
An Introduction to Randomized Algorithms

The focus of this lecture is to study a randomized algorithm for quick sort, analyze it using probabilistic recur-
rence relations, and also provide more general tools for analysis of randomized algorithms. For a quick overview of
probability and terms associated with it, the reader is advised to see the Appendix.

1 Randomized QuickSort

In this section, we present the classic quick sort algorithmand compute the expected running time of the algorithm.
We assume that the elements of the set are all distinct. Belowis the randomized quick sort algorithm.
Algorithm RandQuickSort(S)

Choose a pivot element xi u.a.r from S = {x1, x2, · · · , xn}
Split the set S into two subsets S1 = {xj |xj < xi}
and S2 = {xj |xj > xi} by comparing each xj with the chosen xi

Recurse on sets S1 and S2

Output the sorted set S1 then xi and then sorted S2.
end Algorithm

Analysis

Let T (n) be the number of steps taken by the RandQuickSort algorithm on a set of sizen. Note that the maximum
value ofT (n) occurs when the pivot elementxi is the largest/smallest element of the remaining set duringeach
recursive call of the algorithm. In this case,T (n) = n + (n − 1) + · · · + 1 = O(n2). This value ofT (n) is reached
with a very low probability of1n · 1

n−1 · · · · 1
2 = 1

n! . Also, the best case occurs when the pivot element splits thesetS
into two equal sized subsets and thenT (n) = O(n ln n). This implies thatT (n) has a distribution betweenO(n ln n)
andO(n2). Now we derive the expected value ofT (n). Note that if theith smallest element is chosen as the pivot
element thenS1 andS2 will be of sizesi − 1 andn − i − 1 respectively and this choice has a probability of1

n . The
recurrence relation forT (n) is:

T (n) = n + T (X) + T (n− 1 − X) (1)

where,Pr[X = i] = 1
n for i ∈ {0, 1, · · · , n − 1}. Hence,Pr[n − 1 − X = i] = Pr[X = n − 1 − i] = 1

n .
However, it is incorrect to writeT (n− 1 − X) = T (X).

Taking expectations on both sides of (1),
E[T (n)] = n + 1

n

∑n−1
i=1 E[T (i)] + 1

n

∑n−1
j=1 E[T (j)]

= n + 2
n

∑n−1
i=1 E[T (i)].

Let f(i) = E[T (i)]. Then,f(n) = n + 2
n

∑n−1
i=1 f(i). Simplifying,

nf(n) = n2 + 2(f(1) + f(2) + · · · + f(n − 1)) (2)

Substitutingn − 1 for n in (2),

(n − 1)f(n − 1) = (n − 1)2 + 2(f(1) + f(2) + · · · + f(n − 2)) (3)

Subtracting (3) from (2), we getnf(n)−(n−1)f(n−1) = (2n−1)+2f(n−1) or f(n) = n+1
n f(n−1)+ 2n−1

n .
We prove by induction thatf(n) ≤ 2n lnn.
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1.0.1 Claim: f(n) ≤ 2n lnn

Proof: Induction basis:n = 1, the claim holds.
Let the claim hold for all values up ton − 1. Then,
f(n) = n+1

n f(n − 1) + 2n−1
n

≤ n+1
n 2(n − 1) ln(n − 1) + 2n−1

n by induction hypothesis

= 2(n2−1)
n ln(n − 1) + 2n−1

n

= 2(n2−1)
n (ln n + ln(1 − 1

n )) + 2n−1
n

We make use of the standard inequality stated below.

Fact 1.1 1 + x ≤ ex for x ∈ R. For example,1 + 0.2 ≤ e0.2 and1 − 0.2 ≤ e−0.2.

f(n) ≤ 2(n2−1)
n (ln n − 1

n ) + 2n−1
n

= 2n lnn − 2
n lnn − 2 + 2

n2 + 2 − 1
n

≤ 2n lnn, establishing the inductive step.
Hence, the expected running time of the randomized quick sort algorithm isO(n lnn). But one of the limitations

of the recurrence relation approach is that we do not how the running time of the algorithm is spread around its
expected value. Can this analysis be extended to answer questions such as, with what probability does the algorithm
RandQuickSort needs more than12n lnn time steps? Later on, we apply a different technique and establish that this
probability is very small. Similarly, for the case of the Maximum algorithm, by solving the recurrence relation for the
expected running time, we will not be able to answer questions of the form, what is the probability that the run time is
greater than3n?

