
GPU Accelerated Lanczos Algorithm With
Applications

Kiran Kumar Matam 1, Kishore Kothapalli 2

International Institute of Information Technology, Hyderabad
Gachibowli, Hyderabad, India 500 032

1kiranm@research.iiit.ac.in, 2kkishore@iiit.ac.in

Abstract— Graphics Processing Units provide a large compu-
tational power at a very low price which position them as an
ubiquitous accelerator. GPGPU is accelerating general purpose
computations using GPU’s. GPU’s have been used to accelerate
many Linear Algebra routines and Numerical Methods. Lanczos
is an iterative method well suited for finding the extreme
eigenvalues and the corresponding eigenvectors of large sparse
symmetric matrices. In this paper, we present an implementation
of Lanczos Algorithm on GPU using the CUDA programming
model and apply it to two important problems : graph bisection
using spectral methods, and image segmentation.

Our GPU implementation of spectral bisection performs better
when compared to both an Intel Math Kernel Library implemen-
tation and a Matlab implementation. Our GPU implementation
shows a speedup up to 97.3 times over Matlab Implementation
and 2.89 times over the Intel Math Kernel Library implemen-
tation on a Intel Core i7 920 Processor, which is a quad-
core CPU. Similarly, our image segmentation implementation
achieves a speed up of 3.27 compared to a multicore CPU based
implementation using Intel Math Kernel Library and OpenMP.
Through this work, we therefore wish to establish that the GPU
may still be a better platform for also highly irregular and
computationally intensive applications.

I. INTRODUCTION

The computational power of GPUs is increasing rapidly
in the last few years. Coupled with the availability of pro-
gramming environments such as CUDA, GPUs are being used
for also general purpose computations. This trend is called
GPGPU and presently several fundamental applications are
available on GPUs. Examples include sparse matrix vector
multiplication [1], SVD [7], and others.

There are many problems which can be modeled as graphs
and can be solved by formulating them as discrete combi-
natorial optimization problems. Some of them include spec-
tral graph partitioning, spectral image segmentation, spectral
clustering, spectral graph layout and the like. Most of the
aforementioned problems have a lot of practical applications,
but posed as discrete optimization problems, these are hard
to solve as they generally tend to be NP-complete problems.
But real approximations to these problems can be solved
using linear algebra methods like finding the spectrum of
the Laplacian or adjacency matrix. These solutions require
one to compute the extreme eigenvalues and corresponding
eigenvectors of the Laplacian matrix of an underlying matrix.
This approach of using the extreme eigenvalues, and the cor-
responding eigenvectors, also finds applications to many other
problems from various settings such as computing page ranks

[9], and latent semantic indexing. In general, the matrices
involved in these computations are large, sparse, symmetric,
and are real valued. Lanczos method is well suited for such
problems. Lanczos method involves partial triadiagonalization
on the given matrix, say A. Important information about the
extremal eigenvalues of a matrix tends to emerge long before
the tridiagonalization is complete. This makes the Lanczos
algorithm particularly useful in cases where a few of the largest
or smallest eigenvalues of A are desired. Further, the only large
scale-operation involved is sparse matrix-vector multiplication
which can be implemented as a black box. In this work,
we implement Lanczos algorithm on a GPU and study two
applications of the Lanczos algorithm : graph bisection with
spectral methods, and image segmentation.

Given an undirected graph G, with vertex set V (G) and
edge set E(G), and a positive integer k, the graph partitioning
problem is to partition the graph G into k partitions. The
partitions have to satisfy two conditions. Firstly, each partition
has an equal number of vertices. Secondly, the total number
of edges that have end points in two partitions is minimum.
Graph partitioning is an important problem that has extensive
applications in many areas, including scientific computing,
VLSI design, and task scheduling. But graph partitioning is
an NP-hard problem and mostly heuristics are employed in
practice. Spectral methods are one such heuristics and are
known to produce good partitions for a wide variety of graphs.
Graph bisection is two-way graph partitioning. Graph bisection
can also be posed as a discrete optimization problem which is
still intractable. The continuous approximation of this problem
can be solved using the eigenvector corresponding to second
smallest eigenvalue of the Laplacian matrix of the graph. This
eigenvector is referred to as the Fiedler vector. Graph bisection
using spectral methods is called spectral bisection. Spectral
bisection can be recursively called to get a k-way partitioning.
Spectral bisection takes into account the global view or the
total structure of the graph. Spectral bisection can be used to
get an initial partitioning in multi-level schemes where global
view of the partition is required [5]. Spectral bisection also is
used in graph layout [3], genetic algorithms [8] and the like.

