
Parallel Algorithms and Programming
Week 9

Kishore Kothapalli

October 27, 2007

2

Chapter 10

Parallel Complexity Theory and Lower
Bounds

In the final topic of this lecture, we look at the relative power of the various PRAM models and also some
lower bound results. We also define parallel complexity classes and their relation to classical complexity
classes.

10.1 Simulations of PRAM models

10.1.1 CRCW Priority by EREW

Let us simulate a CRCW Priority machine by the EREW PRAM. The strategy would be to simulate every
read and write of the CRCW PRAM by exclusive reads and writes.The following theorem can be shown.

Theorem 10.1.1A concurrent read instruction of ap–processor CRCW Priority PRAM can be simulated
by ap–processor EREW PRAM inO(log p) steps.

Proof. The proof gives a step-by-step translation of each concurrent read instruction as follows.
Let C1, C2, · · · , Cp be thep processors of the CRCW Priority PRAM andE1, E2, · · · , Ep be thep

processors of the EREW PRAM. Let us look at a concurrent read instruction.
Let processorCi wish to read memory cellMi for i = 1 to p. A temporary storage ofp cells

T1, T2, · · · , Tp will be used by our approach. ProcessorCi writes a pair〈Mi, i〉 in slot i of T . Since
each processor has a different cell, these writes are exclusive. Notice however that because of a concurrent
read it may happen thatMi = Mj for i 6= j. Sort the entries inT lexicographically so that〈a, b〉 < 〈c, d〉 if
a < b or c < d if a = b. This sorting is done in the EREW model using the optimal sorting algorithm that
sorts inO(log p) time usingO(p) processors.

Now there are blocks of processors that are grouped according to the memory cell they read. In each
such block, find the processor with the least index. This can be done inO(1) time per block in parallel. Call
this processor as the representative of the block.

For each blockb the representative reads the memory cellMb and broadcasts this value of all other
processors in that block. This can be done inO(log p) time using the binary tree approach.

Simulating a concurrent write instruction will be part of homework. ⊓⊔

10.1.2 CRCW Priority by CRCW Common

Now we shall consider the relative power of the various concurrent write models of PRAM. It is easy to
see that a COMMON can be simulated by ARBITRARY as well as a PRIORITY without any change.

3

4 CHAPTER 10. PARALLEL COMPLEXITY THEORY AND LOWER BOUNDS

Similarly, an algorithm designed on the ARBITRARY will run without change on a PRIORITY. However,
it is not obvious how a COMMON can simulate a PRIORITY. We willshow below that a COMMON can
indeed simulate a PRIORITY provided with few extra resources with no slowdown.

To help us in the simulation and as a generalized problem thathas wider scope, we first define the
following problem.

Definition 10.1.2 (Leftmost Alive Processor Problem)Considerp processors of which some are “alive”
and some are “dead”. An alive processor is characterized by avalue1 and and dead processor by 0. The
problem is to find the lowest indexed alive processor with thecondition that the dead processors cannot
participate in the compuatation.

The above problem is very similar to the leftmost 1 problem with the only difference being the additional
rule that dead processors cannot participate in the computation. The reason for the restriction is that typically
the alive processors correspond to processors in a particular write conflict. So the processors dead are not in
conflict at this cell but could be in conflict elsewhere and hence would be part of a separate instance of the
leftmost alive problem.

We first show how to solve this problem on the CRCW Common PRAM provided that there arelog p
additional processors per each live processor.

Theorem 10.1.3The leftmost alive processor problem can be solved inO(1) time on the CRCW COMMON
PRAM using an additionallog p processors per live processor.

Proof. The proof of the theorem follows using theO(1) time minima algorithm for restricted domains.
Hence the proof is skipped in this version. ⊓⊔

We get the following results as corrollaries.

Corollary 10.1.4 A CRCW COMMON PRAM withO(p log p) processors can simulate a CRCW PRIORITY
PRAM ofp processors with no slowdown.

One can ask what would be the situation if no extra resources are made available for the COMMON
PRAM to simulate the PRIORITY PRAM. In this case, as the following results shows, a slowdown of
O(log p

log log p
) suffices.

Theorem 10.1.5

10.2 Lower Bound Results

We next turn to prove lower bounds. First we concentrate on the CREW PRAM. To show the applicability
of our lower bounds, we strengthen the PRAM model slightly todefine an “ideal” PRAM. If we show a
lower bound on this (stronger) model then certainly it should hold on our regular PRAM model.

10.2.1 The Ideal PRAM

We do not go overboard in strengthening our PRAM model. We only assume that the shared memory has
unbounded size. Each processor hasunlimited local memory. Each computation step will be viewed as 3
steps: a read step where values are read from the shared memory, a compute step for local computation, and
a write step to write values into shared memory. We shall allow arbitrary amounts of local computation in
each step. The restrictions concerning concurrent reads and writes as similar to that our standard definition
of the PRAM.

10.2. LOWER BOUND RESULTS 5

10.2.2 Lower Bound for Boolean-OR on a CREW PRAM

Let f be ann–input Boolean function. We denote the input tof by I = x1x2 · · · xn. If the ith bit of I is
flipped we denote such input byI(i). An input I is said to becritical for f if and only if f(I) 6= f(I(i))
for all 1 ≤ i ≤ n. For example the input000 · · · 0 is critical for the Boolean OR function. If an inputI is
critical, then the idea is that if any bit inI, sayxi, is flipped then the output changes. Hence the computation
of f should run for enough time steps to letxi affect the output.

