRE [155]: Wang et al. [155] extend the work of Sariyuce
et al. [134] to multi-core CPUs. We implement the algorithm
of [155] on the CPU described in Section 7.4.5 with a thread
per core and label this result as ”APGRE”.

� Ligra [141]: The Ligra library [141] consists of routines for
graph algorithms and runs on multicore CPUs. Results of the
Ligra library are labeled “LIGRA” in our plots.

On the graphs from Table 7.3, the overall time taken by the above
algorithms on the largest biconnected component is plotted in Figure
7.12(a) for multi-core CPUs and Figure 7.12(b) for GPUs1. The Y-
axis of Figure 7.12(a) is on a logarithmic scale. The secondary Y axis

1Note that in [112], absolute time taken as mentioned are normalized to 8192
iterations. Similarly, the timings shown in [156] are normalized to one iteration.
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Figure 7.12: Comparing the overall performance improvement of Al-
gorithm 18 on the largest BCC of the graphs listed in Table 7.3.
Figure (a) compares our algorithm with respect to [155] and [141] on
multicore CPUs. Figure (b) compares our algorithhm with respect to
BM15 [112] and GUNROCK [156] on a GPU. The last instance on
the X-axis of the figures shows the average speedup of our algorithm
over the best of the other algorithms used in the comaprison.



172 CHAPTER 7. COMPUTING METRICS ON GRAPHS

of Figure 7.12(a) shows the speedup of our algorithm over the best
of above mentioned baseline algorithms.

The absolute run time of the various algorithms considered is
shown in Table 7.4 under the column labeled ”Largest BCC”.

Graph Name Multi-core CPU GPU
OUR APGRE LIGRA OUR BM15 GUNROCK

roadNet-CA 42946 85462 171448.70 33969 55030 104237

roadNet-TX 18013 27652 68978.50 15303 25097 80520

soc-Epinions1 46.15 61.37 196.20 43.25 56.11 100.76

patents main 587 885 3181.90 416.5 755.54 578.91

coAuthorsDBLP 871 1484 4047.68 602.81 814.99 661.65

soc-Slashdot0902 97.57 132.09 395.05 90.72 153.03 154.56

caidaRouterLevel 271.63 566.5 1742.83 207.03 381.29 428.6

scircuit 310 393 1552.13 304.11 391.01 1646

soc-sign-epinions 125.12 190.93 520.11 103.65 187.14 273.14

p2p-Gnutella31 24.6 35.49 187.09 18.42 32.87 63.34

Table 7.4: This table shows absolute time in seconds of OUR algo-
rithm, labeled OUR, BM15, GUNROCK and APGRE on the largest
BCC of the graphs listed in Table 7.3. Times above a thousand sec-
onds are rounded to the nearest integer.

The throughput of an algorithm for computing the betweenness-
centrality on a graph G of n nodes and m edges is measured as n·m

t
Traversed Edges Per Second (TEPS) where t is the time taken in
seconds by the algorithm. The quantity MTEPS refers to Million
TEPS. The throughput achieved by the algorithms under study is
shown in Figure 7.13(a) for multi-core CPUs and Figure 7.13(b) for
GPU based implementations. As can be seen from Figure 7.13, our
algorithm achieves a higher MTEPS compared to the existing algo-
rithms both on multi-core CPUs and GPUs.
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Performance on Synthetic Datasets

To understand how the number of nodes eliminated in the prepro-
cessing step of Algorithm 18 can impact the speedup achieved, we
construct a synthetic graph of n nodes with average degree d as fol-
lows. A cycle graph on n nodes ensures that the graph will have only
one biconnected component. On this cycle graph, we mark a t% of
nodes as nodes that will have a degree of two. The degree of the rest
of the unmarked nodes is increased by adding edges to pairs of nodes
chosen uniformly at random. We ensure that each unmarked node
has degree at least three using standard techniques from randomized
algorithm [117]. An example of the graphs generated in this fashion
is shown in Figure 7.14.

We study the results of our approach on synthetic graphs of size
ranging from 100 K nodes to 300 K nodes with an average degree
of 20 to 30. We vary the percentage of nodes that can be removed
from the reduction step from 10% to 50%. We study the speedup of
Algorithm 18 with respect to that of Bader and Mc. Laughlin [112].
As shown in Figure 7.15, for a fixed n, as the percentage of nodes
of degree two increases, the speedup achieved by our algorithm also
increases.

7.4.6 Extending our Approach to General Graphs

So far, we have assumed that our input graph is biconnected. In
general, however, most real-world graphs are not biconnected. In
this section, we briefly show how to extend our techniques to non-
biconnected graphs. We start by reviewing the BADIOS framework
of Sariyuce et al. [134] and the APGRE framework of Wang et al. [155]
that we use in our solution.