The image segmentation problem is to distinguish objects
from background. Image segmentation problem is an important
problem in computer vision with a wide range of applications
including face recognition, fingerprint recognition, and medi-
cal imaging. Given several important applications, the problem
hence has natural research interest. There are several heuristics

2011 Workshops of International Conference on Advanced Information Networking and Applications

978-0-7695-4338-3/11 $26.00 © 2011 IEEE

DOI 10.1109/WAINA.2011.70

71

to solve this problem and one of them is based on the graph
partitioning based methods. As shown by Shi et al. [13], one
can use the normalized cut criterion. The normalized cut image
segmentation method technique introduced by Shi et al. [13]
examines the affinities (similarities) between nearby pixels and
tries to separate groups that are connected by weak affinities.

In this work, we first provide an efficient and highly opti-
mized implementation on the GPU for the Lanczos method.
We then use this implementation for solving two applications:
graph bisection, and image segmentation.

Our GPU implementation of spectral bisection performs
better when compared to both an Intel Math Kernel Library
implementation and a Matlab implementation. Our GPU im-
plementation shows a speedup up to 97.3 times over Matlab
Implementation and 2.89 times over the Intel Math Kernel
Library implementation on a Intel Core i7 920 Processor,
which is a quad-core CPU. Similarly, our image segmentation
implementation achieves a speed up of 3.27 compared to a
multicore CPU based implementation using Intel Math Kernel
Library and OpenMP.

Our image segmentation implementation achieves a speed
up of 3.27 compared to a multicore CPU based implementation
using Intel Math Kernel Library and OpenMP. Here too, we
use standard data sets that are used for image segmentation.

A. Related Work
One can roughly divide the algorithms for eigenvalue prob-

lems into two groups. Direct methods which are intended to
compute all eigenvalues and (optionally) eigenvectors. Some
of the examples of the direct methods are QR Iteration with
implicit shifts [4] Jacobi Method [4] etc. Direct methods are
typically used on dense matrices and cost O(n3) operations
and require O(n2) storage space to compute all eigenvalues
and eigenvectors and this cost is relatively insensitive to the
actual matrix entries. But for large matrices we require far
less than O(n3) operations and O(n2) storage space. For this
reason the implementations of SVD [7], QR Decomposition
[11] are not suitable for our work. Iterative methods, e.g.,
Lanczos method, are usually applied to large sparse matrices
or matrices for which matrix-vector multiplication is only
convenient operation to perform. Iterative methods typically
provide approximations only to a subset of the eigenvalues
and eigenvectors. There are other works of Lanczos imple-
mentation on GPU. Cavanagh et al [2] and Zheng et al
[18]implemented the Lanczos algorithm on dense matrices.
They also used single precision floating point operations as
the older GPU’s did not have support for double precision
floating point operations.

As graph partitioning is known to be an NP-Complete
problem, it is not possible to compute optimal partitioning
for graphs of interesting size in reasonable time. This fact,
combined with the importance of the problem, has led to
the development of numerous heuristic approaches. These can
be classified as either geometric techniques, combinatorial
techniques, spectral techniques, combinatorial optimization
techniques, or multilevel methods. Spectral graph partitioning
technique was introduced by Fiedler in the 1970s, but pop-
ularized in 1990 by Pothen et al [15]. These spectral graph

partitioning techniques involve finding the partitioning of the
graph based on the extreme eigenvectors of the Laplacian
matrix of the graph. Second eigenvector corresponding to the
second smallest eigenvalue of the Laplacian matrix can be used
to partition the graph into 2 parts and this can be recursively
applied to obtain a k-way partition of the graph.

