
Applications of Ear Decomposition to Efficient

Heterogeneous Algorithms for Shortest Path/Cycle

Problems
Debarshi Dutta, Meher Chaitanya1, Kishore Kothapalli

International Institute of Information Technology, Hyderabad, India 500 032

Email: {debarshi.dutta@research.,meher.c@research.,kkishore@}iiit.ac.in
Debajyoti Bera

Indraprastha Institute of Information Technology, New Delhi, India 110 020

Email: dbera@iiitd.ac.in

Abstract— Graph algorithms play an important role in several
fields of sciences and engineering. Prominent among them are
the All-Pairs-Shortest-Paths (APSP) and related problems. Indeed
there are several efficient implementations for such problems on
a variety of modern multi- and many-core architectures.

It can be noticed that for several graph problems, parallelism
offers only a limited success as current parallel architectures have
severe short-comings when deployed for most graph algorithms.
At the same time, some of these graphs exhibit clear structural
properties due to their sparsity. This calls for particular solution
strategies aimed at scalable processing of large, sparse graphs
on modern parallel architectures.

In this paper, we study the applicability of an ear de-
composition of graphs to problems such as all-pairs-shortest-
paths and minimum cost cycle basis. Through experimentation,
we show that the resulting solutions are scalable in terms of
both memory usage and also their speedup over best known
current implementations. We believe that our techniques have
the potential to be relevant for designing scalable solutions for
other computations on large sparse graphs.

I. INTRODUCTION

Graphs are of fundamental importance to several disciplines

in sciences and engineering with applications to biological

and social phenomenon. As graphs corresponding to real-

world and practical applications have a massive size, parallel

processing is often necessary. It is therefore natural that a lot

of current research is directed towards efficient algorithmics

on a variety of modern and emerging multi- and many-core

architectures [4], [26], [6], [32].

On the other hand, it is observed by several authors that

the characteristics of most modern architectures are not well-

suited for efficient execution of graph algorithms. The highly

irregular nature of memory accesses of graph algorithms

induces a heavy burden on the I/O system of modern ar-

chitectures. Recent work on parallel algorithmics for efficient

graph problems is aimed at addressing this issue via novel data

structures and memory layout optimizations [7], [13].

As the sizes of the graphs of interest are large, there is a

renewed necessity to look for novel algorithmic enhancements

1Part of the work was done while the author was at International Institiute
of Information Technology, Hyderabad, India.

also. An approach to address this problem is to understand the

structural properties of graphs and redesign algorithms that can

better exploit such structural properties for gains in efficiency.

Examples of this approach can be seen in works of Cong and

Bader [2] for identifying the biconnected components of a

graph. Banerjee et al. [4] for graph algorithms such as BFS,

connected components, and APSP, and Hong et al. [17] that

identifies the strongly connected components of a directed

graph.

In this direction, in this paper we start with the problem

of computing shortest paths between all pairs of nodes in a

weighted graph, denoted APSP. In our algorithms presented

in this paper, we utilize the ear decomposition of a graph to

compute shortest paths. We show that using ear decomposition

can help obtain significant improvements on APSP apart from

making the algorithms scalable. Along the way, we introduce

novel and non-trivial pre- and post-processing steps that are

crucial in obtaining the algorithm design. In a recent work, we

have used the ear decomposition of a graph to obtain efficient

parallel algorithms for computing the betweenness-centrality

values at each node of a graph [30].

As an application of the APSP problem, we also study the

problem of obtaining a minimum weight cycle basis of a graph,

denoted MCB. The MCB problem on a weighted graph is to

find a set of cycles of the least total weight such that every

other cycle can be represented as a linear combination of the

basis cycles. The MCB problem has applications to problems

such as three dimensional surface reconstruction from a point

cloud [15] and as a preprocessing step in electric networks

[11] and chemistry and biochemistry [14].

Our work in this paper can be summarized below. It is well

known (cf. [31]) that a graph has an ear decomposition if and

only if the graph is biconnected. The decomposition of such

a graph into its ears allows us to systematically remove the

nodes of degree two and focus on nodes of degree greater

than two. Such a decomposition is helpful in the context of

parallel graph algorithms to increase the available parallelism

in the computation and decrease the work required. In a post-

processing step, we mimic the computation corresponding to

the removed nodes using the computation done at nodes with

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-0-7695-6149-3/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.78

864

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5386-3408-0/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.78

864

degree greater than two. The exact pre- and post-processing

steps and the computation depend on the problem at hand.

Our main technical contributions of this work are summa-

rized below.

• We arrive at appropriate pre- and post-processing routines

that help us solve graph problems such as APSP (Section

II) and MCB (Section III) efficiently.

• We implement our algorithms on a heterogeneous plat-

form consisting of an Intel i5 E2650 multicore CPU and

an NVidia Tesla K40c GPU. For our implementation

to be efficient, we introduce dynamic work balancing

techniques via a work queue.

• We analyse the benefits of our approach by conducting

a wide variety of experiments on real-world graphs of

size ranging from 10 K nodes to 130 K nodes. Our

approach results in an 1.7x improvement on average over

the corresponding best known implementation of APSP

on real-world graphs.

A. Related Work

Graph algorithms on a variety of emerging architectures

have been studied in several recent works. We focus only on

those that are directly relevant to our paper.

a) APSP: Parallel implementations for the APSP prob-

lem have been a topic of immense research interest over the

decades on a variety of architectures. One of the earliest

works on parallel shortest path problem was proposed by

Micikevicius et al. in [29] that was subsequently improved

by Harish and Narayanan [16]. The algorithm of Floyd and

Warshall (cf. [9]) has been the choice of several parallel

implementation as the algorithm allows one to study cache

blocking techniques. Examples of this approach can be seen

in Buluc et al. [6], Matsumoto et al. [26] and Katz et al. [23].

The above works report results on a variety of CPU and GPU

architectures.

Recent GPU algorithms for the APSP problem are reported

in Banerjee et al. [4] and Djidjev et al. [12]. Djidjev et al. [12]

use graph decomposition via Parmetis [22], compute shortest

paths within the partitions and extend the same to paths across

partitions. They work mostly with planar graphs to ensure a

good partition. Banerjee et al. [4] use a decomposition based

on biconnected components to compute shortest paths in a

large sparse graph.

A decomposition technique called the hammocks-on-ears

decomposition has been proposed by Kavvadias et al. [25]

along with a PRAM algorithm for obtaining such a decompo-

sition. The hammocks they propose have stronger properties

than an ear decomposition. But, the parallel computation of

such a decomposition and the post-processing can turn out to

be more time consuming in practice.

b) Minimum Cycle Basis: There are several known al-

gorithms for computing the MCB in an weighted undirected

graph. The first polynomial algorithm was suggested by Hor-

ton [18]. Horton [18] computes an MCB in time O(m3n). De

Pina [11] gave an O(m3+mn2) approach by using a different

method. Recent contributions by Telikepalli et al. [24] have

brought down the complexity to O(m2n+mn2 logn) by using

a fast matrix multiplication based approach. Mehlhorn et al.

[27] further describes a O(m2n/ logn + n2m) algorithm for

undirected weighted graphs and also provided for a simpler

way to obtain the shortest cycle in each phase. Amaldi et al.

[1] characterizes the Horton cycles to obtain a restricted set of

cycles known as the isometric cycles and provides an improved

O(mw) Monte Carlo algorithm.

