An Introduction to Randomized Algorithms

The focus of this lecture is to study a randomized algoritbmqiuick sort, analyze it using probabilistic recur-
rence relations, and also provide more general tools fdysiseof randomized algorithms. For a quick overview of
probability and terms associated with it, the reader isseti/to see the Appendix.

1 Randomized QuickSort

In this section, we present the classic quick sort algorigima compute the expected running time of the algorithm.
We assume that the elements of the set are all distinct. Beltve randomized quick sort algorithm.
Al gorithm RandQui ckSort (S)
Choose a pivot element z; u.a.r fromS={xy, 29, -+ ,2,}
Split the set S into two subsets S ={zj|z; <z}
and S, = {z;|lz; > z;} by conparing each z; with the chosen z;
Recurse on sets S; and Sy
Qut put the sorted set S; then z; and then sorted Ss.
end Al gorithm

Analysis

Let T'(n) be the number of steps taken by the RandQuickSort algorithia get of size:. Note that the maximum
value of T'(n) occurs when the pivot element is the largest/smallest element of the remaining set duganh
recursive call of the algorithm. In this casg(n) = n + (n — 1) + --- + 1 = O(n?). This value ofl'(n) is reached
with a very low probability of- - L . ... 2 = L, Also, the best case occurs when the pivot element splitseitte
into two equal sized subsets and tféfm) = O(nInn). This implies thafl’(n) has a distribution between(n Inn)
andO(n?). Now we derive the expected value Bfn). Note that if thei'” smallest element is chosen as the pivot
element therb; andS, will be of sizesi — 1 andn — i — 1 respectively and this choice has a probability}lofThe

recurrence relation fdf' (n) is:

T(n)=n+T(X)+T(n—1-X) @)

where,Pr(X = i] = 1 fori € {0,1,---,n—1}. Hence,Prin —1 - X =i] = PrlX =n—1-i] =
However, it is incorrect to writd’(n — 1 — X) = T'(X).
Taking expectations on both sides of (1),
E[T(n)] = n+ 3305 BII6)]+ 5 55 EIT()
= n+ 23 BTG
Let f(i) = E[T(i)]. Then,f(n) = n+ 2 327" £(i). Simplifying,

nf(n) =n® +2(f(1) + f(2) + -+ f(n = 1)) 2
Substitutingn — 1 for n in (2),

3=

(n=1)f(n—1) = (n=1)* +2(f(1) + f(2) + -+ f(n — 2)) ®3)

Subtracting (3) from (2), we getf (n) — (n—1)f(n—1) = 2n—1)+2f(n—1)or f(n) = 2L f(n—1) 4 221,
We prove by induction that(n) < 2nlnn.



1.0.1 Claim: f(n) < 2nlnn

Proof: Induction basisn = 1, the claim holds.
Let the claim hold for all values up te — 1. Then,
f(n) L f(n— 1) + 2t
2519(n — 1) In(n — 1) 4+ 22=1 by induction hypothesis
2n2—1) In(n — 1) + 221
= —2("i_1) (Inn+1In(1 — 1)) + 221
We make use of the standard inequality stated below.

IA

Fact1.1 1+ 2 < e® forz € R. Forexample] + 0.2 < e%2and1 — 0.2 < 702,

fn) < 2 (np - 1) 4 2L
= 2nlnn—%1nn—2—|—n%+2—%
< 2nlnn, establishing the inductive step.

Hence, the expected running time of the randomized quidkedgorithm isO(n Inn). But one of the limitations
of the recurrence relation approach is that we do not how tinaing time of the algorithm is spread around its
expected value. Can this analysis be extended to answetiangesuch as, with what probability does the algorithm
RandQuickSort needs more thén Inn time steps? Later on, we apply a different technique andksttiethat this
probability is very small. Similarly, for the case of the Miamum algorithm, by solving the recurrence relation for the
expected running time, we will not be able to answer questadrthe form, what is the probability that the run time is
greater thadn?

Answers to such questions give how close the random varigisigread around its expected value or how varied
the distribution is. To be able to answer such queries, waystail inequalities in the next section.

2 Tail Inequalities

In this section, we study three ways to estimate the tail gbdiies of random variables. It will be noted that, the mor
information we know about the random variable the betteettanate we can derive about a given tail probability.

2.1 Markov Inequality

Theorem 2.1 Markov Inequality
If X is a non-negative valued random variable with an expeatetiy:, thenPr[X > cu] <

ol

Proof. By definition,
po= L.aPr[X =d
Za<w aPr[X =a]+ Zach aPr[X = a)

> 043 5., cuPr[X = a] asX is non-negative valued
= Y s PIX =4
= cuPr[X > cy
Hence,Pr[X > cu] < c% =1 O

The knowledge of the standard deviation of the random viridbwould most often give a better bound.

2.2 Chebychev Inequality

We first define the terms standard deviation and varianceafidam variableX .

Definition 2.2 Let X be a random variable with an expectation @f The variance ofX, denoted by varX), is
defined as vdX) = E[(X — p)?]. The standard deviation of, denoted by x, is defined agx = (/var(X).