Graph-based methods for image segmentation generally
model the image as a graph assigning each pixel or a group
of pixels to a vertex in the graph and edge weights define
the similarity between the vertices. Then based on a criterion
designed to model good clusters the graph is partitioned
into sets of vertices. Each partition corresponds to an object
segment in the image. Vibhav et al. [17] implemented image
segmentation using graph-cuts on GPU which involves finding
the mincut in the graph. There are no published results for the
image segmentation using normalized cut on the GPU.

B. Organization of the Paper

The rest of the paper is organized as follows. In Section
II, we briefly describe the architectural and the program-
ming model of the NVidia GPUs. Section III describe the
algorithms that are used in the paper. Section IV describes
some implementation details and application to the graph
bisection problem. Section V describes the application to
image segmentation. The paper ends with some concluding
remarks in Section VI.

II. GPU INTRODUCTION

Nvidia’s unified architecture for its current line of GPUs
supports both graphics and general computing. In general
purpose computing, the GPU is viewed as a massively multi-
threaded architecture containing hundreds of processing el-
ements(cores). Each core comes with a four stage pipeline.
Eight cores, also known as Symmetric Processors (SPs) are
grouped in an SIMD fashion into a Symmetric Multiprocessor
(SM), so that each core in an SM executes the same instruc-
tion. The GTX280 has 30 such SMs, which makes for a total
of 240 processing cores. Each core can store a number of
thread contexts. Data fetch latencies are tolerated by switching
between threads. Nvidia features a zero-overhead scheduling
system by quick switching of thread contexts in the hardware.
The CUDA API allows a user to create large number of threads
to execute code on the GPU. Threads are also grouped into
blocks and blocks make up a grid. Blocks are serially assigned
for execution on each SM. The blocks themselves are divided
into SIMD groups called warps, each containing 32 threads on
current hardware. An SM executes one warp at a time. CUDA
has a zero overhead scheduling which enables warps that are
stalled on a memory fetch to be swapped for another warp.

The GPU also has various memory types at each level. A
set of 32-bit registers is evenly divided among the threads
in each SM. 16 Kilobyte of shared memory per SM acts as
a user-managed cache and is available for all the threads in
a Block. The GTX 280 is equipped with 1 GB of off-chip
global memory which can be accessed by all the threads in
the grid, but may incur hundreds of cycles of latency for each
fetch/store. Global memory can also be accessed through two

72

read-only caches known as the constant memory and texture
memory for efficient access for each thread of a warp.

Computations that are to be performed on the GPU are
specified in the code as explicit kernels. Prior to launching
a kernel, all the data required for the computation must be
transferred from the host (CPU) memory to the GPU global
memory. A kernel invocation will hand over the control to
the GPU, and the specified GPU code will be executed on
this data. Barrier synchronization for all the threads in a block
can be defined by the user in the kernel code. Apart from
this, all the threads launched in a grid are independent and
their execution or ordering cannot be controlled by the user.
Global synchronization of all threads can only be performed
across separate kernel launches. For more details, we refer the
interested reader to [14].

III. THE ALGORITHMS

A. The Lanczos Algorithm

Let A be an n × n real symmetric matrix and x be a
nonzero vector. The Rayleigh quotient, denoted ρ(x;A), is
ρ(x;A) := xTAx

xT x
. The minimum and maximum values of

the Rayleigh quotient on A equals to λ1 and λn, where
λ1 ... λn are eigenvalues of A and λ1 ≤ λ2 ≤ · · · ≤
λN . Any subspace iterative method that finds the eigenvalue
approximations of A builds the subspace in the direction of
the gradient of Rayleigh quotient, so that the eigenvalues
of the projection of A on the subspace are increasingly
better approximates of the eigenvalues of A. The subspaces
formed by the Krylov sequence(q1, Aq1, A2q1, ..., A