II. OUR APPROACH FOR APSP

We start with graphs that are biconnected (Section II-A)

and extend our approach to graphs that are not biconnected in

Section II-B.

A. APSP for Biconnected Graphs

We now present our algorithm for APSP on biconnected

graphs using the technique of ear decomposition. Algorithm

1 describes a brief pseudocode of our three phase algorithm

followed by the details of each phase. The label {cpu,gpu}
in Algorithm 1 is used to indicate that the corresponding task

is computed in a heterogeneous manner on both the GPU and

CPU. The labels {cpu} (resp. {gpu}) are used to indicate

tasks that are executed solely on the CPU (GPU).

Algorithm 1 APSP(G)

1: /* Phase I: Preprocessing */

2: {gpu}: Gr = Reduce(G)
3: /* Phase II: Processing */

4: {cpu,gpu}:
5: for each s ∈ V (Gr) do

6: DIJKSTRA(Gr, s) /* Find shortest paths from s */

7: end for

8: /* Phase III: Post-processing */

9: {cpu,gpu}:
10: for each s ∈ G \Gr in parallel do

11: UPDATE DISTANCE(s).

12: end for

1) Preprocessing: Let G be a sparse and biconnected

graph. It is known that a biconnected graph possesses an ear

decomposition. An ear decomposition of a graph G = (V,E)
is a partitioning of the edges of G into simple paths (ears)

P0, P1, · · · , as follows (see also [31]).

• P0 is an edge uv,

• P0 ∪ P1 is a simple cycle, and

• The end points of path Pi, for i ≥ 2, are on the

paths P0, P1, · · · , Pi−1, and path Pi has no other nodes

common with the nodes on the paths ∪i−1

j=0
Pj .

In such a decomposition, nodes of degree two, except

possibly those on ear P0, appear on exactly one ear. We show

that such nodes of degree two can be removed from G. We

call the resulting graph of G as the reduced graph Gr. One can

formalize the notion of the reduced graph Gr = (V r, Er,W r)
as follows. The nodes of Gr are the nodes of G that have a

degree at least three. Two nodes v and w in Gr are neighbors

if and only if v and w belong to a common ear P of G and

have no nodes of degree three or more in between them on the

865865

x

a c

yx y

l

r

l l

r r

l

r

x

x
y

y

x

x y

y

QP

b d

Fig. 1. The shortest path between nodes x and y has to use one of �x
or rx to leave the ear P = (a · · · �x · · ·x · · ·x · · · rx · · · b) and one of �y
or ry to enter the ear Q = (c · · · �y · · · y · · · ry · · · d). If the four pairwise
shortest paths between �x, rx, and �y , ry are given, marked with double lines
in the figure on the right, the shortest path from x and y can be obtained as
the shortest among the four possible paths. In the figure on the left, nodes
completely filled appear in the reduced graph and shaded nodes are removed
in Stage II of preprocessing.

ear P . The weight of an edge vw in Gr set as the sum of the

weights of the edges vx1, x1x2, · · · , xiw in G such that nodes

x1, x2, · · · , xi are consecutive vertices on P with degree two

in G and are in between v and w on the ear P in G. For a

node xi, i > 1, of degree two on ear P = (x1x2 · · ·xk) in G,

we define functions left and right of xi in Gr, denoted left(xi)
and right(xi), as the nodes of degree at least three on P that

are closest to xi towards x1 and xk respectively. For instance,

in the above example with v, x1, x1, x2, · · · , xi, w being on the

same ear in that order with v and w having degree more than 2

and the xis having degree of 2, left(x) = v and right(x) = w.

Notice that during the construction of the reduced graph,

there could be multiple edges between nodes in the reduced

graph. In this case, since we are interested in shortest paths,

we retain the edge with the shortest weight and discard the

remaining edges.

2) Phase II: Processing: In this phase, we find the shortest

paths between all pairs of nodes in the reduced graph Gr. From

each node v in Gr, we essentially run the algorithm of Dijkstra

[9] that finds the shortest paths from v to all other nodes t in

Gr. In short, we obtain all the shortest path values Sr[s, t] |
∀{s, t} ∈ Gr We use the GPU implementation of Dijkstra’s

algorithm due to Harish et al. [16]. On CPU, we run multiple

instances of Dijkstra’s algorithm from different vertices of Gr.

Each instance of Dijkstra’s algorithm is run on an individual

thread. The algorithm of Dijkstra is preferred over other

shortest path algorithms for reasons including the ability to

run each instance of Dijkstra’s algorithm independently by a

thread and the work involved in Dijkstra’s algorithm depends

linearly on the number of edges in the graph.

3) Post-processing: In this phase, we use the shortest paths

in Gr to compute the shortest paths across all pairs of nodes

in G. Consider the shortest paths originating from a node x in

G\Gr with left(x) = �x and right(x) = rx (refer to Figure 1).

For paths from x that end at nodes y with left(x) = left(y)
and right(x) = right(y), the shortest xy path is either the

unique xy-path along P that does not use �x and rx, or the

path x− �x − rx − y. Paths from x that end at nodes y such

that x and y have different left and/or right nodes, have to

necessarily go via �x or rx.

Let S[s, t] store the weight of the shortest path between s
and t in G. Clearly, for all u, v ∈ V r, S[u, v] = Sr[u, v] since

the reduced graph preserves shortest-path distances between

vertices of degree at least 3. To compute shortest path S[x, v]
between any v ∈ V r and any x ∈ V \ V r, consider the ear

P on which x lies and let left(x) = �x and right(x) = rx (v
may coincide with �x or rx). We can compute

S[x, v] = min
{
Sr[�x, v] + wt(x, �x), S

r[rx, v] + wt(x, rx)
}

Now we consider the most general case of computing

S[x, y] for nodes x, y ∈ V \ V r. For this case, let �x, rx and

�y, ry be the left and right nodes of x and y respectively (�x
may coincide with �y or ry , and similar reasoning applies to

rx). Using the same idea as above, we can compute

S[x, y] = min

⎧⎪⎪⎨
⎪⎪⎩

wt(x, �x) + Sr[�x, �y] + wt(�y, y),
wt(x, �x) + Sr[�x, ry] + wt(ry, y),
wt(x, rx) + Sr[rx, �y] + wt(�y, y),
wt(x, rx) + Sr[rx, ry] + wt(ry, y)

⎫⎪⎪⎬
⎪⎪⎭

The call to UPDATE DISTANCE(s) in this phase essen-

tially computes S[s, t] for all t ∈ G by using the appropriate

formula described above.

B. Extension to General Graphs

As we are interested in large sparse graphs, it is very likely

that our graphs are not 2-connected or even 2-edge-connected.

Quite contrary, large sparse graphs arising out of real-world

phenomena tend to have several 2-connected components of

varying sizes. In such a scenario, such graphs do not have a ear

decomposition as being 2-edge-connected is a necessary (and

sufficient) condition for having an ear decomposition [31].

To make use of Algorithm 1, in a preprocessing step

we start by partitioning G into its biconnected components

G1, G2, · · · each of which is 2-connected. We now obtain an

ear decomposition of G1, G2, · · · , and obtain their respective

reduced graphs Gr
1, G

r
2, · · · ,. Let Ar

1, A
r
2, · · · , denote the set

of articulation points (APs) in Gr
1, G

r
2, · · · , respectively. We

let a = | ∪i A
r
i |. The quantity a denotes the number of

articulation points in G.

In the processing step, we now find the shortest paths

between pairs of nodes in each Gr
i individually, and in parallel.

