1 Introduction

In this week we study two ideas in complexity theory. The fidsia is to understand how the complexity
of deciding languages changes as machines are allowedkadeiee before they output their decision.
This is called as non-uniform computation. The purpose isfigito understand upper bounds on what is
normally thought of as computable. The second idea devétapfirst and aims to build a hierarchy of time
complexity classes.

2 Non-uniform Polynomial Time Computation : PPOIY

Informally speaking, we consider Turing machines that abked to receive additional advice during the
course of their computation. However, for inputs of lengtlthe adviceg,,, is allowed to be a single string
of length polynomial inm. The idea behind defining such computations, and hence suraiigTmachines,

is to get a better understanding of the likely separatiomwéeh the classes P and NP. We now formally
define the above class of languages.

Definition 2.1 LetL C {0,1}* be a language. We say thate PP if there is a polynomial time Turing
machineM that takes two inputs, a string € {0, 1}* and an advicez,, € {0, 1}* such that for alkv with
|w| = n, there exists a polynomagi(n) with |a,,| < p(Jw|) and decides whethes € L or not.

In the above definition, notice the following points. Thed#nof the advice string is bound to be a
polynomial of the length of the input string itself. Thiseglout advice strings which take the form of a look
up table. A look up table for strings of lengthrequires an exponential length as there are an exponential
number of strings of length. This property ensures that the class of languages that 48B! has some
interesting members that are otherwise not in P. Secoriyalbove definition does not lead to practically
constructible machies. So, the cla2BO is only of a theoretical interest.

Another important item to notice is that the advice string ifgputs of lengthn is fixed independent
of the input. One can think of the advice therefore hardwirgd the machine. Another way to think of
the machines in the definition is to for a langualjec ppoly, imagine a infinite sequence of machines
{M;}¢i € IN} such that on inputs of lengthn, M, can decide whether € L. This above view helps

us see that NP is different fromP?lY. For a machine\s to decide a languagé € NP, one can see that
for an inputw such thatw € L there exists a polynomial sized witndd&(w) so that)M acceptsw. So the
difference between NP anéPO is that for languages in NP every string € L of lengthn is allowed
to have a different advice, whereas for IanguageE’ﬁ’r?ly, the advice string is common for all inputs of
lengthn. Another difference between NP amiPClY comes from the behaviour of the machihédeciding

L € NP on inputs that are not ih. In the case of a language € NP on inputsw ¢ L, there exists10
witness that leads td/ acceptw. The guarantee there is that there is not even a single withasis useful.
On the other hand, faf € PPOIY, the only guarantee is that there @@odadvice strings. In fact, it is not
even necessary to establish that such an advice string dante in polynomial time.

Theorem 2.2 PPOIY contains non-recursive languages.

Proof. Let us define an unary language as a language which is a subset W/e show that there are
nonrecursive unary languages and also that every unarydaegs inPPOly

Let L, C {0,1}* be any nonrecursive language. We define a unary nonrecuasigeage based on
Lyrasfollows.L, = {1°%) |w € Lyr} where0(w) refers to the natural number obtained by treatings
a binary string. It is easy to observe tliatis a unary language. To show thiat is non-recursive, we notice

that any machine that recognizés can also recognizé yg. SinceLyr is known to be nonrecursive, so
is L.

To show thaeveryunary language is ippoly, we just have to exhibit the advice string. Notice that any
unary language has at most one stritig), of lengthn as a member. Therefore, define the advice string as:

_J 1 if1"eL
% =13 0 otherwise

The advice string, is clearly a polynomial in the length of the input. Also, itriset required to show
how to computes,,. ThereforeL, € PPO. 0

One of the underlying ideas of the above proof is the factttiexistence of short advice strings can

be shown. This leads us to the following definition that helpsunderstand why the clagPol can set
apart P and NP.

Definition 2.3 A languageL C {0,1}* is said to be sparse if there exists a polynomigt) such thatL
has at mosp(n) members of length, i.e.,|L N {0,1}"| < p(n).

Notice that every unary language is a sparse language. Newregent a theorem that helps us to study

the relationship between NP adePO. To do so, we need to study the notion of a reduction called the
Cook reduction.

Definition 2.4 A languageL; Cook-reduces to a languagde, if there exists a Turing machine running in
polynomial time that recoginzds, givenoracleaccess td.,.

Notice that the machine decidinlg, can make several queries before deciding whether a given inp
isin L1. An immediate application the above definition is the follogvlemma.

Lemma 2.5 If L; Cook reduces td., and L, € P then alsalL; € P.

Proof. Notice that the definition did not restrict the number of geto the oracle machine that a machine
decidingL; can make. However, in this lemma, we observe that if a madhingin polynomial time then
it cannot make more than polynomial many queries to the erddie formal proof follows.

As L, Cook reduces td.», let M be a polynomal time Turing machine that decidgsgiven oracle
access td.,. Sincels € P, we can take that there is a polynomial time macHifiethat decided.,. So,
the actions of\/; on a given input can be emulated in polynomial time. Using¢h&e now design a TM
M that can recognizé, in polynomial time without any oracle tb,.

