Parallel Algorithms and Programming
Week 9

Kishore Kothapalli

October 27, 2007

Chapter 10

Parallel Complexity Theory and Lower
Bounds

In the final topic of this lecture, we look at the relative powéthe various PRAM models and also some
lower bound results. We also define parallel complexitysgasand their relation to classical complexity
classes.

10.1 Simulations of PRAM models

10.1.1 CRCW Priority by EREW

Let us simulate a CRCW Priority machine by the EREW PRAM. Tinategy would be to simulate every
read and write of the CRCW PRAM by exclusive reads and writée following theorem can be shown.

Theorem 10.1.1A concurrent read instruction of g—processor CRCW Priority PRAM can be simulated
by ap—processor EREW PRAM @(log p) steps.

Proof. The proof gives a step-by-step translation of each congtread instruction as follows.

Let Cy,Cy,---,C, be thep processors of the CRCW Priority PRAM add, Es, - - - , E, be thep
processors of the EREW PRAM. Let us look at a concurrent nestduiction.

Let processorC; wish to read memory cell; for ¢ = 1 to p. A temporary storage op cells
T1,T>,---,T, will be used by our approach. Procesgorwrites a pair()M;, i) in slot ¢ of 7. Since
each processor has a different cell, these writes are @xeludotice however that because of a concurrent
read it may happen that; = M, for i # j. Sort the entries if" lexicographically so thafa, b) < (c, d) if
a < borc < dif a =0b. This sorting is done in the EREW model using the optimalisgralgorithm that
sorts inO(log p) time usingO(p) processors.

Now there are blocks of processors that are grouped acegptdithe memory cell they read. In each
such block, find the processor with the least index. This eddme inO(1) time per block in parallel. Call
this processor as the representative of the block.

For each block the representative reads the memory @}l and broadcasts this value of all other
processors in that block. This can be don®ifiog p) time using the binary tree approach.

Simulating a concurrent write instruction will be part ofrhework. O

10.1.2 CRCW Priority by CRCW Common

Now we shall consider the relative power of the various comau write models of PRAM. It is easy to
see that a COMMON can be simulated by ARBITRARY as well as aG®/TY without any change.

3

4 CHAPTER 10. PARALLEL COMPLEXITY THEORY AND LOWER BOUNDS

Similarly, an algorithm designed on the ARBITRARY will runitwout change on a PRIORITY. However,
it is not obvious how a COMMON can simulate a PRIORITY. We wliow below that a COMMON can
indeed simulate a PRIORITY provided with few extra resosneéh no slowdown.

To help us in the simulation and as a generalized problemhastwider scope, we first define the
following problem.

Definition 10.1.2 (Leftmost Alive Processor Problem)Considerp processors of which some are “alive”
and some are “dead”. An alive processor is characterized balue 1 and and dead processor by 0. The
problem is to find the lowest indexed alive processor withciradition that the dead processors cannot
participate in the compuatation.

The above problem is very similar to the leftmost 1 problertinthe only difference being the additional
rule that dead processors cannot participate in the cotiguitd he reason for the restriction is that typically
the alive processors correspond to processors in a partisuite conflict. So the processors dead are not in
conflict at this cell but could be in conflict elsewhere anddeewould be part of a separate instance of the
leftmost alive problem.

We first show how to solve this problem on the CRCW Common PRAMided that there arlvg p
additional processors per each live processor.

Theorem 10.1.3The leftmost alive processor problem can be solved(ih) time on the CRCW COMMON
PRAM using an additiondbg p processors per live processor.

Proof. The proof of the theorem follows using tli¢(1) time minima algorithm for restricted domains.
Hence the proof is skipped in this version. O

We get the following results as corrollaries.

Corollary 10.1.4 ACRCW COMMON PRAM witf(p log p) processors can simulate a CRCW PRIORITY
PRAM ofp processors with no slowdown.

One can ask what would be the situation if no extra resourcesnade available for the COMMON
PRAM to simulate the PRIORITY PRAM. In this case, as the felly results shows, a slowdown of

log p -
O(1ogTogp) Suffices.

Theorem 10.1.5

10.2 Lower Bound Results

We next turn to prove lower bounds. First we concentrate erCREW PRAM. To show the applicability
of our lower bounds, we strengthen the PRAM model slightlgléfine an “ideal” PRAM. If we show a
lower bound on this (stronger) model then certainly it sddwld on our regular PRAM model.

10.2.1 The Ideal PRAM

We do not go overboard in strengthening our PRAM model. Wg assume that the shared memory has
unbounded sizeEach processor hamlimitedlocal memory. Each computation step will be viewed as 3
steps: aread step where values are read from the shared ypamompute step for local computation, and
a write step to write values into shared memory. We shallnalidbitrary amounts of local computation in
each step. The restrictions concerning concurrent reatisvetes as similar to that our standard definition
of the PRAM.

10.2. LOWER BOUND RESULTS 5

10.2.2 Lower Bound for Boolean-OR on a CREW PRAM

Let f be ann—input Boolean function. We denote the inputfiby I = x5 - - - z,. If the ith bit of I is
flipped we denote such input byi). An input is said to becritical for f if and only if f(I) # f(I(i))
forall 1 < i < n. For example the inpud00 - - - 0 is critical for the Boolean OR function. If an inpitis
critical, then the idea is that if any bit ih sayz;, is flipped then the output changes. Hence the computation
of f should run for enough time steps to igtaffect the output.