We store the computed results in a table Ai that stores the

shortest distance between pairs of nodes in Gi.

Our post-processing is now spread across two stages. In

Stage 1, for each i = 1, 2, · · · we extend the shortest paths

between pairs of nodes in the ear graph Gr
i to shortest path

between pairs of nodes in Gi. This is done as described in

Section II-A. These results are also stored in tables Ai for

i = 1, 2, · · · . To compute shortest paths across pairs of nodes

in different biconnected components we proceed as follows.

In Stage 2 of post-processing, we use the notion of the

block-cut tree of a graph as described in [4]. The block-cut tree

B of a graph G has nodes corresponding to the biconnected

components of G. An edge exists between two nodes v and w
in B if the corresponding biconnected components in G share

an articulation point. We use the block-cut tree to find the

shortest distance from each articulation point to every other

articulation point in G. These results are stored in a table A

866866

of size a × a. We use A to compute distance between nodes

of different biconnected components, Gi and Gj .

For nodes n1 ∈ Gi and n2 ∈ Gj | i �= j, d(n1, n2) =
min(d(n1, a1) + d(a1, a2) + d(a2, n2)) where a1 and a2 are

the AP’s corresponding to Gi and Gj which are on the path

from Gi and Gj .

C. Implementation Details

In our heterogeneous implementation of the processing

and the post-processing step, we notice that work balancing

is needed between the CPU and the GPU. Since a static

approach for work balancing can fall short of the desired

work balance, we use our custom work queue (from [19]). The

workunits correspond to the processing (resp. post-processing)

with respect to each biconnected component of the graph. For

reasons of efficiency, the work units are sorted according to

the size of the biconnected component and arranged in sorted

order so that the GPU starts accessing the bigger workunits. If

the graph is already biconnected and we are using Algorithm 1,

then the workunits can correspond to the processing required

with respect to a vertex. As is done in [19], the CPU and the

GPU access workunits from the queue from either end points,

and also in proportion to the number of threads supported on

the CPU and the GPU.

Since the matrix A is needed by both the CPU and the

GPU in the post-processing step, the matrix A is kept in the

memory of both the CPU and the GPU. This forces us to limit

our experiments to fit the available space on the GPU. One

advantage of our method is that the space used to store all the

shortest path values is in O(a2 +
∑

i n
2
i) where ni refers to

the number of nodes in Gi. In most sparse graphs, the above

quantity is usually much smaller than O(n2) that is required

to store the shortest path values.

D. Results and Analysis

In this section, we show experimental results of our algo-

rithm and also compare the results with related approaches. We

start by describing our experimental platform and the datasets

used.

1) Our Experimental Platform: Our experiments are con-

ducted on a multicore CPU and an NVidia GPU. We use the

Intel E5-2650 CPU for our experiments on a multicore CPU.

The E5-2650 is a dual processor with each processor having 10

cores. With hyper-threading each core can support two logical

threads. The cores operate at a frequency of 2.3 GHz that can

be boosted up to 3 GHz using the turbo boost technology. The

E5-2650 has 128 GB RAM and a memory bandwidth of 68

GB/s. In addition, the memory hierarchy includes a 64 KB L1

cache per core, a 256 KB L2 cache per core, and a shared 25

MB L3 cache.

The NVidia Tesla K40c GPU houses 2880 cores over

15 SMs, with each core clocked at 745 MHz, providing

a peak double precision floating point performance of 1.43

TFLOPS and single precision floating point performance of

4.29 TFLOPS. The K40c GPU has an on board GDDR5 RAM

of 12 GB that is served by a 288 GB/sec channel. Each SM

also has a 64 KB configurable cache to exploit data locality.

TABLE I

LIST OF SPARSE GRAPHS THAT WE USE IN OUR EXPERIMENTS. IN THE

COLUMN LABELED ”LARGEST BCC (%)”, WE SHOW THE NUMBER OF

EDGES IN THE LARGEST BCC OF THE GRAPH AS A PERCENTAGE OF THE

NUMBER OF EDGES IN THE GRAPH. THE COLUMN LABELED ”NODES

REMOVED (%)” SHOWS THE PERCENTAGE OF THE NODES REMOVED BY

OUR ALGORITHM DURING THE PREPROCESSING STEP.

Graph |V |E| #BCCs Largest Nodes
BCC (%) Removed
(% |E|) (% |V |)

Graphs taken from [10]

nopoly 10K 30K 1 100 0.018

OPF 3754 15K 86K 1 100 1.98

ca-AstroPh 18K 198K 647 98.43 15.85

as-22july06 22K 48K 13 99.9 77.60

c-50 22K 90K 1 100 52.04

cond mat 2003 31K 120K 2157 80.52 26.88

delaunay n15 32K 98K 1 100 0

Rajat26 51K 247K 5053 95.17 32.92

Wordnet3 82K 132K 156 98.92 77.24

soc-sign-epinions 131K 841K 609 99.7 67.86

Graphs generated using the OGDF framework [8]

Planar 1 19K 54K 46 99.55 12.42

Planar 2 25K 64K 164 93.65 5.63

Planar 3 30K 70K 298 96.53 19.72

Planar 4 36K 94K 175 98.37 18.56

Planar 5 41K 128K 223 95.63 16.34

2) Datasets: We experiment on two datasets: general

graphs and planar graphs. General graphs for our experiment

are taken from the dataset of sparse graphs from the University

of Florida Sparse Matrix Collection [10]. These graph come

from domains such as geometric, social networks, collabo-

ration, and peer-to-peer networks. The planar graphs shown

in Table I were generated using the OGDF framework [8]

using methods that generate connected graphs. Some of the

characteristics of the graphs considered are listed in Table I.

It can be observed that our dataset has a good diversity. The

size of the graphs ranges from 10 K to 130 K, and the number

of nodes of degree two range between 0% to 60%. Further, the

size of the largest BCC as a percentage of edges also varies

between 80% to 98%.

3) Results: We now compare the results of our algorithm

labeled as Our Approach with two related approaches: the

approach of Djidjev et al. [12] that works for planar graphs,

and the approach of Banerjee et al. [4] that works for general

graphs. We start by briefly describing these approaches.

a) Comparison with Djidjev et al. [12] for planar

graphs: The algorithm of Djidjev et al. [12] works as fol-

lows. As part of their approach, Djidjev et al. [12] starts by

partitioning the input graph into k parts using the METIS

decomposition [21]. The partitioning is used to define a

boundary graph that contains nodes of the input graph that

are the end points of edges that go across partitions. Once

the shortest paths in each partition are obtained, the boundary

graph is augmented with edges uv such that u and v are in the

same partition and the weight of the edge uv is set to be the

shortest distance between u and v as computed in the previous

step. The shortest paths in the boundary graph are computed

in a recursive fashion followed by the shortest paths in each

partition. For further details we reader can refer to [12].

867867

������

����

�

�

��

��

���

����

	

�

�

��
��
��
��

��
��
���

�
�

��
��
���

�
�
�

��
��

�

	�
��
��
��
��
�

�
���

	�

�
	�
�

!�
���
��

"

�
�	
 �
�

#

��
�$%

	�
 �
$	$

	
�

�&
%

��
�	
��
��

��
�	
��
��

��
�	
��
��

��
�	
��
��

��
�	
��
�� �&
%

�

�

�

�

�

�
'$
�
 (
�
�)

#�

��
�

���*����
���+�, #� ���
+��,

Fig. 2. Figure displays the absolute time taken by our approach, labeled ”Our
Approach” compared to [4] for general graphs and [12] for planar graphs.