n−1q1) are
in the direction of the gradient of the Rayleigh quotient.
By the properties of the Krylov subspace(K(A, q1, n) =
[q1, Aq1, A2q1, ..., A

n−1q1]) the projection of A on the or-
thonormal basis of Krylov subspace is a symmetric tridiagonal
matrix. If QTAQ = T is tridiagonal with Qe1 = q1,
then K(A, q1, n) = Q[e1, T e1, T 2e1, ..., T

n−1e1] is the QR
factorization of K(A, q1, n) where e1 = In(:, 1). Thus qk
can effectively be generated by tridiagonalizing A with an
orthogonal matrix whose first column is q1. So by setting
Q = [q1, q2, ..., qn] and T as n × n symmetric tridiagonal
matrix with diagonal elements as α1, α2, ..., αn and subdi-
agonal elements as β1, β2, ..., βn−1 and equating columns in
AQ = QT , we find:

Aqk = βk−1qk−1 + αkqk + βkqk+1, for k = 1 to n− 1.
β0q0 ≡ 0

Pseudo-code for the Lanczos algorithm is shown in Al-
gorithm 1. By properly sequencing the above formulae we
obtain the Lanczos Iterations shown in Table 1 for over m
iterations. We run the Lanczos iterations until we get the
desired eigenvalues to a required precision. After the Lanczos
iterations we get the Lanczos vectors(Qm = [q1, q2, ..., qm]).
The eigenvalues of the T are the approximate eigenvalues of
A. We solve for the eigenvalues of T by bisection method
and sturm sequence property and then get the corresponding
eigenvector of T by inverse iteration method. Then we get the
required eigenvectors of A by multiplying the Lanczos vectors
with the corresponding eigenvectors of T .

Algorithm 1 Lanczos Algorithm
q1 ← Random vector with norm 1
q0 ← 0
β1 = 0
for j = 1, 2, ...,m do
wj ← Aqj − βjqj−1

αj ← wj · qj
wj ← wj − αjqj
βj+1 ← ‖wj‖
qj+1 ← wj/βj+1

Compute eigenvalues, eigenvectors and error bounds of
Tj

end for

B. Algorithm for Graph Bisection

Let G = (V,E) be the graph for which we need to find
the bisection. The Laplacian matrix of a graph G, denoted
L(G), that is obtained as follows. Let n = |V (G)|, L(G)
is an n × n matrix where L(G)[i, j] is the degree of the
vertex i if i = j and L(G)[i, j] = −1 if i, j ∈ E(G) and
L(G)[i, j] = 0 otherwise. Let s be the index vector of size
|V | with entries as s[i] = −1 if vertex i is in first partition(V-
) and s[i] = 1 if vertex i is in second partition(V+), then
eTS = 0, where e = [1, 1, ..1]T as the partition needs to be
balanced. The number of edges with end points in different
partitions (edgecut,R) is equal to R = sTL(G)s

4 . Minimizing
R is a discrete optimization problem and is NP-hard. But by
taking the continuous approximation to x (values are real) and
‖s‖22 = |V |, R becomes R = ‖V (G))‖ · sTL(G)s

sT s
. Minimizing

R such that s is not 0 and eT s = 0 is a special case of
the Courant Fischer Minimax Theorem. The solution is the
eigenvector corresponding to the second smallest eigenvalue of
L(G). The continuous approximation solution is then mapped
to the discrete optimization problem. We find the median of
the second eigenvector and assign −1 to values that are less
than or equal to median and 1 to values that are greater than
median. The obtained partition may not be optimal but gives
a good edgecut quality. Table 2 shows the spectral bisection
algorithm.