Note that by definition, vdr) = E[(X — u)?] = E[X? —2X u+ u?] = E[X?] — u?. The second equality follows
from the linearity of expectations.



Theorem 2.3 Chebychev Inequality
Let X be a random variable with expectatign; and standard deviatioa x. Then,Pr{|X — ux| > cox] < C%

Proof. Let random variabl®” = (X — px)?. Then,E[Y] = E[(X — ux)?] = 0% by definition and alsd” is a
non-negative valued random variable.

Now, Pr{|X — ux| > cox] = Pr[(X — pux)?* > ?o%] = Pr[Y > ?o%].

Applying Markov Inequality to the random variable, Pr[Y > c?0%] = Pr[Y > c*uy] < %. Hence the
theorem. O

2.3 Chernoff Bounds

The tail estimates given by Theorem 2.1, Theorem 2.3 workdiodom variables in general. But if the random variable
X can be expressed as a sumnohdependent random variables each of which,is— valued, then we can obtain
very tight bounds on the tail estimates. This is expressdtarfollowing theorem and the bounds are commonly
called as Chernoff Bounds.

Theorem 2.4 Chernoff Bounds:
Let X be a random variable defined & = X; + X5 + --- + X,, where eachX;,1 < i < n, is a0,1— valued
random variable and allX;'s are independent. Also, I&[X] = p and Pr[X; = 1] = p;,1 < i < n. Then for any

m
5> 0, Pr(X > u(1+0)] < (%)

Proof. The normal strategy employed to prove tail estimates of sufrirelependent random variables is to make use
of exponential moments. While proving Chebychev inequéliheorem 2.3), we made use of second-order moment.
It can be observed that using higher order moments wouldrgy@nprove the bound on the tail inequality. But
using exponential moments would result in a vast improverimaihe bound as we shall see later in some examples.

Observe that,
p=> pi 4)
i=1
by definition of X and using linearity of expectations. Lt = e**+ for some parametérto be chosen later. Note
thatY;'s are also independent &§'s are. Define the random variabie= Y;Y5 - - - Y,,. Then,

ElY;] = E[etxi] =piet + (1 - pi)eo =1—1p; + piet (5)

E[Y]=EMYz--Y,] =L, E[Y;] = I (1 — pi + pic’) (6)
where the second equality follows from independencg gfand the last equality follows from (5). Now,

eti(1+6) - eth(1+9)

Pr{X > (1 +6)] = Prly > en(1+9)] <

by using Markov inequality from Theorem 2.1 and equation (6)
We now make use of the inequality from Fact 1.1 in equatiomg¥ith then reduces to,
7 e Pil=e)  gmp(l—e)

PriX = p(l+0)l = == rars— = —mare = erlte o) (8)

where the second equality follows from equatign (4). In{®,can choose a value tthat minimizes the probability
estimate. To find the minimum lgt(t) = Inerl(¢"~D=t0+0)] — _ (1 — et) — tu(1 + 6). Differentiating f () with
respect tad and equating it to zero gives wg’ — (1 +6) = 0 ort = In(1 + ). Using this value of in (8),

PrX > pl4g) < f e ¢ g 9
rX > p(l+9)] < 1+ 0)r+) — (1+0)0te)  \(I+0)+ ) - )

That completes the proof. O

But the form of the inequality in equation (9) is not very cenient to handle. In addition this form is hard to
invert, i.e. given the probability bound, choose an appeateé. Instead, we use the following form most often.



Theorem 2.5 Let X be defined as in Theorem 2.4. Then,

-84 if 5 <1
> < € =
PriX = (1+6)p] < { o6 if 5> 1

2.4 Application of Tail Inequalities

We consider the use of tail inequalities to two problems.

2.4.1 n Balls andn Bins

Consider throwing: balls independently and uniformly at random intdins. We are interested in the probability
that bin1 contains more than balls. Definen 0,1— valued random variableX;,1 < ¢ < n, defined asX; = 1
if ball i falls into bin 1 and0 otherwise. By uniformity,Pr[X; = 1] = 1. Define the random variabl& =
X1+ X2 + --- X,,. ThusX denotes the number of balls that fall in hin By linearity of expectationsE[X] =
Eyi Xi|=Y" EXi]=nt=1

Using Markov inequality from Theorem 2.1, we get

Pr(X >4] < i (10)
Before using Chebychev inequality (Theorem 2.3), we firshpgote the standard deviation &f as follows.
var(X;) = E[X?] — E[Xi]? = 1.1 (11)
Y g Y n2
1 1 1
Va.r(X) = TLVar(Xl) = ’I’L(ﬁ — ﬁ) =1 E (12)
where the first equality in (12) follows from the independepnéX/s. Hence,
ox = 1-— l (13)
n
Applying Chebychev inequality to the random varialle
1 1-: 1
PriX>4]=PrlX—-1>3]<Pr[| X -1] >3] < 5 = 9”§§ (14)
3
)
Using Chernoff bounds from Theorem 2.4,
PriX >4]=Pr[X > (1+3)1] <e 133 = L (15)

27

where in we used the simpler form of Chernoff bounds as statétieorem 2.5.