The machinel/; emulates)M until the point whenl/ makes the first query to the oracle. To know the
answer to the quenj/; simply starts emulatind/-. This is repeated so that; knows all the answers to
all the queries that/ would be making on inputy. Since,M runs in polynomial time, the numer of queries
and the length of each query would also be polynomial. To kital/> on each of the polynomial queries
in still a polynomial time event ad/> runs in polynomial time. So, the overall runtime of the maehi/;
is a polynomial. O

Our main theorem is now given as follows:

Theorem 2.6 Every languagd. € NP is Cook reducible to a sparse language if and only ifcl_SII:PpOIV.

Proof. The significance of the above theorem comes from the beleibojecture that no language in
NP-complete is sparse. Given that the satisfiability pmobler the language of satisfiable Boolean CNF
formulas, SAT, is NP-complete, we just have to show that $SATaok-reducible to a sparse language if and
only if NP C PPOIY.

Let SAT be Cook-reducible to a sparse languéigaVe show that SAE PP as follows. Since SAT
is Cook-reducible to a sparse language, there is a polyradimia oracle machine)/” that can solve SAT
given oracle access th. The proof is done by exhibiting a polynomial sized adviaegtfor inputs of a
given length.

Let the machineV/” run in timep,,: (n) on inputs of length, wherep, . is a polynomial. It therefore
follows that M1 makes at most,,,: (Jw|) queries to the oracle decidingon an inputw. We construct the
advice string as follows. Lédt,, be the set of all strings in of length at mosp,,,:(n) wheren = |w|. Notice
that asL is sparse, als@lL,| is a polynomial, say;(n). Concatenate all the strings iy, and set it taa,,.
Notice that:

pu(t)
jan] =D P (i) i = O (p1(n)) - p1(n)?)
=1

From the aboveq,, is of polynomial length. This can be used to show that thera mnuniform
polynomial time machiné/ with the advice string.,, as defined above. For an inputof lengthn, M can
look up the entire,, for getting the answer to each of the queries thé&t would have made. The runtime
of M isin O(|ay|-; (n)) which is still a polynomial.

For the other direction, we need to show that if SATPPOY then SAT Cook reduces to some sparse
language. Since SAE PPOY there is a nonuniform polynomial time machiné, that given access to
advice strings:,, for inputs of lengthn can decide SAT. The sparse language to which SAT Cook reduces
to can be defined as follows. We know that there exists a palyalg(n) so that|a,,| = p(n). The idea of
this proof is to simulate O

3 Gapsin Space and Time

One of the important questions in complexity theory is tadgtwhat is not computable within a given
resource. If the resource is time, then the question is tovbe¢her there are problems that can be computed
in time t(n) but never in time “smaller” than timgn). An answer to this question indicates whether there
is a refined hierarchy of languges that are decidable in angivee. Further, such a hierarchy shows that
with more resources, indeed more computation can be achiévéhis section, we show that indeed such a
hierarchy exists.

3.1 A Hiearchy Theorem for Space
We start with the following definition.

Definition 3.1 Afunctionf : IN — IN is said to be space constructible if there exists a Turinghiracthat
on inputl™ computesf(n) using space i (f(n)).

It can be noted that most commonly occuring functions sugiodsiomials, logarithmic functions, and
the like are space constructible. Some aspects of this il bomework exercise.
The importance of the notion of space constructibility carubderstood as follows.

Theorem 3.2 Let f be any space constructible function. Then, there existqiguiageL such that can
be decided irO(f(n)) space but not im(f(n)) space.

3

Proof. The main idea of the proof is to exhibit a language that cabaatecided in(f(n)) time but can be
decided inO(f(n)) time. Unlike other examples of languages, such languagesttebe artificial in their
description. This is due to the proof construction that im®auch languages.

The proof builds an algorithm that essentially shows howreae such languages. The algorithm
simulates every machine that can decide some languagéfim)) time. Using a technique similar to
diagonalization, one can think of listing each such machinghat list, each machine corresponds to some
language that can be decideddfif (n)) time. So the language we seek should differ from each of these
languges in some way. To arrange for that, we make the newdaggthat we build will be made to differ at
the string denoting the machine itself. So, if the machiheicceptsM as an input, we make the language
to not containM. So, the language will contait/ if M rejectsM and does not contaif/ if M accepts
M. There are a few details to be worked out in this scheme a®tosving shows.

What do we do when a strinfy/ does not correspond to any machine that decides some languag
o(f(n)) time? It turns out that it does not matter what we do with sudhgs. In general, the algorithm on
an inputw we first check ifw corresponds to some Turing machih& If so, the machinél/ is simulated
on the stringM itself. The output is reversed as explained earlier.