It is worthwhile to note that while the algorithm presented

by Djidjev et al. [12] works for any general graph, the

approach is efficient for particular classes of graphs, including

planar graphs with the property that the number of vertices in

the boundary graph is guaranteed to be small. For this reason,

their experimental results are shown only for planar graphs.

The speedup achieved by our implementation on planar

graphs compared to Djidjev et al. [12] approach is shown in the

Figure 2. It contains the overall timings for our implementation

along with Djidjev’s for planar graphs on the Y1-axis on

the right. The Y2-axis denotes the speedup achieved by our

algorithm. An average speedup of 2.2x achieved is mentioned

in the right most column of the Figure. As most planar

graphs contain a good percentage of degree-2 vertices, we

conclude that our approach for real world planar graphs is

more beneficial compared to [12].

b) Comparison with Banerjee et al. [4]: The algorithm

provided by Banerjee et al. [4] works by decomposing the

graph as follows. Given an input graph G, it constructs a block-

cut tree for G. It then computes the shortest paths within each

biconnected component and later extends the computation of

shortest paths across the blocks. The algorithm also optimizes

the run time by removing the iterative pendants vertices. That

is, it initially removes vertices of degree-1 from the graph.

It then checks if the degree of any vertices adjacent to the

vertices removed in the first iteration, degenerates to 1. This

method, though reduces the computation time compared to

other existing algorithms for real world sparse graphs, it does

not effectively benefit from the degree-2 vertices present in

the graph. Also this model requires more storage compared

to our approach. For further details interested reader can refer

to [4]. To illustrate our algorithm’s computational efficiency

we compare our results with Banerjee et al. [4] for general

graphs.

Figure 2 shows the relative improvement of our approach

compared to Banerjee et al. [4] implementation for general

graphs. The plot contains the overall timings for both the

implementations on the Y1-axis on the left. The timings dis-

played on the Y1-axis are on a logarithmic scale. The Y2-axis

�

��

��

���

����

����

�����

�����

�	

	
��

�
��
��
��

��
��
���
	�
�

��
��
���
���

�

��
��

�	
��
��
��
��
��
�

��
���
��
��
��
�

��
���
��

	�
��
��
�

!	
��
�"#
��
�

"�"
	�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

$
%&
�!

��*�

�	��� +�, +��,

Fig. 3. MTEPS achieved by our algorithm, labeled ”Our Approach” and that
of [4] for general graphs and [12] for planar graphs.

denotes the speedup achieved by our algorithm with respect

to that Banerjee et al. [4]. The average speedup achieved is

1.7x.

Another way to study the scalability of parallel graph

algorithms is to use the metric MTEPS standing for Million

Traversed Edges Per Second. This metric is computed as the

ratio of the product of the number of edges and number of

vertices over the time taken in seconds. A higher MTEPS

indicates a more scalable algorithm. Figure 3 provides the

MTEPS achieved by the approaches of Djidjev et al. [12]

and Banerjee et al. [4] on planar and non-planar graphs

respectively in comparison to our approach. We finally note

that we are limited in this comparison by the space available on

the GPU although our approach needs lesser space compared

to that of both [12], [4].

III. MINIMUM WEIGHTED CYCLE BASIS (MCB)

A cycle in an undirected graph is a subgraph where every

vertex has a degree of two. A cycle can be represented by

its incidence vector on E(G). These vectors are known to

belong to a space of dimension m − n + k if there are k
connected components in the graph. A maximal set of linearly

independent incidence vectors of cycles is known as a cycle

basis of the graph. In a graph G with a weight function W :
E → R+, the weight of a cycle is the sum of weights of

edges present in the cycle. The weight of a cycle basis is the

sum of weights of all the cycles in the basis. We consider the

problem of finding a cycle basis of minimum total weight,

denoted MCB, in a weighted graph.

A. Sequential Algorithms

We will now summarize the deterministic sequential al-

gorithms from [1], [11], [18], [27] for obtaining an MCB.

Horton [18] provided the first polynomial time algorithm

for computing an MCB. Horton showed that the MCB can

be extracted from a set of restricted cycles containing the

fundamental cycles with respect to the shortest path trees from

each node as the source. Such cycles are known as Horton

868868

cycles and the set of the Horton cycles is denoted as Horton-

Set(G). Notice that there are n · (m−n+1) cycles in Horton-

Set(G).

Many recent works [1], [27] use the idea that the Horton

cycles of G with respect to a feedback vertex set of V (G)
suffices. A feedback vertex set is a set of vertices that are

present in every cycle [20]. Since obtaining a smallest FVS

is shown to be NP-Complete [20], one often uses a 2-

approximate FVS that is easy to obtain (cf. [3]).

To describe the algorithms for an MCB, we need the

following notation. For two vectors �x1 and �x2 in GF (2),
denote their inner product as 〈 �x1, �x2〉. If 〈 �x1, �x2〉 = 0, then �x1

and �x2 are said to be orthogonal to each other. Let T be any

spanning tree in the underlying unweighted graph G(V,E).
We denote the set E′ = E\T to be the set of non-tree edges.

Let the cardinality of this set be f = |E′|. Order the edges

of E′ in an arbitrary order {e1, e2, · · · , ef} and consider the

vector representation of a cycle C incident on the restricted

edge set consisting of edges in E′. Since each cycle can be

represented uniquely in this manner, we can also treat each

cycle as an incidence vector on E′. Each such vector is seen

to lie in {0, 1}f .

For these vectors, one can also associate the standard

orthonormal basis �Si for i = 1, 2, · · · , f , with �Si having 1

in the ith component and 0 in all other components. Each

such vector �Si is called as a witness. De Pina [11] shows

that given the witness vectors �Si from {0, 1}f , let �Ci be the

vector corresponding to the shortest cycle Ci in the graph G
such that 〈 �Ci, �Si〉 = 1. Then,

∑f

i=1
W (Ci) ≤MCB(G). The

algorithm from De Pina [11] therefore computes the minimum

weighted cycles to form a basis.

Algorithm 2 Obtaining Minimum Cycle Basis

1: Initialize ∀i,�Si(ei) = 1 and ∀j (j �= i) Si(ej) = 0

2: for i = 1, · · · , f do

3: find �Ci that satisfies 〈 �Ci, �Si〉= 1
4: for j = i+ 1, · · · , f do

5: if 〈 �Ci, �Sj〉= 1 /* �Sj is not orthogonal to �Ci*/ then

6: �Sj = �Sj ⊕ �Si /* Make �Sj orthogonal to �Si*/

7: end if

8: end for

9: end for

Algorithm 2 presents the generic algorithm. It has f iter-

ations (Step 2). Each iteration has two sections. In the first

section (Step 3), we search for a �Ci non-orthogonal to �Si. This

retrieves one minimum cycle of the basis. The next section

corresponding to Steps 4-6 perform an independence test that

updates the remaining witnesses to make them orthogonal

to cycles �C1, · · · , �Ci. This is done by taking the symmetric

difference between �Si and �Sj .

B. Our Approach for Parallel MCB

In this section we describe our algorithmic approach for

obtaining an MCB in parallel. To the best of our knowledge,

we provide the first parallel implementation for the MCB

problem. We use the generic algorithm (Algorithm 2) and

describe each step in detail. Our algorithmic approach has

three phases: pre-processing, processing, and post-processing.