Now comparing equations (10), (14) and (15) we can see tliag) @hebychev inequality gives a better bound
than that of Markov inequality and a much better bound isiobthusing Chernoff bounds. As another example, let
us consider the probability that binhas more thai + 101nn balls. Using Markov inequality, we gdgtr[X >
1+10Inn] < m. Using Chebychev inequality we get that[X > 1+ 10lnn] < Pr[|X — 1| > 101Inn)|

1-1 1 . —10lnnln (10lnn) _
o < ooz Whereas, using Chernoff bounds, we can BetX > 1+ 10Inn] < e =

p~ 1010 < Lo With a tighter analysis using Chernoff bounds it can be shthat for the case of balls andn
bins, the probability that biih has more thart22 for some constantis very small, saynl—z.

Inlnn

A




2.4.2 nlnn balls andn bins

In this scenario we have Inn balls andn bins where balls are thrown into the bins independently aritbumly
at random. Define the random variabl&s,1 < i < nlnn andX as above. We hav®r[X; = 1] = 1/n and
E[X] = Inn. Let us estimate the probability that birhas more than0 In n balls. Using Markov inequality, we get
that Pr[X > 101nn] < 1/10. Instead, using Chernoff bounds, we g&t{X > 10lnn] = Pr[X > (1+9)Inn] <
e~ 9nnIn9 < 1 /520 which is exponentially small.

In general, it can be observed that if the expectation oféinelom variable is small then we pay a higher penalty
to derive a w.h.p bound.

A Probability Theory

We start by defining probability and then introduce some-kitiwn inequalities that we often use.
Let Q be an arbitrary set, called the sample space. We start byirdgfirv—field, also sometimes calledoa-
algebra.

Definition A.1 (o—field) A collectionF of subsets of? is called ac—field if it satisfies:
1. QeF
2. A € FimpliesAc € F, and
3. For any countable sequeneg, A, ..., if A, As,... € FthenA;UAU... € F.

Definition A.2 A set functiorPr on ao—field F of subsets of? such thatPr : 7 — [0, 1] is called a probability
measure if it satisfies:

1. 0<Pr(A) <1, VAeF.
2. Pr(Q)=1,and

3. If Ay, Ao, ... is adisjoint sequence of setsfthen
=1 =1

The triad(Q2, 7, Pr) is often called a probability space. For equivalent and@éte definitions, examples, and
a more complete introduction, we refer the reader to stahtteitbooks on probability?]. In the following, if no
probability space is mentioned then any spgeeF, Pr) can be taken.

We often use the following inequality called “Boole’s inedjty” which is part of a general Boole-Bonferroni
inequalities P] and this is also sometimes referred to as the “union bousadt’@ovides a bound on the probability of
a union of events. This inequality is also referred to as finit€) sub-additivity property of the probability measure

Proposition A.3 (Boole's inequality) For any arbitrary eventsd;, Ao, ... A,

i=1 i=1

The notion of independence is an important concept in thaystfiprobability.

Definition A.4 (Independence) A collection of event§A; : ¢ € I} is said to beindependenif for all S C I,
Pr(NiesA;i) = lies Pr(4;).

We now define random variable, which is amgasurabldéunction from( to IR. Let R denote the standard Borel
o—field associated witlR, which is thes—field generated by left-open intervalsIBf ?].

Definition A.5 (Random Variable) Given a probability spacé&?, F, Pr), a mappingX : Q — IR is called a random
variable if it satisfies the condition tha ~'(R) € F for everyR € R.



We represent aEX < z} as the sefw € Q| X (w) < z} for x € IR and also writePr(X < z) as the probability
of the above event. Similar definition can be made for repitasg the sefw € Q| X (w = z} as{X = «}.

The notion of independence also extends to random variafiles random variableX andY are said to be
independenif the events{ X < z} and{Y < y} are independent for,y € R. The definition extends to multiple
random variables just as in Definition A.4.

Associated with any random variable is a distribution fimttefined as follows.

Definition A.6 (Distribution function) The distribution functior¥ : IR — [0, 1] for a random variableX is defined
asFx(z) =Pr(X < xz).

Arandom variableX is said to be @iscreterandom variable if the range of is a finite or countably infinite subset
of IR. For discrete random variables, the following definition && provided for thelensityof a random variable.

Definition A.7 (Density) Given a random variableX, the density functiorfx : IR — [0,1] of X is defined as
fx(z) =Pr(X = z).

The above definition can be extended to all types of randomahias also with proper care. In the rest of this
section, we focus on discrete random variables only andehrecdefinitions are made for the case of discrete random
variables. With proper care, the definitions however candteneled ).

An important quantity of interest of a random variable issikpectation.

Definition A.8 (Expectation) Given a probability spacé&?, 7, Pr) and a random variableX, the expectation ok,
denotedE[X], is defined as

E[X] =) aPr[X =a

with the conventionthdi - co = oo - 0 = 0.