Algorithm 2 Spectral Bisection Algorithm
Compute the eigenvector V2 corresponding to λ2 of L(G)
for each node n of G do

if V2(n) ≤Median(V2) then
put node n in partition V−

else
put node n in partition V+

end if
end for

C. Image Segmentation via Spectral Methods

Image segmentation is the task of finding groups of pixels
that share some visual characteristics. Shi et al. [13] proposed
a new graph theoretic criterion called normalized-cut for image

73

segmentation. Let G(V,E) be the graph and A, B be the two
disjoint partitions of G. Then normalized-cut is defined as

Ncut(A,B) = Cut(A,B)
Assoc(A,V) + Cut(A,B)

Assoc(B,V)

where Cut(A,B) =
∑

u∈A,v∈B w(u, v) and Assoc(A, V) =∑
u∈A,t∈V w(u, t).The normalized cut criterion measures both

the total dissimilarity between the different groups as well
as the total similarity within the groups. Minimizing the
normalized cut gives a good segmentation of the image.
Minimizing normalized cut is a discrete combinatorial problem
which is NP-complete and the continuous approximation to it
is a generalized eigenvalue problem and can be solved. Let W
be the adjacency matrix of the graph G = (V,E) constructed
by taking each pixel as node and the edge weight wij between
the node i and j is the product of a feature similarity term and
a spatial proximity term:

wij = e
−‖F (i)−F (j)‖22

σ2
I ·

{
e
−‖X(i)−X(j)‖22

σ2
X

0

if ‖X(i)−X(j)‖2 < r
otherwise

where X(i) is the spatial location of node i, i.e., the
coordinates in the original image I , and F (i) is a feature vector
defined as F (i) = I(i), the intensity value, for segmenting
brightness images. Algorithm 3 shows the normalized cut
image segmentation algorithm.

Algorithm 3 Normalized Cut Algorithm
1. Given a set of features, set up a weighted graph G =
(V,E) compute the weight on each edge, and summarize
the information into W and D.
2. Solve (D − W)x = λDx for eigenvectors with the
smallest eigenvalues.
3. Use the eigenvector with the second smallest eigenvalue
to bipartition the graph by finding the splitting point such
that Ncut is minimized.
4. Decide if the current partition should be subdivided by
checking the stability of the cut, and make sure Ncut is
below the specified value.
5. Recursively repartition the segmented parts if necessary.

IV. APPLICATION I : GRAPH BISECTION

In this section, we describe some implementation details
when using the Lanczos method for graph bisection.

A. Implementation Details

We directly take the Laplacian Matrix of the Graph as
input and store it as Compressed Row Storage (CRS) sparse
matrix representation as the given graphs are sparse. We
implement the dot product, norm using CUBLAS routines.
We implemented the sparse matrix vector multiplication with
the matrix stored in CRS format as described by Bell et al.
[1]. This format works well also as the underlying graphs
are sparse and do not lend efficiently to other sparse matrix
representations. We introduced a few changes to the method
described in [1] given that our matrices are symmetric and
integer valued.

Since our matrices are integer valued, all the entries in
the Laplacian matrix are integer valued. The Lanczos vectors
may however contain double precision floating point numbers.
Notice that the GPU is not a very versatile architecture. On
the GPU, it is efficient to multiplying an integer with a double
precision floating point number compared to multiplying two
double precision floating point numbers. Fortunately, in the
Lanczos algorithm, we require operations of the first kind only.
So, we convert the spmv routine [1] correspondingly.

We also dynamically check the correct version, between
CSR (scalar) and CSR (vector), the spmv routines described
by Bell et al [1] to use depending on the density of a row. If
the average number of entries per row is less than 7 we used
the CSR (scalar) spmv routine where one thread is assigned
to each row. Otherwise we used CSR (vector) where one warp
is assigned to each row. Experimentally, it was observed that
when a row has less than 7 entries, then it is efficient to use
the CSR (scalar) routine.

We implemented finding the median of a vector using
primitives reduce, scan from CUDPP. When implementing the
Lanczos Algorithm using the single precision floating point
operations, it is likely that Lanczos vectors may suffer loss
of orthogonality. This can give incorrect results when using
the Lanczos algorithm for graph bisection. In this case, it is
recommended that double precision floating point operations
be used for correct results. However, the GPU is not a very
versatile architecture and cannot support double precision
operations efficiently. This results in a significant reduction
in the performance.