What do we do when the machidd does not halt? How to know whethér is entering an infinite
loop, how to know ifM is using more tham(f(n)) space? IfM runs ino(f(n)) space, then certainly it
cannot use more that?/() time. So one can count the number of steps Mais using on input\/. If
this count exceed®/ (™) then the stringV/ is kept out of the language.

One final issue is with respect to asymptotics. For instaftzesmall input strings, even i/ runs in
o(f(n)) space, due to the constants involved, the actual space umgdermore tharf(n). We have to
guard against this problem. For this, instead of simulafiigon input M we simulate)M whenever the
input is of the formA/10*. O

The following corollaries follow the above theorem.

Corollary 3.3 For two functionsfy, fo : IN — IN, if fi(n) € o(f2(n)), then also DSpadgi(n)) C
DSpacgfa(n)).

So all space is not the same. For instance, DSpéte C DSpacé¢n©?) for any real numnbers <
c1 < ca.

Corollary 3.4 NLogSpace- PSPACE.
Let us denote by EXPSPACE the class of problems that can bedsini spac@"k for a constank.
Corollary 3.5 PSPACEC EXPSPACE.

Similar notions can be shown also for time hiearchies. Omededine a notion of time constructibility
similar to that of Definitior??. With that definition, the following theorem can be shown.

Theorem 3.6 Let f be any time constructible function. Then, there exists guageL such thatL can be
decided inO(f(n)) time but not ino(f(n)/log(f(n))) time.

The proof of the above theorem is similar to the proof of thecgphiearchy theorem. One can wonder
then why the additional logarithmic term in the deonominatGan we hope for a better theorem that is
essentially similar to the space hierarchy theorem. Ptigseot for it is not known how to simulate A(n))
time Turing machine, even assuming a single tape, cannatrigeded with only a constant factor overhead.
In fact, nothing is known as to if such a simulation can be damefaster asympototically.

Some corollaries similar to those that follow from the sphiegarchy theorem also apply here.

4

4 The Polynomial Hierarchy

Recall the definition of oracle computations. One intengstjuestion is to study the power of oracles.
Specifically, one can seek the nature of languages that ai@xie by machines that can recognize a certain
set of languages given oracle access to machines that ciale d@other set of languages. One such question
could be: what languages are decidable by polynomial timteraiénistic Turing machines with oracle
access to the class of NP? In this case, there is a Cook reddiatim L to some language in NP. A general
question is: for two complexity class€§ andC5,, what languages are decidable by machine€fogiven
oracle access t05;. We make the following definition.

Definition 4.1 Let M be a Turing machine and be a language. The languadd M) is the set of strings
accepted by the machind with oracle access tdl.

Notice the difference to the definition of Cook reduction.the case of Cook reductiod/ has to be a
deterministic polynomial time machine. In the above définitthere is no such restriction dd. M can be
a nondeterministic or a nonpolynomial or a randomized nrechAll such choices make sense as we move
towards the following definition.

We can generalize Definition 4.1 to replace the languddpy a class of languages to get the following
definition.

Definition 4.2 Let C be a class of languages and is a Turing machine. Then/¢ denotes the set of
languages that are accepted By given oracle access to some languagé€inSo,

M ={L(M*)|A e C}

We slighlty abuse notation of the above definition by sayhmat 6102, when(Cy andC, are classes of
languages, refers to the set of languagesM*)|L(M®) € C; andA € Cy)}. In the above, we use the
notation M/ ® to denote the machin&/ given no oracle, or empty oracle. Some examples follow.

e NP c PNP.

e coNP C PNP.

For the first item, the machin& can simply mimic the actions of the oracle. For the second,itbe
machine simply reverses the actions of the oracle. The alaveelations indicate that indeed NfoNP C

PN,

To use the above framework, we make the following definition.

Definition 4.3 (Polynomial Hierarchy) Define a sequence of sets of langua@igsas follows. >; = NP
andY;; = NP”:. Similarly, define a sequence of sets of languages as folldws- coNP, and in general
II; = co — %;. Finally, defineA;,; = P> fori > 1.

We define the polynomial hierarchy, denofel as,

PH :=U;%;.
Some of the following results that follow the above defimtare:

Corollary 4.4 The following results hold:

o X UIL C Ay CXipg NIl

e P> — Pl gnd NP = NP,

Proof. The first part of the first item is clear from the definitionSXfll, andA. For the second part of the
first item, notice that\;,; = P> C NP” = Xi*t!, Also, for anyL € P, it holds that alsd. € P> as
P> is closed under complementation. Therefdres P> C NP~ = %, ; and hencd. € II, ;.

For the second item, notice that in each of the cases, theingaithP (respectively NP) has to simply
flip the output of the oracle. It can be seen as either flipgiegoutput of the oracle, or considering an oracle
for the complement of a language. O

Other important observations that follow from the aboverdidin are given as follows.

Theorem 4.5 PH C PSPACE.

Proof. Using induction. Exercise. O
Finally, the motivation of defining the polynomial hieraycis captured by the following lemmata.

Lemma 4.6 If NP = coNP thenPH C NP.