Let us assume that for computing the functionf , the inputs are given in memory cellsM1,M2, · · · ,Mn

of the shared memory. We shall also assume that the cellM1 contains the output at the end of the computa-
tion.

We say that an input indexi affectsa memory locationM at timet on some inputI if the contents ofM
at timet and inputI differs from the contents ofM at timet on inputI(i). To capture this definition, we
define the setG(M, t, I) as follows:

G(M, t, I) = {i | i affectsM at timet on inputI}

Along the same lines, we can also look at how the state of a processor is affected by an input index. By
the state of the processor we can take all that describes the current state including the contents of the reigsters
and the local memory of the processor. The state of a processor may change by some read operation. Let us
define the setC(P, t, I) as follows:

C(P, t, I) = {i | i affectsP at timet on inputI}

To come up with a lower bound for Boolean OR compuataion, we have to study how the setsC andG
evolve. We first present two lemmata.

Lemma 10.2.1 If i ∈ C(P, t, I) then:

• eitheri ∈ C(P, t − 1, I), or

• P reads a gloabl memory locationM on inputI at timet andi ∈ G(P, t − 1, I).

Proof. We are given that the state ofP at time t on inputI at time t is different from the state ofP at
time t on inputI(i). Suppose thati 6∈ C(P, t − 1, I). Then, it means that the state ofP at timet − 1 does
not change regardless of the input beingI or I(i). So it must be the case thatP read some global memory
location that is affected by indexi in time stept − 1. Hence,i ∈ G(P, t − 1, I). The other part of the proof
is similar. ⊓⊔

Lemma 10.2.2 Let i ∈ G(M, t, I). Then,

• eitheri ∈ C(P, t, I) and processorP writes intoM at timet on inputI, or

• No processor writes intoM at timet − 1 on inputI and eitheri ∈ G(M, t − 1, I) or a processorP
writes intoM at timet on inputI(i).

The proof of this lemma is left as a homework problem.
We use the above lemmata to show the following key theorem.

Theorem 10.2.3Let P be a processor andM be a memory cell in a CREW PRAM. Then aftert steps of
computation,

|G(M, t, I)| ≤ bt and |C(P, t, I)| ≤ bt

whereb = 5+
√

21
2

.

6 CHAPTER 10. PARALLEL COMPLEXITY THEORY AND LOWER BOUNDS

Proof. To simplify notation let|C(P, t, I)| = ct andG(M, t, I) = gt. Based on the above lemmata,
C(P, t, I) = C(P, t − 1, I) ∪ G(M, t − 1, I) so it holds thatc(t + 1) = c(t) + g(t).

ForG(P, t + 1, I), notice that in the first case where a processor writes into cell M at timet on inputI,
i.e., i ∈ C(P, t, I), it holds that

|G(P, t + 1, I)| = |C(P, t, I)| ≤ c(t) + g(t)

There is another case fori to be inG(P, t+1, I). It is that no processors writes into cellM at timet+1
on inputI but eitheri affectsM at timet or a processorP writes intoM at timet + 1 on inputI(i). The
latter set is actuallyG(M, t + 1, I(i)). However, it is not difficult to estimate the size of this set using the
following observation.

Observation 10.2.4Let indexui cause processorPwj
to write into cellM at timet + 1 on inputI(ui). For

all pairs ui, uj such thatPwi
6= Pwj

eitherui ∈ C(Pwj
, t, I(uj)) or uj ∈ C(Pwi

, t, I(ui)).

The observation follows from the fact that concurrent writes are not allowed.
Finally, consider a bipartite graph with the parition beingU = {u1, u2, · · · , ur} andV = I(ui) ×

{Pw1
, · · · , Pwr

). An edge exists betweenui and((uj), Pwj
) if and only if ui affectsPwj

at timet + 1 on
input I(uj). In the above,r = |G(M, t + 1, I(i))|. To get a lower bound onr, we notice that the number of
edges in the above graph is at mostr · ck(t + 1). This follows because for every vertexv = (I(uj), Pwj

)
we have at most|C(Pwj

, t + 1, I(uj))| ≤ c(t + 1) neighbours inU . It also holds that, excluding concurrent
writes, the number of pairs(ui, uj) such thatPwi

6= Pwj
are at leastr(r − c(t + 1). This is because forui

we haver choices and once we choose aui for uj the number of choices is at leastr − c(t + 1). (There are
only at most|C(Pwj

, t+1, I)| ≤ c(t+1) that have to be excluded). Thus, the number of edges in the graph
is at leastr(r − c(t + 1))/2 and at mostrc(t + 1). Putting both inequalities together and solving forr gives
thatr ≤ 3c(t + 1) ≤ 3c(t) + 3g(t).

Combining both parts, we get thatg(t + 1) ≤ g(t) + r ≤ 3c(t) + 4g(t).
To finish the proof, consider the pair of recurrence relations c() andg() with suitable boundary condi-

tions and solve them using standard techniques. ⊓⊔

Now, the lower bound for Boolean-OR follows from the following theorem.

Theorem 10.2.5Let f : {0, 1}n → {0, 1} have a critical input. Then,Ω(log n) steps are required to
computef on a CREW PRAM.

Proof. Notice thatn indices affect the output off . Also, we require that the output be stored inM1. Thus,
we require thatn indices affectM1. In our notation from above, we have thatG(M1, T, I) ≤ n if T steps
are required for computingf . Using the above bounds onG(), we get thatT = Ω(log n). ⊓⊔

Since Boolean OR has a critical input, the lower bound applies to computing Boolean OR.