We need to store the Lanczos vectors obtained during
iterations to get the second eigenvector. We see that for large
graphs (from road networks [6]) there is not enough space
to store the Lanczos vectors. For such large instances, we
recommend that other advanced Lanczos implementations like
implicitly restarted Lanczos method be used. This however
may increase the overall time taken while being also quite
involved to implement efficiently. The basic idea is to restart
the Lanczos method after every few iterations with a better
initial estimate for the vector q1 from Algorithm 1.

B. Experimental Results

In this section, we report the results of our experiments. The
experiments were run on the following systems:
• CPU: An Intel Core i7 920, with 8 MB cache, 4 GB

RAM and a 4.8 GT/s Quick path interface, with maxi-
mum memory bandwidth of 25 GB/s.

• GPU: A Tesla C1060 which is one quarter of a Tesla
S1070 computing system with 4 GB memory and 102
GB/s memory bandwidth. It is attached to a Intel Core
i7 CPU, running CUDA Toolkit/SDK version 2.2. [14].

Our results on the Matlab are performed an Matlab instal-
lation on the CPU mentioned above.

For the experiments on the graph bisection using spectral
methods we took the graphs from the Walshaw benchmark
which is a popular graph partitioning archive. Figure 1 shows
the graphs instances along with their sizes and the number
of edges between the partitions. The reported edge cut values

74

Instance# Instance Name |V | |E| Edge cut
1 add20.graph 2395 7462 871
2 uk.graph 4824 6837 37
3 crack.graph 10240 30380 231
4 fe sphere.graph 16386 49152 462
5 bcsstk30.graph 28924 1007284 6536
6 wing.graph 62032 121544 1349
7 finan512.graph 74752 261120 978
8 fe rotor.graph 99617 662431 3166
9 144.graph 144649 1074393 7236
10 m14b.graph 214765 1679018 4057
11 auto.graph 448695 3314611 12831

Fig. 1. Table showing a few instances along with their size and the number
of edges between the partitions.

ad
d2

0.
gr

ap
h

uk
.g

ra
ph

cr
ac

k.
gr

ap
h

fe
sp

he
re

.g
ra

ph
bc

ss
tk

30
.g

ra
ph

w
in

g.
gr

ap
h

fin
an

51
2.

gr
ap

h
fe

ro
to

r.g
ra

ph
14

4.
gr

ap
h

m
14

b.
gr

ap
h

au
to

.g
ra

ph

0

50

100

Fig. IV-A Comparison with Matlab

Sp
ee

du
p

are the average obtained over multiple runs. Figure 1 lists
only a representative set of instances with varying sizes from
2K to 500K. Results on the entire data set from Walshaw’s
benchmark are available in [12]. Figure IV-B shows the overall
speedup when compared to Matlab implementation and Figure
IV-B shows the speedup when compared to an Intel MKL
implementation.

Observations: Most of the graph partitioning time is taken
by the Lanczos method for finding the second eigenvector of
the Laplacian matrix. For small graphs we observe that the
speedup when compared to multi-core implementation is less
than 1 because as there is not enough work to keep all the
cores in the GPU busy. For the large graph finan512.graph we
see that the time taken by GPU implementation is more when
compared to multi-core implementation because the sparse
matrix vector multiplication(spmv) routine in Lanczos iteration
takes more time on GPU than on multi-core for that graph. In
GPU access to global memory is slower and coalesced reads
to global memory are much faster than the random ones. In
the spmv routine the global memory access depends on the
column indices of the elements in the row, and hence the
runtime of the spmv routine depends on the graph. Further,
load imbalance induced by the fact that the number of non-zero
elements vary across rows causes performance degradation.

ad
d2

0.
gr

ap
h

uk
.g

ra
ph

cr
ac

k.
gr

ap
h

fe
sp

he
re

.g
ra

ph
bc

ss
tk

30
.g

ra
ph

w
in

g.
gr

ap
h

fin
an

51
2.