Answers to such questions give how close the random variableis spread around its expected value or how varied
the distribution is. To be able to answer such queries, we study Tail inequalities in the next section.

2 Tail Inequalities

In this section, we study three ways to estimate the tail probabilities of random variables. It will be noted that, the more
information we know about the random variable the better theestimate we can derive about a given tail probability.

2.1 Markov Inequality

Theorem 2.1 Markov Inequality
If X is a non-negative valued random variable with an expectation ofµ, thenPr[X ≥ cµ] ≤ 1

c .

Proof. By definition,
µ =

∑

a aPr[X = a]
=

∑

a<cµ aPr[X = a] +
∑

a≥cµ aPr[X = a]

≥ 0 +
∑

a≥cµ cµPr[X = a] asX is non-negative valued
= cµ

∑

a≥cµ Pr[X = a]

= cµPr[X ≥ cµ]

Hence,Pr[X ≥ cµ] ≤ µ
cµ = 1

c . ⊓⊔

The knowledge of the standard deviation of the random variable X would most often give a better bound.

2.2 Chebychev Inequality

We first define the terms standard deviation and variance of a random variableX .

Definition 2.2 Let X be a random variable with an expectation ofµ. The variance ofX , denoted by var(X), is
defined as var(X) = E[(X − µ)2]. The standard deviation ofX , denoted byσX , is defined asσX =

√

var(X).

Note that by definition, var(x) = E[(X−µ)2] = E[X2−2Xµ+µ2] = E[X2]−µ2. The second equality follows
from the linearity of expectations.
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Theorem 2.3 Chebychev Inequality
LetX be a random variable with expectationµX and standard deviationσX . Then,Pr[|X − µX | ≥ cσX ] ≤ 1

c2 .

Proof. Let random variableY = (X − µX)2. Then,E[Y ] = E[(X − µX)2] = σ2
X by definition and alsoY is a

non-negative valued random variable.
Now,Pr[|X − µX | ≥ cσX ] = Pr[(X − µX)2 ≥ c2σ2

X ] = Pr[Y ≥ c2σ2
X ].

Applying Markov Inequality to the random variableY , Pr[Y ≥ c2σ2
X ] = Pr[Y ≥ c2µY ] ≤ 1

c2 . Hence the
theorem. ⊓⊔

2.3 Chernoff Bounds

The tail estimates given by Theorem 2.1, Theorem 2.3 work forrandom variables in general. But if the random variable
X can be expressed as a sum ofn independent random variables each of which is0, 1− valued, then we can obtain
very tight bounds on the tail estimates. This is expressed inthe following theorem and the bounds are commonly
called as Chernoff Bounds.

Theorem 2.4 Chernoff Bounds:
Let X be a random variable defined asX = X1 + X2 + · · · + Xn where eachXi, 1 ≤ i ≤ n, is a 0, 1− valued
random variable and allXi’s are independent. Also, letE[X ] = µ andPr[Xi = 1] = pi, 1 ≤ i ≤ n. Then for any

δ > 0, Pr[X ≥ µ(1 + δ)] ≤
(

eδ

(1+δ)1+δ

)µ

.

Proof. The normal strategy employed to prove tail estimates of sumsof independent random variables is to make use
of exponential moments. While proving Chebychev inequality (Theorem 2.3), we made use of second-order moment.
It can be observed that using higher order moments would generally improve the bound on the tail inequality. But
using exponential moments would result in a vast improvement in the bound as we shall see later in some examples.

Observe that,

µ =

n
∑

i=1

pi (4)

by definition ofX and using linearity of expectations. LetYi = etXi for some parametert to be chosen later. Note
thatYi’s are also independent asXi’s are. Define the random variableY = Y1Y2 · · ·Yn. Then,

E[Yi] = E[etXi ] = pie
t + (1 − pi)e

0 = 1 − pi + pie
t (5)

E[Y ] = E[Y1Y2 · · ·Yn] = Πn
i=1E[Yi] = Πn

i=1(1 − pi + pie
t) (6)

where the second equality follows from independence ofYi’s and the last equality follows from (5). Now,

Pr[X ≥ µ(1 + δ)] = Pr[Y ≥ etµ(1+δ)] ≤ E[Y ]

etµ(1+δ)
=

Πn
i=1(1 − pi + pie

t)

etµ(1+δ)
(7)

by using Markov inequality from Theorem 2.1 and equation (6).
We now make use of the inequality from Fact 1.1 in equation (7)which then reduces to,