1) Pre-Processing: We process each biconnected compo-

nent separately as there can be no cycles in an MCB that span

two different biconnected components. We begin with an ear

decomposition on the graph G to obtain a reduced graph Gr.

The following lemma shows that the MCB of Gr can be used

to obtain an MCB of G.

Lemma 3.1: Let Gr(V r, Er) be the reduced graph obtained

by an ear-decomposition on G(V,E). Let P denote all maxi-

mal degree two chains with the endpoints as non-degree two

nodes in G. Let eP be the edge in Gr that replaces the path

P ∈ P with W (eP) = W (P). Let MCB(Gr) be a cycle basis

of minimum weight on the graph Gr. Then,

1) for every cycle C ∈ Horton-Set(Gr) that contains edges

eP1
, eP2

, · · · , ePt
from P , with t ≥ 1, there exists a

cycle C ′ ∈ Horton-Set(G) such that C ′ contains all

edges in C − {eP1
, eP2

, · · · , ePt
} ∪ (∪t

i=1Pi).
2) for every cycle C ∈ Horton-Set(Gr) that does not

contain any edge eP for some P ∈ P , C ∈ Horton-

Set(G),

3) dim|MCB(G)| = dim|MCB(Gr)|, and

4) W |MCB(G)| = W |MCB(Gr)|.

Proof: For each cycle C ∈ Horton-Set(Gr), there can

be two cases, i.e. either C contains some eP1
, eP2

, · · · , ePt

from P , with t ≥ 1 or none at all. Considering the first

case, note that W |ePi
| = W |Pi|, for every i ∈ 1, · · · , t.

Hence, C is equivalent to a cycle Ck obtained as Ck =
C − {eP1

, eP2
, · · · , ePt

} ∪ (∪t
i=1Pi) and Ck can substitute C

in Horton-Set(G). Ck is guaranteed to contain every Pi in its

entirety with Pi being a degree-two chain. For the other case,

when a cycle C does not contain any eP , C is also present in

Horton-Set(G) since all edges of C are present in G as well.

This proves statements 1 and 2 of the lemma.

The dimensions of the orthonormal basis vectors are based

on the number of non-tree edges with respect to any spanning

tree. Let T be a spanning tree in G. We show that there exists

a spanning tree T r in Gr such that G and Gr have the same

number of non-tree edges. This implies that dim|MCB(G)| =
dim|MCB(Gr)|. To construct T r, we mainly focus on the

chains in P . Note that being chains of degree two nodes, each

P contains at least 2 edges. For each chain P ∈ P , there are

two cases.

1) All edges in P are in T .

2) One edge in P is a non-tree edge and the remaining are

tree edges with respect to T .

We will now study the effect of replacing the chains in

P with corresponding eP in Gr. For any chain having k
degree-two nodes, the effect of substitution is to reduce k+1
edges and add 1 edge with a net effect of reduction of k
edges. We will now substitute each Pi, for i ∈ 1, · · · , |P|,
in succession one at a time. Let us assume the initial graph

G0 = G,E0 = E, T0 = T . For each iteration of i we get

a graph Gi by replacing Pi with its corresponding ePi
. Note

that Gr = GK , Er = EK and TK obtained at the end equal

T r. For every iteration i , Pi might belong to case 1 or case

2. In case 1, the graph Gi is obtained by substituting Pi. This

869869

removes from Gi−1 all degree-two nodes present in chains

which existed entirely in Ti−1 and replacing them with a

single edge, essentially compressing Ti−1 while keeping it

connected. Thus, |Ei| = |Ei−1| − (|Vi−1| − |Vi|) as a total

of |Vi−1| − |Vi| nodes are removed from Gi−1. The number

of tree-edges in Gi is |Vi| − 1 and non-tree edges in Gi =

|Ei| − |Vi|+1 = |Ei−1| − |Vi−1|+1. This proves that chains

in case 1 do not affect the number of non-tree edges with

respect to Ti−1 going from Gi−1 to Gi.

For a Pi in case 2, lets consider the nodes in Pi as

u1, u2, · · · , uk+1, uk+2 where u1 and uk+2 are non degree-

two endpoints of Pi. Exactly one of the edges e = ujuj+1

for some j ∈ 2, · · · , k + 1 is a non-tree edge. Nodes ul for

l ∈ 2, · · · , k + 1 are removed from Gi−1. Thus, ePi
connects

u1, uk+2 as a non-tree edge in Gi. This retains the number of

non-tree edges with respect to Ti−1 from Gi−1 to Gi.

Thus, overall number of non-tree edges in GK with respect

to the Tk is equivalent to number of non-tree edges in G0

with respect to T0 and hence, number of non-tree edges in

Gr is equivalent to those in G. Since, the dimension of MCB

depends upon the number of non-tree edges in G and Gr, this

proves statement 3 of the lemma.

Since the weights of cycles in Horton-Set(G) are same

as those in Horton-Set(Gr), hence W |MCB(G)| =
W |MCB(Gr)| and this proves statement 4 of the lemma.

This ensures that cycles in MCB(G), extracted from

Horton-Set(G) are equivalent to the cycles in MCB(Gr)
extracted from the Horton-Set(Gr).

Note that the graph Gr may contain multiple edges and

self-loops. For the purpose of obtaining an MCB, we imagine

that multiple edges and self-loops appear as nontree edges of

any spanning tree of Gr. An example of the lemma and its

proof is shown in Figure 4.

Fig. 4. In the above figure, (a) is the original graph G while (b)
is the corresponding reduced graph Gr . The non-tree edges in graph
G and Gr are displayed as dashed lines. Nodes 4, 6 are degree two
vertices, that are pruned out using Ear-Decomposition. The degree-
two chains {1,6,5} and {3,4,5} in G are replaced by respective edges
{1,5} and {3,5} in Gr . (c) represent a subset of Horton-Set(G) with
node 1 as the root node. (d) represent the cycle in Gr corresponding
to (c) with its degree two chain replaced by single edges. Note that,
W (c) = W (d).

2) Processing: We divide this section in two parts, the

first part describes in detail the algorithm for computation of

the least weighted cycle satisfying the condition in Step 3 of

Algorithm 2. In the next subsection, we explain in detail about

the witness update step (Independence Test).
a) Searching for the least weighted cycle:: Step 3 of

Algorithm 2 is the most time consuming step. Let �Scurr ∈
{0, 1}f denote �Si for the ith phase. A cycle represented by
�Ci needs to be obtained such that �Ci is non-orthogonal to
�Scurr.

The algorithm needs to compute single source shortest path

trees from each node to find cycles that can be added to an

MCB. For each node present in the reduced graph, a shortest

path tree is constructed with the node as root. Horton cycles

can then be obtained by inspecting the non-tree edges present

in all such shortest path trees and stored in a list sorted by the

weight of each cycle. We next describe Mehlhorn’s approach

in brief for computing such a cycle, and skip the proof of

correctness.

• A reduced collection: Recall that the Horton cycles with

respect to an FVS Z of G is a superset of the cycles in an

MCB. Mehlhorn [27] shows that a further reduction in the

number of Horton cycles is possible. For z ∈ Z, let Tz

denote the shortest path tree rooted at z and let e = uv
be a nontree edge with respect to Tz such that z is the

least common ancestor of u and v in Tz . Consider the

cycle Cze of weight W (Cze) = dz(u) +W (uv) + dz(v)
where dz(u) denotes the distance between z and u in Tz .