gr
ap

h
fe

ro
to

r.g
ra

ph
14

4.
gr

ap
h

m
14

b.
gr

ap
h

au
to

.g
ra

ph

1

2

3

Fig. IV-B Comparison with Intel MKL

Sp
ee

du
p

As multi-core CPU’s are good at irregular memory reads the
speedup of GPU implementation when compared to multi-
core implementation depends on the spmv routine. SPMV
routine takes most of the time in Lanczos iterations and for the
graph finan512.graph, spmv routine takes more time on GPU
when compared to multi-core implementation. Therefore the
speedup in this case is less than 1. As the size of the graphs
increases there are variations in the speedup because Lanczos
takes more iterations to converge for the graphs. The speed of
convergence depends on the eigengap between λ2 and λ1 of
the Laplacian matrix, i.e on λ2 - λ1.

V. APPLICATION II : IMAGE SEGMENTATION

A. Implementation Details

The algorithm that we followed in our implementation is
shown in Algorithm 3. Each step in Algorithm 3 is mapped
to different kernels on GPU. Where ever possible, we make
use of CUDPP and CUBLAS primitives. We first construct
the similarity graph on GPU and store it in CRS format.
We compute the Laplacian matrix from the similarity graph
and then find the eigenvector e corresponding to the second
smallest eigenvalue. We then split the vertices into partitions
based on the eigenvector e. We take ` evenly spaced values,
e[i · n/`] for i = 1, 2, · · · , `, in the eigenvector e, and
consider ` partitions as follows. The partition Pi is obtained
by partitioning the vertex set based on e[in/`]. For each of
the partitions Pi, where i = 1, 2, · · · , `, we calculate the
normalized cut value ni. Finally, the vertex set is partitioned
according to e[i∗n/`] where i∗ = argminini. The process is
terminated if e[i∗n/`] is less than a threshold value. Otherwise,
we continue in a recursive fashion.

For all the kernels we kept the blocksize as 512 for the
better occupancy of the SM. For constructing the graph we
assigned each pixel to a thread and launched threads equals
to the number of pixels. Each thread calculates its neighbours
among the possible r2 neighbours. We then perform a scan
and kernel launch to construct the similarity matrix stored
in CRS format. Then we recursively partition the graphs

75

Fig. 2. Shows the images of Sponge Person and Flower.

Fig. 3. Shows the segmented images of the Sponge, Person and Flower with
ncut values less than 0.0075,0.0065 and 0.0275 correspondingly. Parameter
settings are σX = 0.05, σI = 4, r = 5

into subgraphs. From the similarity graph we construct the
required Laplacian matrix on the GPU. We then calculate
the eigenvector corresponding to the second eigenvalue using
our Lanczos method implemented on GPU. We then select
l equally spaced splitting points and for each splitting point
we calculate the normalized cut for the partitions produced by
the splitting point. For calculating the normalized cut we first
calculate the edge cut and then the association of each partition
i.e the sum of all edge weights of vertices in that partition. We
see that the number of neighbours of each pixel is greater than
32. We therefore assign one warp to each row(or vertex) to
read the column indices and the values, so that we can make
the memory reads of the threads coalesced and gain better
performance. After calculating the edge cut of each pixel we
then calculate the total edge cut using the cublas sum function.
If the minimum normalized cut is less than a threshold we
stop the recursion. Otherwise we segment the partition into
subpartitions and construct the subgraphs for that partitions.
We assign each row to a thread and it calculates the vertices in
its partition and then get the rowindices array of the subgraph.
Then we again launch a kernel to get the column indices and
values array of the subgraph.

B. Experimental Results
We present experiments on the figures sponge, flower,

and person. We compare our GPU implementation of image
segmentation with the multi-core implementation. We imple-
mented the image segmentation on multi-core using Intel MKL
libraries and Openmp. The sizes of the images shown in 2
Flower, Person, and Sponge respectively are 100× 80, 480×
320, and 600 × 450. Figure 3 shows the output of image
segmentation on the respective figures. The speedup of our
implementation on the GPU can be seen in Figure 8.