The BADIOS and the APGRE Framework

The main idea of the BADIOS framework [134], called as APGRE
framework in [155], is to decompose a graph G into its biconnected
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Figure 7.13: Comparing the MTEPS achieved by Algorithm 18 on
the largest BCC of the graphs listed in Table 7.3 with respect to that
of APGRE [155] and LIGRA [141] on multi-core CPUs (Figure (a),
and with respect to BM15 [112], and GUNROCK [156] on a GPU.
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components (BCCs) and use Brandes algorithm [26] on the individual
biconnected components.

In the algorithm of Sariyuce et al. [134], each BCC has a copy
of the articulation point, called as an alias node, which connects it
to other neighbouring BCC’s in the original graph G. A reachability
metric is defined for alias nodes as follows. Consider the ith BCC
Gi = (Vi, Ei) of G let v′ ∈ Vi be an alias node. Consider any node
u ∈ Vi that is different from v′. The reachability metric for v′, denoted
reach(v′), is set to the number of nodes x ∈ V \ Vi such that the
path between u and x passes through v′. (Note that the choice of
u is immaterial in the above.) Reach values for every alias node is
computed by a leaf-to-root traversal of the block tree T as described
by Puzis et al. [125]. The reachability metric is useful in extending
the betweenness-centrality values computed on the BCCs of G to the
entire graph.

Our Algorithm for General Graphs

To use the framework of BADIOS [134] or APGRE [155], we start
by decomposing the input graph G into its biconnected components,
G1, G2, · · · ,. Since each of these components, Gi, i ≥ 1, are bicon-
nected, they possess an ear decomposition. So, each Gi can be taken
as input to Algorithm 18 to compute the betweenness-centrality val-
ues of nodes in Gi. At this point, once we have the reachability values
for alias nodes as is done in [134, 155], it will be possible to extend
the betweenness-centrality values of nodes with respect to each Gi to
the entire G. A brief pseudocode is presented in Algorithm 19.

As can be seen, Algorithm 19 has a two stage preprocessing and
a two stage post-processing. The first stage of preprocessing decom-
poses G into its biconnected components, and the the second stage
applies ear decomposition on each component. In the processing step,
betweenness-centrality values with respect to each biconnected com-
ponent is computed similar to the processing phase of Algorithm 18.
Finally, we have two post-processing steps: first that is similar to the
post-processing phase of Algorithm 18, and the second one similar to
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Algorithm 19 Algorithm Betweenness Centrality(G)

1: /* Phase I : Preprocessing */
2: Gi = BCC((G)) /* Stage 1 */
3: Gr

i = Reduce(Gi) /*Stage 2 */
4: /* Phase II : Processing */
5: for each i do in parallel do
6: for each v in Gr do in parallel do
7: (Sv, Dv, σv) = FwdStage(v, G)
8: Accumulate PartialBC(Sv, Dv, σv)
9: end for

10: end for
11: /* Phase III : Post Processing */
12: /* Stage 1 */
13: for each i do in parallel do
14: for each v ∈ Gi \Gr

i do in parallel do
15: lx ← Left(v) , rx ← Right(v)
16: (Sv, Dv, σv) = Sim FwdStage(v, lx, rx)
17: Sim Accumulation(v, lx, rx, Sv, Dv, σv)
18: Update the BC values to the nodes in Gr

19: end for
20: end for
21: /* Stage 2 */
22: for each v ∈ Gi do in parallel do
23: if v = art vertex then
24: bc[v] = bc[v] + reachval[v] · (ni − 1)
25: Update the BC values to the nodes in Gi

26: end if
27: end for
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that of the corresponding step in [134,155].

Results

We reconsider the graphs listed in Table 7.3 and apply our approach
to compute betweenness-centrality. We use the experimental platform
mentioned in Section 7.2.4. For performance comparison, we consider
the algorithms listed in Section 7.4.5.

Figure 7.16(a) shows the time taken by our algorithm and the
other algorithms on multi-core CPUS for the graphs listed in Table
7.3. Figure 7.16(a) shows the time taken by our algorithm and the
other algorithms on GPUS for the graphs listed in Table 7.3. The
numbers in Figure 7.16 show the speedup achieved by our algorithm
compared to the best of the other two algorithms. The throughput
of our algorithm as MTEPS is shown in Figure 7.17(a) and (b) along
with the throughput achieved by the other algorithms on multi-core
CPUs and GPUs respectively.

The absolute runtime is shown in Table 7.5 under the column
labled ”Entire Graph”. The speedup achieved in the case of the entire
graph is higher than the speedup achieved on the largest biconnected
component of the corresponding graph as can be seen from Figures
7.16(a) and 7.12(a). The reason for this is that when using the algo-
rithms from [112, 156], every BFS has to run on the entire graph. In
our algorithm, and also that of [155], each BFS runs only local to a
biconnected component.

7.5 Conclusions

In this chapter, we studied three different problems: Fisrt, we pro-
posed the STIC-D framework to optimize the time taken to compute
pagerank in graphs. The techniques in the framework proposed are
based on exploiting the structures found in real-world graphs and are
useful in reducing the pagerank computation time.