The collection of such cycles, denoted A, is shown to be

a superset of the cycles in an MCB of G [27].

• Label Computation: One of the tasks in Step 3 of

Algorithm 2 is to check if a cycle is non-orthogonal to

vector �Scurr. To do this check in constant time per cycle,

we associate labels to each node u in the shortest path tree

Tz rooted at z, for every z ∈ Z. The labels are computed

as follows.

Given a tree Tz and a witness �Scurr, the tree is traversed

from root to leaves. For every node u ∈ Tz , a label

lz(u) is computed with respect to �Scurr. We maintain

an additional variable cz(u) for each u ∈ Tz . We make

two passes in the tree Tz . In the first pass for every edge,

e = uv ∈ Tz s.t. v is parent of u, we set cz(u) = 0, if

e /∈ E′, otherwise we set cz(u) = �Scurr(e). Note that

cz(z) = 0 and lz(z) = 0 for Tz . In the second pass, the

traversal updates for every edge e, lz(u) = lz(v)⊕cz(u).
The overall work done for all labels in all the |Z| trees

is O(n|Z|). This step can be computed in parallel by

allocating each thread to work on a single tree Tz . Level-

order traversals can be carried out from every z ∈ Z
in parallel. The computation is simple and only requires

linear extra storage for every traversal.

• Cycle Identification: In this step, using the labels com-

puted previously, we search for a minimum weighted

cycle in A which is non-orthogonal to �Scurr. The labels

for every tree Tz are already computed. We consider a

path from root z to a node u in Tz and form a vector

representation of this path,
−−→
pathz(u) in a restricted edge

set of E′ as defined in the basic algorithm. Edges in

the above path that belong to E′ are the components of
−−→
pathz(u). For all node u ∈ Tz , the label lz(u) represents

〈
−−→
pathz(u), �Scurr〉.

For every cycle, Cze in A, we can inspect in constant

time, whether the cycle vector �Cze is non-orthogonal to
�Scurr. Following [27], this can be done as follows. For

e = (u, v) ∈ Cze, 〈 �Cze, �Scurr〉 = (lz(u) ⊕ lz(v) ⊕ 0, if

e /∈ E′) or (lz(u) ⊕ lz(v) ⊕ �Scurr(e)), if e ∈ E′, we

stop after obtaining the first such cycle, Cze that satisfies

870870

〈�Ci, �Scurr〉 = 1 and remove it from A. There are O(mn)
such cycles, and hence it takes O(mn) work in the worst

case for every cycle. This task can be parallelized with

an early-exit terminating condition.

We execute the cycle inspection step in parallel for an

initial set of cycles and store the index. We do a reduction

to find the minimum such index and if no such cycle has

been found, we proceed to the next set of the cycles. We

stop when an index is present in any iteration.

b) Witness Update: We update each witness �Sj , where

〈�Sj , �Ci〉 = 0. Witnesses are updated to make them orthogonal

to each �Ck, for k ∈ 1, · · · , i. This is done by �Si ⊕ �Sj (Step

6 of Algorithm 2). We update witnesses in parallel. For each

witness �Si+1 through �Sf , each thread can carry out the steps

5 and 6 of Algorithm 2 independently.

3) Post-Processing: We refer to the lemma given in Section

3.1 to note that MCB(G) is equivalent to MCB(Gr). We

maintain an additional identifier for each eP in Gr correspond-

ing to a P ∈ P . The actual cycle with respect to MCB(Gr)
can be obtained per query basis from a cycle in MCB(Gr)
just by substituting every eP present in the cycle with its

corresponding P .

C. Implementation Details

Our heterogeneous algorithm for MCB is divided into

tasks as listed in Figure 5. Figure 5 (a) provides a timeline

displaying every task for a single instance of a graph that

reveals the inherent sequential dependencies among the tasks.

Figure 5 (b) contains the description of each task. A brief

pseudocode of our algorithm is listed in Algorithm 3. The

label {cpu,gpu} in Algorithm 3 is used to indicate that the

corresponding task is computed in a heterogeneous manner on

both the GPU and CPU. The labels {cpu} (resp. {gpu}) are

used to indicate tasks that are executed solely on the CPU

(GPU). We next describe the implementation aspects with

respect to each of the tasks in rest of the subsections.

Fig. 5. a) lists the timing diagram for every task with respect to CPU and
GPU based on the heterogeneous implementation. b) contains the Task IDs
mapped to their description.

a) Task T1: Ear-Decomposition: In this task, we first

obtain the ear decomposition of the input graph G and obtain

the corresponding reduced graph Gr. We implement this

algorithm on the GPU following the recent work from [30].

b) Task T2: FVS Computation: In this task, we obtain

a 2-approximate FVS of the vertices in Gr. This is done by

using the algorithm of Bafna et al. [3]. We use the sequential

algorithm from [3].

Algorithm 3 Hybrid MCB algorithm(G)

1: {gpu}: Gr ← ear decomposition(G) {Task T1}
2: {cpu}: Z ← FVS(Gr) {Task T2}
3: {cpu,gpu}:
4: for z = 1, · · · , |Z| in parallel do

5: Tz ← compute apsp(Gr) {Task T3}
6: end for

7: {cpu}: A ← construct cycles(Tz, G
r), ∀z ∈ |Z| {Task

T4}
8: for i ∈ 1, · · · , f do

9: {cpu,gpu}: lz(u)← label computation(Tz), ∀z ∈ |Z|,
∀u ∈ 1, · · · , n {Task T5}

10: {cpu}: �Ci ← cycle inspection(lz(u),A), ∀z ∈ |Z|,
∀u ∈ 1, · · · , n {Task T6}

11: {cpu,gpu}: independence test(�Ci). {Task T7}
12: end for

c) Task T3: APSP Computation: In this task, we need

to compute shortest paths from each z ∈ Z to all vertices in

Gr. For this, we use Algorithm 1 from Section II. The output

of this task is a collection of shortest path trees, one for each

z ∈ Z.

d) Task T4: Generating Horton Cycles A: In this task,

we generate the reduced collection of Horton cycles A in

parallel in both CPU and the GPU. For this, note that the

computation with respect to each shortest path Tz is indepen-

dent. For each node u in Tz , we first calculate a value Vz(u)
that represents the first children of root in z to u path in Tz .

Note that Vz(z) = −1. This can be done in O(n) time per

Tz . A cycle, Cze induced by an edge e = uv in Tz , would be

added in A only when LCA of u and v in Tz is z. This can

be done in constant time per thread for every e by checking

whether Vz(u) �= Vz(v) which indicates that z is the LCA of

u, v.

e) Task T5: Label Computation: The computation in this

task is done with respect to the shortest path tree for each

z ∈ Z. However, the computation of each tree can be done

independently. Hence, we have the CPU and the GPU share

the computation in this task.

Let Tz be the shortest path tree for some z ∈ Z. We perform

a BFS traversal on Tz and assign the labels as described in

Section III-B.2.a. We note that on GPUs and CPUs there

are existing implementations such as [28], [5] that are work-

efficient for general graphs. Our approach instead requires a

traversal on trees and can hence be simplified. To this end,

we first describe our representation for trees followed by the

procedure used to compute the labels.

• Tree Representation: We use two arrays similar to

the compressed sparse row (CSR) representation. The

leveloffset array is used to store the offset of each

level indexed from 0 to the maximum number of levels

in a given rooted tree. Note that leveloffset[i + 1] −
leveloffset[i] gives the number of nodes in the ith level.