We see that most of the image segmentation time is taken
for calculating the second eigenvector by Lanczos method. For
the sponge image and person image the GPU implementation
performs better. For the sponge image and flower image we
see that the algorithm is able to identify the major components
but for the person image we see some discrepancies.

VI. CONCLUSIONS

In this work, we have shown that GPUs can be used to even
difficult numerical optimization problems such as finding the

Flow
er

im
ag

e

Pers
on

im
ag

e

Spo
ng

e im
ag

e

1

2

3

Fig. 8. Comparison with multi-core Implementation

Sp
ee

du
p

extreme eigenvalues of large sparse matrices. We have applied
our implementation on two problems of practical interest. In
future, we wish to study further applications of the present
implementation and also study other numerical optimization
problems that can benefit from a GPGPU point of view.

REFERENCES

[1] N. Bell, M. Garland Efficient Sparse Matrix-Vector Multiplication on
CUDA. NVIDIA Technical Report NVR-2008-004, December 2008.

[2] Joseph M. Cavanagh, Thomas E. Potok, and Xiaohui Cui. Parallel latent
semantic analysis using a graphics processing unit. In Proc. GECCO 09,
pages 2505–2510, 2009.

[3] J. Daz, J. Petit, and M. Serna, A survey of graph layout problems, ACM
Computing Surveys Journal, pp. 313356, 2002.

[4] Demmel, J. W., Applied Numerical Linear Algebra. Society for Industrial
and Applied Mathematics, 1997.

[5] Hendrickson, B. and Leland, R. 1995. A multilevel algorithm for parti-
tioning graphs. In Proc. SC 1995.

[6] Jure Leskovec, Stanford large network dataset collection, Available at
http://snap.stanford.edu/data/#road

[7] Sheetal Lahabar, P. J. Narayanan, ”Singular value decomposition on GPU
using CUDA,” in Proc. IPDPS, pp.1-10, 2009.

[8] Martin, J. G. Spectral techniques for graph bisection in genetic algorithms.
In Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation, pp. 1249-1256, 2006.

[9] Andrew Y. Ng, Alice X. Zheng, and Michael I. Jordan. Link analysis,
eigenvectors and stability. In Proc. IJCAI, 2001.

[10] Von Luxburg U.: A Tutorial on Spectral Clustering.Tech. Rep. TR-149,
Max Plank Institute for Biological Cybernetics, August 2006.

[11] Kerr, A., Campbell, D., and Richards, M. QR decomposition on GPUs.
In Proc.c of GPGPU-2, pp. 71-78, 2009.

[12] Kiran Kumar M., Results of spectral graph partition-
ing using the Walshaw benchmark archive. Available at
http://researchweb.iiit.ac.in/∼kiranm/results.xls.

[13] Jianbo Shi; Malik, J.; , ”Normalized cuts and image segmentation,” IEEE
T. PAMI, vol.22, no.8, pp.888-905, 2000.

[14] NVIDIA Corporation. CUDA: Compute unified device architecture
programming guide. Technical report, NVIDIA, 2007.

[15] Alex Pothen, Horst D. Simon, Kan-Pu Liou, Partitioning sparse matrices
with eigenvectors of graphs, SIAM J. Mat. Anal. Appl., 11(3), pp. 430-452.

[16] D.A. Spielmat, Shang-Hua Teng, ”Spectral partitioning works: planar
graphs and finite element meshes,” focs, in Proc. FOCS, pp. 96, 1996.

[17] Vibhav Vineet, P. J. Narayanan, CUDA cuts: Fast graph cuts on the
GPU, In CVPR Workshops, 2008, pp. 1-8.

[18] Jing Zheng; Wenguang Chen; Yurong Chen; Yimin Zhang; Ying Zhao;
Weimin Zheng; , ”Parallelization of spectral clustering algorithm on multi-
core processors and GPGPU,” in Proc. ACSAC 2008, pp.1-8.

76