Finally, we used the ear decomposition of a graph and its ap-
plication to finding the betweenness-centrality of nodes in a graph.



7.5. CONCLUSIONS 179

4
6
8

10
12
14
16
18
20

ro
ad

N
et

-C
A

ro
ad

N
et

-T
X

so
c-

E
pi

ni
on

s1

pa
te

nt
s-

m
ai

n

so
c-

S
la

sh
do

t0
90

2

co
A

ut
ho

rs
D

B
LP

ca
id

R
ou

te
rL

ev
el

sc
irc

ui
t

so
c-

si
gn

-e
pi

ni
on

s

P
2p

-G
nu

te
lla

31

A
ve

ra
ge

 1

 1.5

 2

 2.5

 3
lo

g 2
T

im
e 

(s
)

S
pe

ed
up

 (
B

es
t/O

U
R

)

Graph Instance

2.04
1.79

1.74

1.25

1.56

1.95 2.1 1.52
1.76

1.78

1.75

LIGRA APGRE OUR

4
6
8

10
12
14
16
18
20

ro
ad

N
et

-C
A

ro
ad

N
et

-T
X

so
c-

E
pi

ni
on

s1

pa
te

nt
s-

m
ai

n

so
c-

S
la

sh
do

t0
90

2

co
A

ut
ho

rs
D

B
LP

ca
id

R
ou

te
rL

ev
el

sc
irc

ui
t

so
c-

si
gn

-e
pi

ni
on

s

P
2p

-G
nu

te
lla

31

A
ve

ra
ge

 1

 1.5

 2

 2.5

 3

lo
g 2

T
im

e 
(s

)

S
pe

ed
up

 (
B

es
t/O

U
R

)

Graph Instance

1.81 1.81

1.92
1.28

2.09

2.02
2.3

1.5
2.09

2.3

1.9

OUR BM15 GUNROCK

Figure 7.16: Comparing the overall performance improvement of Al-
gorithm 19 on the entire graphs listed in Table 7.3. Figure (a) com-
pares our algorithm with respect to [155] and [141] on multicore CPUs.
Figure (b) compares our algorithhm with respect to BM15 [112] and
GUNROCK [156] on a GPU. The last instance on the X-axis of the
figures shows the average speedup of our algorithm over the best of
the other algorithms used in the comaprison.
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Figure 7.17: Comparing the MTEPS achieved by Algorithm 19 on
the graphs listed in Table 7.3 with respect to that of APGRE [155]
and LIGRA [141] on multi-core CPUs (Figure (a), and with respect
to BM15 [112], and GUNROCK [156] on a GPU.
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Graph name Multi-core CPU GPU
OUR APGRE LIGRA OUR BM15 GUNROCK

roadNet-CA 47655.886 97085 198442.29 37112 67247 132243

roadNet-TX 19208.212 34447 85925.29 16035 28965 111214

soc-Epinions1 48.731 85 306.08 44.17 114.36 266.56

patents main 905.738 1133 5564.65 888.6 1602 1267

coAuthorsDBLP 889.741 1734 6041.15 615.81 1237 1215

soc-Slashdot0902 103.658 161.21 345.11 98.24 211.37 251.1

caidaRouterLevel 313.188 658.56 2050.60 286.94 725.84 854.54

scircuit 315.372 480.86 2411.06 307.24 460.11 2173

soc-sign-epinions 130.694 229.55 938.60 109.97 381.63 686.42

p2p-Gnutella31 27.925 49.76 233.65 21.62 84.11 228.42

Table 7.5: This table shows absolute time of OUR algorithm, labeled
OUR, BM15, GUNROCK and APGRE on the entire graph. Times
above a thousand seconds are rounded to the nearest integer.

Our results indicate that for problems such as betweenness-centrality,
using an ear decomposition is effective and practical.

We believe that our technique is of independent interest and can
be applied to other graph problems.
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Chapter 8

Enumerative Algorithms
on Graphs

There has been a huge interest in graph enumeration problems such
as listing cliuqes, listing triangles,...

183
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Chapter 9

Conclusions

We now conclude.

185



186 CHAPTER 9. CONCLUSIONS



Bibliography

[1] Cuda c programming guide. http://docs.nvidia.com/cuda/

cuda-c-programming-guide. Accessed: 2016-03-19.

[2] Intel math kernel library. https://software.intel.com/

en-us/intel-mkl. Accessed: 2016-03-19.

[3] stanford network analysis platform dataset. http://www.cise.
u.edu/research/sparse/matrices/{snap}.

[4] the university of florida sparse matrix collection.
http://www.cise.ufl.edu/research/sparse/matrices/.

[5] Sas(r) optgraph, http : / / support, note =
sas.com/documentation/cdl/en/procgralg/68145/PDF/default/procgralg.pdf.
1992.

[6] Thrust c. 1992. ++ library, https://developer.nvidia.com/
thrust.
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