Pr[X ≥ µ(1 + δ)] =
Πn

i=1e
−pi(1−et)

etµ(1+δ)
=

e−µ(1−et)

etµ(1+δ)
= eµ[(et−1)−t(1+δ)] (8)

where the second equality follows from equation (4). In (8),we can choose a value oft that minimizes the probability
estimate. To find the minimum letf(t) = ln eµ[(et−1)−t(1+δ)] = −µ(1 − et) − tµ(1 + δ). Differentiatingf(t) with
respect tot and equating it to zero gives usµet − µ(1 + δ) = 0 or t = ln(1 + δ). Using this value oft in (8),

Pr[X ≥ µ(1 + δ)] ≤ e−µ(1−(1+δ))

(1 + δ)µ(1+δ)
=

eµδ

(1 + δ)(1+δ)
=

(

eδ

(1 + δ)(1+δ)

)µ

. (9)

That completes the proof. ⊓⊔

But the form of the inequality in equation (9) is not very convenient to handle. In addition this form is hard to
invert, i.e. given the probability bound, choose an appropriateδ. Instead, we use the following form most often.
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Theorem 2.5 LetX be defined as in Theorem 2.4. Then,

Pr[X ≥ (1 + δ)µ] ≤
{

e−µδ2/4 if δ ≤ 1
e−µδ ln δ if δ > 1

2.4 Application of Tail Inequalities

We consider the use of tail inequalities to two problems.

2.4.1 n Balls andn Bins

Consider throwingn balls independently and uniformly at random inton bins. We are interested in the probability
that bin1 contains more than4 balls. Definen 0, 1− valued random variablesXi, 1 ≤ i ≤ n, defined asXi = 1
if ball i falls into bin 1 and 0 otherwise. By uniformity,Pr[Xi = 1] = 1

n . Define the random variableX =
X1 + X2 + · · ·Xn. ThusX denotes the number of balls that fall in bin1. By linearity of expectations,E[X ] =
E[
∑n

i=1 Xi] =
∑n

i=1 E[Xi] = n 1
n = 1.

Using Markov inequality from Theorem 2.1, we get

Pr[X ≥ 4] ≤ 1

4
(10)

Before using Chebychev inequality (Theorem 2.3), we first compute the standard deviation ofX as follows.

var(Xi) = E[X2
i ] − E[Xi]

2 =
1

n
− 1

n2
(11)

var(X) = nvar(X1) = n(
1

n
− 1

n2
) = 1 − 1

n
(12)

where the first equality in (12) follows from the independence ofX ′
is. Hence,

σX =

√

1 − 1

n
(13)

Applying Chebychev inequality to the random variableX ,

Pr[X ≥ 4] = Pr[X − 1 ≥ 3] ≤ Pr[|X − 1| ≥ 3] ≤ 1
(

3√
1− 1

n

)2 =
1 − 1

n

9
≤ 1

9
(14)

Using Chernoff bounds from Theorem 2.4,

Pr[X ≥ 4] = Pr[X ≥ (1 + 3)1] ≤ e−1·3 ln 3 =
1

27
(15)

where in we used the simpler form of Chernoff bounds as statedin Theorem 2.5.
Now comparing equations (10), (14) and (15) we can see that using Chebychev inequality gives a better bound

than that of Markov inequality and a much better bound is obtained using Chernoff bounds. As another example, let
us consider the probability that bin1 has more than1 + 10 lnn balls. Using Markov inequality, we getPr[X ≥
1 + 10 lnn] ≤ 1

1+10 ln n . Using Chebychev inequality we get thatPr[X ≥ 1 + 10 lnn] ≤ Pr[|X − 1| ≥ 10 lnn] ≤
1− 1

n

100 ln2 n
≤ 1

100 ln2 n
. Whereas, using Chernoff bounds, we can getPr[X ≥ 1 + 10 lnn] ≤ e−10 ln n ln (10 ln n) =

n−10 ln 10 ln n ≤ 1
n10 . With a tighter analysis using Chernoff bounds it can be shown that for the case ofn balls andn

bins, the probability that bin1 has more thanc ln n
ln ln n for some constantc is very small, say1

n2 .
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2.4.2 n lnn balls andn bins

In this scenario we haven lnn balls andn bins where balls are thrown into the bins independently and uniformly
at random. Define the random variablesXi, 1 ≤ i ≤ n lnn andX as above. We havePr[Xi = 1] = 1/n and
E[X ] = lnn. Let us estimate the probability that bin1 has more than10 lnn balls. Using Markov inequality, we get
thatPr[X ≥ 10 lnn] ≤ 1/10. Instead, using Chernoff bounds, we getPr[X ≥ 10 lnn] = Pr[X ≥ (1 + 9) lnn] ≤
e−9 ln n ln 9 ≤ 1/n20 which is exponentially small.