The Index Parent array contains the index of parent of

the current node. The crucial property is that parents of all

nodes in a level belong to the previous level. This helps

maintain the coalescent property for accessing the parents

871871

in the GPU and also making it cache-friendly for CPU.

The above modified representation uses space similar to

a CSR representation.

• Prefix label computation in GF(2): There are two com-

putations in this step. In the first computation, we update

corresponding edges in every root to leaf path once. We

maintain a linear storage Lz for every tree Tz . For every

edge e = uv with v as the parent of u in Tz , lz(u) is set

to �Scurr(e) if e ∈ E′, and Lz(u) is set to 0 otherwise.

For this step, in a GPU kernel, we assign each tree to a

cuda block. Every thread in a block processes one edge

of the tree. Lz contains the final label values for every

u ∈ Tz at the end of next phase. Threads on the CPU

work on different Tz’s independently and compute the

value of Lz(u) in a sequential manner for every e = uv
with v as the parent of u in Tz .

In the second step, we calculate a label for each node in

the tree using a BFS traversal as mentioned in Section

III-B.2.a. In the GPU kernel each warp begins a BFS

independently on a tree Tz using the data structure

defined in Section III-C.0.e and proceeds one level at

a time. Let lv denote the current level being processed

by a warp. All the threads of a warp compute the labels

of all the nodes in lv in batches. If there are less nodes

than the batch size, then the threads remain idle. Each

thread processes one node per batch. For each node u,

Lz(u) is obtained as Lz(u) = Lz(u) ⊕ Lz(parent(u))
where parent(u) indicates parent of u in Tz and lies in

level lv− 1. Warps are executed in a lock-step basis and

hence can be implicitly synchronized at every level.

We next describe the computation of final label values

for the CPU. BFS traversal in CPU is done in a level-

ordered manner using the above datastucture. We begin

with vertices in level 1 and update the label values,Lz(u)
in a sequential manner for all the vertices corresponding

to the current level before moving on to the next level.

f) Task T6: Cycle Identification: In this task we look

for the minimum cycle amongst those in A that satisfies the

condition in Section III-B.2.a. We do this in CPU. Note that

A contain cycles in a sorted order. We arrange the cycles in

A into logical batches. We check for a cycle satisfy the non-

orthogonality condition in Step 3 of Algorithm 2 in each batch

in parallel. If no cycle is found in batch B1, then we move

to check in batch B2. We repeat this check until we find the

required cycle. We record the removal of the chosen cycle by

setting a Boolean flag.

g) Task T7: Independence Test: This step implements

the witness update step as specified in Section III-B.2.b. We

perform this in both CPU as well as GPU. For the CPU, we

dedicate each thread to a witness �Sj . Each thread checks in a

sequential manner whether �Sj is non-orthogonal to �Scurr and

depending on the result, updates �Sj . We have observed in our

experiments that allocating every thread to a single witness

and calculating the dot product is more cache-efficient than

allocating threads to all the elements of a single witness and

then reducing them.

For the GPU, each block processes one single witness, We

TABLE II

LIST OF TIMINGS (IN KS (KILO SECONDS)) OF FOUR DIFFERENT

IMPLEMENTATIONS FOR OUR APPROACH. LABELS ’W’ AND ’W/O’

INDICATE WITH AND WITHOUT USING LEMMA 3.1.

Sequential Multi-Core GPU CPU + GPU

Graphs w w/o w w/o w w/o w w/o

nopoly 7.83 7.83 2.34 2.35 0.602 0.604 0.624 0.624

OPF 3754 44.58 44.58 11.8 11.8 3.8 3.8 3.2 3.2

ca-Astro 246.3 271.3 75.06 81.5 38.04 40.15 27.6 27.6

as-22july06 0.57 7.4 0.17 1.8 0.134 1.29 0.09 0.94

c-50 17.05 28.07 6.17 9.8 2.90 4.278 2.02 3.03

cond mat 2003 141.3 177.6 35.9 44.2 14.89 17.97 10.9 13.2

delaunay n15 272.5 272.5 59.5 59.5 18.37 18.37 15.8 15.8

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

no
po

ly

O
P

F
_3

75
4

ca
-A

st
ro

as
-2

2j
ul

y0
6

c-
50

co
nd

_m
at

_2
00

3

de
la

un
ay

_n
15

A
ve

ra
ge

S
pe

ed
up

Multi-Core
GPU

(CPU + GPU)

Fig. 6. Figure showing the speedup of the Multi-core, GPU and Het-
erogenous(CPU+GPU) versions of our algorithm with respect to a sequential
implementation. All implementations use Lemma 3.1.

first do a per block pairwise-component product for the witness
�Sj with �Ccurr. We then use a parallel reduce on the block to

obtain the Xor of the entire product. If the resultant value of

the reduction is 1, we do a symmetric-difference of �Scurr with
�Sj in parallel for the entire block.

We now comment on the aspects that affect all parts of

our implementation. We can see that our tree representation

induces negligible branch divergence and our memory accesses

are mostly coalescent and cache-friendly. Tasks T4, T5 and T7

are done simultaneously on both the GPU and the CPU. Such

a situation requires one to aim at an execution where the work

is split among the CPU and the GPU in the right proportion.

Since arriving at this proportion analytically is not easy, we

use a dynamic mechanism based on the work queue framework

[19]. Each task that uses the workqueue is organized into

multiple independent workunits that can be executed either

on the CPU or the GPU. These workunits are then kept in

a double ended queue with the CPU and the GPU accessing

the queue from either ends. The workunits are removed by

the CPU and the GPU from the queue in batches whose size

depends on the nature of the task. The computation finishes

when the queue becomes empty.

D. Experimental Results

In this section, we describe the results of implementing

our heterogeneous algorithm for obtaining an MCB. For our

872872

experiments, we use the first seven graphs listed in Table

I. The existing space limitations on the system renders it

impossible to run our algorithm on larger graphs. Since there

is no known parallel implementation available to the best of

our knowledge, we limit ourselves to study the speedup of

our heterogeneous implementation over a multi-threaded CPU,

GPU, and sequential implementation. Table II lists the total

time spent in each of four implementations. Figure 6 lists the

speedup achieved by the above three implementations with

respect to the sequential algorithm. We observe an average

speedup of 3X, 9X and 11X respectively.

The speedup can be attributed to using the ear decompo-

sition that results in reducing the number of nodes and the

corresponding shortest path trees that have to be processed.

In particular, if the number of degree two nodes removed is

n2, we now construct only n − n2 shortest path trees. This

leads to an overall reduction of f · n2 · (n − n2) work with

respect to the entire algorithm. Table II also lists the impact

of ear-decomposition on all the four implementations. The

average speedup due to Ear-Decomposition on each of the

four implementations as specified in the table are 3.1X, 2.7X,

2.5X, 2.7X respectively. The speedup is proportional to the

number of degree-two nodes e.g. as-22july06 has an average

of 10X speedup across all the implementations.

In our experiments, we have observed that tasks T5,T6 and

T7 have a major impact on the overall execution time. Task T5

precedes T6 and T6 precedes T7 which creates a sequential

dependency. This has a limiting effect on the parallelism of

the overall algorithm. We observe that task T5 takes on an

average about 76% of the total time, task T6 about 14% and

task T7 about 8%. Thus optimizing task T5 leads to a massive

improvement on the overall execution time. Graphs such as

ca-AstroPh display a lower speedup due to a large percentage

of time spent in task T6 and T7 (41% and 31% respectively),

whereas graphs like delaunay n15 has roughly 96% of its time

spent in task T5 thus leading to higher speedups.