Let us assume that for computing the functifyrthe inputs are given in memory cell$;, Mo, --- , M,
of the shared memory. We shall also assume that thél€etiontains the output at the end of the computa-
tion.

We say that an input indexaffectsa memory locationl/ at timet on some inpuf if the contents of\/
at timet and input/ differs from the contents a#/ at timet on input/ (7). To capture this definition, we
define the set(M, ¢, I) as follows:

G(M,t,I) = {i | affectsM at timet on input/}

Along the same lines, we can also look at how the state of aepsac is affected by an input index. By
the state of the processor we can take all that describesittent state including the contents of the reigsters
and the local memory of the processor. The state of a processpchange by some read operation. Let us
define the se€’ (P, ¢, I) as follows:

C(P,t,I) = {i| i affectsP at timet on input/}

To come up with a lower bound for Boolean OR compuataion, we ha study how the sets andG
evolve. We first present two lemmata.

Lemma 10.2.11f i € C(P,t,I) then:
e eitheri ¢ C(P,t —1,1),0r
e P reads a gloabl memory locatioh/ on input/ attimet and: € G(P,t — 1,1).

Proof. We are given that the state &f at time¢ on input/ at timet is different from the state of at
time¢ on input/(i). Suppose that¢ C(P,t — 1,1). Then, it means that the state Bfat timet¢ — 1 does
not change regardless of the input beihgr 7(i). So it must be the case thBtread some global memory
location that is affected by indexn time stept — 1. Hence; € G(P,t — 1, I). The other part of the proof
is similar. O

Lemma 10.2.2Let: € G(M,t,I). Then,
e eitheri € C'(P,t,I) and processor” writes into M/ at timet on input/, or

e No processor writes intd/ at timet — 1 on input! and eitheri € G(M,t — 1, 1) or a processorP
writes intoM at timet on input/ ().

The proof of this lemma is left as a homework problem.
We use the above lemmata to show the following key theorem.

Theorem 10.2.3Let P be a processor and/ be a memory cell in a CREW PRAM. Then aftasteps of

computation,
|G(M,t,I)] < bt and|C(P,t,I)| < V'

&

2

whereh = 2ty

6 CHAPTER 10. PARALLEL COMPLEXITY THEORY AND LOWER BOUNDS

Proof. To simplify notation let|C(P,t,I)] = ¢, andG(M,t,I) = g;. Based on the above lemmata,
C(Pt,I)=C(Pt—1,I)UG(M,t—1,I)soitholds that(t + 1) = c(t) + g(t).

ForG(P,t+ 1,1), notice that in the first case where a processor writes irfta\deat timet on input/,
i.e.,i € C(P,t,I), it holds that

|G(P,t+1,1)] = |C(P,t,I)| < c(t) + g(t)

There is another case foto be inG(P,t+ 1, I). Itis that no processors writes into céll at timet + 1
on input! but either; affects M at timet or a processoP writes into M at timet¢ + 1 on inputl(¢). The
latter set is actually=(M,t + 1, 1()). However, it is not difficult to estimate the size of this ssing the
following observation.

Observation 10.2.4Let indexu; cause processar,,; to write into cellM at timet + 1 on input! (u;). For
all pairs u;, u; such thatP,, # P, eitheru; € C(Py,,t, I(u;)) or u; € C(Py,,t, I(u;)).

The observation follows from the fact that concurrent veriee not allowed.

Finally, consider a bipartite graph with the parition beltig= {1, us,- - ,u,} andV = I(u;) x
{Pu,>- -+, Pu,). An edge exists between and((u;), P,;) if and only if u; affectsP,,; at timet + 1 on
input I (u;). In the abovey = |G(M,t+1,1(7))|. To get a lower bound on, we notice that the number of
edges in the above graph is at mestck(t + 1). This follows because for every vertex= (I(u;), Py,)
we have at mogC(P,,;,t+ 1, I(u;))| < c(t + 1) neighbours irlJ. It also holds that, excluding concurrent
writes, the number of pairg;, u;) such thatP,, # P, are at least(r — c(t + 1). This is because fai;
we haver choices and once we choose &or «; the number of choices is at least- ¢(t + 1). (There are
only at mos{C(Py,,t+1,1)| < c(t+1) that have to be excluded). Thus, the number of edges in tipagra
is at least(r — ¢(t + 1)) /2 and at mostc(t + 1). Putting both inequalities together and solving faives
thatr < 3c(t + 1) < 3c(t) + 3g(t).

Combining both parts, we get thaft + 1) < g(t) + r < 3c(t) + 4g(t).

To finish the proof, consider the pair of recurrence relatian andg() with suitable boundary condi-
tions and solve them using standard techniques. O

Now, the lower bound for Boolean-OR follows from the followgitheorem.

Theorem 10.2.5Let f : {0,1}" — {0,1} have a critical input. Then§2(logn) steps are required to
computef on a CREW PRAM.

Proof. Notice thatn indices affect the output of. Also, we require that the output be storedlifj. Thus,
we require thak indices affect)M;. In our notation from above, we have th@{N,, T, 1) < nif T steps
are required for computing. Using the above bounds @¥(), we get thatl’ = Q(logn). O

Since Boolean OR has a critical input, the lower bound apptiecomputing Boolean OR.