In general, it can be observed that if the expectation of the random variable is small then we pay a higher penalty
to derive a w.h.p bound.

A Probability Theory

We start by defining probability and then introduce some well-known inequalities that we often use.
Let Ω be an arbitrary set, called the sample space. We start by defining a σ–field, also sometimes called aσ–

algebra.

Definition A.1 (σ–field) A collectionF of subsets ofΩ is called aσ–field if it satisfies:

1. Ω ∈ F

2. A ∈ F impliesAc ∈ F , and

3. For any countable sequenceA1, A2, . . ., if A1, A2, . . . ∈ F thenA1 ∪ A2 ∪ . . . ∈ F .

Definition A.2 A set functionPr on a σ–fieldF of subsets ofΩ such thatPr : F → [0, 1] is called a probability
measure if it satisfies:

1. 0 ≤ Pr(A) ≤ 1, ∀A ∈ F .

2. Pr(Ω) = 1, and

3. If A1, A2, . . . is a disjoint sequence of sets inF then

Pr

(

∞
⋃

i=1

Ai

)

=

∞
∑

i=1

Pr(Ai)

The triad(Ω,F , Pr) is often called a probability space. For equivalent and alternate definitions, examples, and
a more complete introduction, we refer the reader to standard textbooks on probability [?]. In the following, if no
probability space is mentioned then any space(Ω,F , Pr) can be taken.

We often use the following inequality called “Boole’s inequality” which is part of a general Boole-Bonferroni
inequalities [?] and this is also sometimes referred to as the “union bound” as it provides a bound on the probability of
a union of events. This inequality is also referred to as the (finite) sub-additivity property of the probability measure.

Proposition A.3 (Boole’s inequality) For any arbitrary eventsA1, A2, . . . An,

Pr

(

n
⋃

i=1

Ai

)

≤
n
∑

i=1

Pr(Ai)

The notion of independence is an important concept in the study of probability.

Definition A.4 (Independence) A collection of events{Ai : i ∈ I} is said to beindependentif for all S ⊆ I,
Pr(∩i∈SAi) = Πi∈S Pr(Ai).

We now define random variable, which is anymeasurablefunction fromΩ to IR. LetR denote the standard Borel
σ–field associated withIR, which is theσ–field generated by left-open intervals ofIR [?].

Definition A.5 (Random Variable) Given a probability space(Ω,F , Pr), a mappingX : Ω → IR is called a random
variable if it satisfies the condition thatX−1(R) ∈ F for everyR ∈ R.
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We represent as{X ≤ x} as the set{ω ∈ Ω|X(ω) ≤ x} for x ∈ IR and also writePr(X ≤ x) as the probability
of the above event. Similar definition can be made for representing the set{ω ∈ Ω|X(ω = x} as{X = x}.

The notion of independence also extends to random variables. Two random variablesX andY are said to be
independentif the events{X ≤ x} and{Y ≤ y} are independent forx, y ∈ R. The definition extends to multiple
random variables just as in Definition A.4.

Associated with any random variable is a distribution function defined as follows.

Definition A.6 (Distribution function) The distribution functionF : IR → [0, 1] for a random variableX is defined
asFX(x) = Pr(X ≤ x).

A random variableX is said to be adiscreterandom variable if the range ofX is a finite or countably infinite subset
of IR. For discrete random variables, the following definition can be provided for thedensityof a random variable.

Definition A.7 (Density) Given a random variableX , the density functionfX : IR → [0, 1] of X is defined as
fX(x) = Pr(X = x).

The above definition can be extended to all types of random variables also with proper care. In the rest of this
section, we focus on discrete random variables only and hence the definitions are made for the case of discrete random
variables. With proper care, the definitions however can be extended [?].

An important quantity of interest of a random variable is itsexpectation.

Definition A.8 (Expectation) Given a probability space(Ω,F , Pr) and a random variableX , the expectation ofX ,
denotedE[X ], is defined as

E[X ] =
∑

x∈IR

xPr[X = x]

with the convention that0 · ∞ = ∞ · 0 = 0.
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