IV. CONCLUSIONS

In this paper, we considered path based problems on graphs

and proposed a two stage preprocessing based on graph

decomposition as well as graph reduction. Our results on

APSP and MCB indicate that our technique can be useful and

practical. We believe that our technique can have independent

interest and can be applied to other graph problems.

REFERENCES

[1] AMALDI, E., IULIANO, C., JURKIEWICZ, T., MEHLHORN, K., AND

RIZZI, R. Breaking the o(m2n) barrier for minimum cycle bases. In
European Symposium on Algorithms (2009), Springer, pp. 301–312.

[2] BADER, D. A., AND CONG, G. A fast, parallel spanning tree algo-
rithm for symmetric multiprocessors (smps). Journal of Parallel and

Distributed Computing 65, 9 (2005), 994–1006.
[3] BAFNA, V., BERMAN, P., AND FUJITO, T. A 2-approximation algorithm

for the undirected feedback vertex set problem. SIAM Journal on

Discrete Mathematics 12, 3 (1999), 289–297.
[4] BANERJEE, D. S., KUMAR, A., CHAITANYA, M., SHARMA, S., AND

KOTHAPALLI, K. Work efficient parallel algorithms for large graph
exploration on emerging heterogeneous architectures. Journal of Parallel

and Distributed Computing 76 (2015), 81–93.
[5] BEAMER, S., ASANOVIĆ, K., AND PATTERSON, D. Direction-

optimizing breadth-first search. Scientific Programming 21, 3-4 (2013),
137–148.

[6] BULUC, A., GILBERT, J. R., AND BUDAK, C. Solving path problems
on the gpu. Parallel Computing 36, 5 (2010), 241 – 253.

[7] CHHUGANI, J., SATISH, N., KIM, C., SEWALL, J., AND DUBEY, P.
Fast and Efficient Graph Traversal Algorithm for CPUs: Maximizing
Single-Node Efficiency. In IPDPS (2012), pp. 378–389.

[8] CHIMANI, M., GUTWENGER, C., JÜNGER, M., KLAU, G. W., KLEIN,
K., AND MUTZEL, P. The open graph drawing framework (ogdf).
Handbook of Graph Drawing and Visualization (2011), 543–569.

[9] CORMEN, T., LEISERSON, C., RIVEST, R., AND STEIN, C. Introduction
to algorithms, 2001.

[10] DAVIS, T. A., AND HU, Y. The university of florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS) 38, 1
(2011), 1.

[11] DE PINA, J. C. Applications of shortest path methods. PhD thesis,
University of Amsterdam, Netherlands, 1995.

[12] DJIDJEV, H., CHAPUIS, G., ANDONOV, R., THULASIDASAN, S., AND

LAVENIER, D. All-pairs shortest path algorithms for planar graph for
gpu-accelerated clusters. Journal of Parallel and Distributed Computing

85 (2015), 91–103.
[13] GHARAIBEH, A., COSTA, L. B., SANTOS-NETO, E., AND RIPEANU,

M. On graphs, gpus, and blind dating: A workload to processor
matchmaking quest. In in Proc. of IEEE IPDPS (2013).

[14] GLEISS, P. M. Short cycles: minimum cycle bases of graphs from

chemistry and biochemistry. na, 2001.
[15] GOTSMAN, C., KALIGOSI, K., MEHLHORN, K., MICHAIL, D., AND

PYRGA, E. Cycle bases of graphs and sampled manifolds. Computer

Aided Geometric Design 24, 8-9 (2007), 464–480.
[16] HARISH, P., AND NARAYANAN, P. J. Accelerating Large Graph

Algorithms on the GPU using CUDA. In Proc. of HiPC (2007).
[17] HONG, S., RODIA, N. C., AND OLUKOTUN, K. On fast parallel

detection of strongly connected components (scc) in small-world graphs.
In High Performance Computing, Networking, Storage and Analysis

(SC), 2013 International Conference for (2013), IEEE, pp. 1–11.
[18] HORTON, J. D. A polynomial-time algorithm to find the shortest cycle

basis of a graph. SIAM Journal on Computing 16, 2 (1987), 358–366.
[19] INDARAPU, S. B., MARAMREDDY, M. K., AND KOTHAPALLI, K.

Architecture- and workload- aware heterogeneous algorithms for sparse
matrix vector multiplication. In ACM COMPUTE (2014), pp. 3:1–3:9.

[20] KARP, R. M. Reducibility among combinatorial problems. In Complex-

ity of computer computations. Springer, 1972, pp. 85–103.
[21] KARYPIS, G., AND KUMAR, V. A fast and high quality multilevel

scheme for partitioning irregular graphs. In Intl. Conf. Par. Proc. (1995),
pp. 113–122.

[22] KARYPIS, G., AND KUMAR, V. Parallel multilevel k-way partitioning
scheme for irregular graphs. In Proc. ACM SC (1996).

[23] KATZ, G. J., AND KIDER, JR, J. T. All-pairs shortest-paths for large
graphs on the GPU. In Proceedings of the 23rd ACM Symp. Grap. Hard.

(2008), pp. 47–55.
[24] KAVITHA, T., MEHLHORN, K., MICHAIL, D., AND PALUCH, K. A

faster algorithm for minimum cycle basis of graphs. In Interna-

tional Colloquium on Automata, Languages, and Programming (2004),
Springer, pp. 846–857.

[25] KAVVADIAS, D. J., PANTZIOUC, G. E., SPIRAKIS, P. G., AND ZARO-
LIAGIS, C. D. Hammock-on-ears decomposition: A technique for
the efficient parallel solution of shortest paths and other problems.
Theoretical Computer Science 168 (1996), 121154.

[26] MATSUMOTO, K., NAKASATO, N., AND SEDUKHIN, S. Blocked All-
Pairs Shortest Paths Algorithm for Hybrid CPU-GPU System. In Proc.

HPCC (2011), pp. 145–152.
[27] MEHLHORN, K., AND MICHAIL, D. Minimum cycle bases: Faster and

simpler. ACM Transactions on Algorithms (TALG) 6, 1 (2009), 8.
[28] MERRILL, D. G., AND GRIMSHAW, A. S. Revisiting sorting for gpgpu

stream architectures. In Proceedings of the 19th international conference

on Parallel architectures and compilation techniques (New York, NY,
USA, 2010), PACT ’10, ACM, pp. 545–546.

[29] MICIKEVICIUS, P. General Parallel Computation on Commodity Graph-
ics Hardware: Case Study with the All-Pairs Shortest Paths Problem. In
PDPTA’04 (2004), pp. 1359–1365.

[30] PACHORKAR, C., CHAITANYA, M., KOTHAPALLI, K., AND BERA,
D. Efficient parallel ear decomposition of graphs with application to
betweenness-centrality. In High Performance Computing (HiPC) (2016),
IEEE, pp. 301–310.

[31] RAMACHANDRAN, V. Parallel open ear decomposition with applications
to graph biconnectivity and triconnectivity, 1993.

[32] SARYUCE, A. E., .SAULE, E., KAYA, K., AND CATALYUREK, U. V.
Betweenness centrality on gpus and heterogeneous architectures, 2013.

873873

