
1 Introduction

In this week we study two ideas in complexity theory. The firstidea is to understand how the complexity
of deciding languages changes as machines are allowed to seek advicebefore they output their decision.
This is called as non-uniform computation. The purpose of this is to understand upper bounds on what is
normally thought of as computable. The second idea developsthe first and aims to build a hierarchy of time
complexity classes.

2 Non-uniform Polynomial Time Computation : P
poly

Informally speaking, we consider Turing machines that are enabled to receive additional advice during the
course of their computation. However, for inputs of lengthn, the advice,an, is allowed to be a single string
of length polynomial innn. The idea behind defining such computations, and hence such Turing machines,
is to get a better understanding of the likely separation between the classes P and NP. We now formally
define the above class of languages.

Definition 2.1 LetL ⊆ {0, 1}∗ be a language. We say thatL ∈ Ppoly if there is a polynomial time Turing
machineM that takes two inputs, a stringx ∈ {0, 1}∗ and an advicean ∈ {0, 1}∗ such that for allw with
|w| = n, there exists a polynomailp(n) with |an| ≤ p(|w|) and decides whetherw ∈ L or not.

In the above definition, notice the following points. The length of the advice string is bound to be a
polynomial of the length of the input string itself. This rules out advice strings which take the form of a look
up table. A look up table for strings of lengthn requires an exponential length as there are an exponential
number of strings of lengthn. This property ensures that the class of languages that are in Ppoly has some
interesting members that are otherwise not in P. Secondly, the above definition does not lead to practically
constructible machies. So, the classPpoly is only of a theoretical interest.

Another important item to notice is that the advice string for inputs of lengthn is fixed independent
of the input. One can think of the advice therefore hardwiredinto the machine. Another way to think of
the machines in the definition is to for a languageL ∈ ppoly, imagine a infinite sequence of machines
{Mi}{i ∈ IN} such that on inputsw of lengthn, Mn can decide whetherw ∈ L. This above view helps

us see that NP is different fromPpoly. For a machineM to decide a languageL ∈ NP, one can see that
for an inputw such thatw ∈ L there exists a polynomial sized witnessW (w) so thatM acceptsw. So the
difference between NP andPpoly is that for languages in NP every stringw ∈ L of lengthn is allowed
to have a different advice, whereas for languages inPpoly, the advice string is common for all inputs of
lengthn. Another difference between NP andPpoly comes from the behaviour of the machineM deciding
L ∈ NP on inputs that are not inL. In the case of a languageL ∈ NP on inputsw 6∈ L, there existsno
witness that leads toM acceptw. The guarantee there is that there is not even a single witness that is useful.
On the other hand, forL ∈ Ppoly, the only guarantee is that there aregoodadvice strings. In fact, it is not
even necessary to establish that such an advice string can befound in polynomial time.

Theorem 2.2 Ppoly contains non-recursive languages.

Proof. Let us define an unary language as a language which is a subset of 1∗. We show that there are
nonrecursive unary languages and also that every unary language is inPpoly.

Let Lnr ⊆ {0, 1}∗ be any nonrecursive language. We define a unary nonrecursivelanguage based on
LNR as follows.Lu = {10(w) |w ∈ LNR} where0(w) refers to the natural number obtained by treatingw as
a binary string. It is easy to observe thatLu is a unary language. To show thatLu is non-recursive, we notice

1

that any machine that recognizesLu can also recognizeLNR. SinceLNR is known to be nonrecursive, so
is Lu.

To show thateveryunary language is inppoly, we just have to exhibit the advice string. Notice that any
unary language has at most one string,1n, of lengthn as a member. Therefore, define the advice string as:

an =

{

1 if 1n ∈ L
0 otherwise

The advice stringan is clearly a polynomial in the length of the input. Also, it isnot required to show
how to computean. Therefore,Lu ∈ Ppoly. ⊓⊔

One of the underlying ideas of the above proof is the fact thatthe existence of short advice strings can
be shown. This leads us to the following definition that helpsus understand why the classPpoly can set
apart P and NP.

Definition 2.3 A languageL ⊆ {0, 1}∗ is said to be sparse if there exists a polynomialp(n) such thatL
has at mostp(n) members of lengthn, i.e.,|L ∩ {0, 1}n| ≤ p(n).

Notice that every unary language is a sparse language. Now, we present a theorem that helps us to study
the relationship between NP andPpoly. To do so, we need to study the notion of a reduction called the
Cook reduction.

Definition 2.4 A languageL1 Cook-reduces to a languageL2 if there exists a Turing machine running in
polynomial time that recoginzesL1 givenoracleaccess toL2.

Notice that the machine decidingL1 can make several queries before deciding whether a given input w
is in L1. An immediate application the above definition is the following lemma.

Lemma 2.5 If L1 Cook reduces toL2 andL2 ∈ P then alsoL1 ∈ P.

Proof. Notice that the definition did not restrict the number of queries to the oracle machine that a machine
decidingL1 can make. However, in this lemma, we observe that if a machineruns in polynomial time then
it cannot make more than polynomial many queries to the oracle. The formal proof follows.

As L1 Cook reduces toL2, let M be a polynomal time Turing machine that decidesL1 given oracle
access toL2. SinceL2 ∈ P, we can take that there is a polynomial time machineM2 that decidesL2. So,
the actions ofM2 on a given input can be emulated in polynomial time. Using these, we now design a TM
M1 that can recognizeL1 in polynomial time without any oracle toL2.

The machineM1 emulatesM until the point whenM makes the first query to the oracle. To know the
answer to the query,M1 simply starts emulatingM2. This is repeated so thatM1 knows all the answers to
all the queries thatM would be making on inputw. Since,M runs in polynomial time, the numer of queries
and the length of each query would also be polynomial. To simulateM2 on each of the polynomial queries
in still a polynomial time event asM2 runs in polynomial time. So, the overall runtime of the machineM1

is a polynomial. ⊓⊔

Our main theorem is now given as follows:

Theorem 2.6 Every languageL ∈ NP is Cook reducible to a sparse language if and only if NP⊆ Ppoly.

2

Proof. The significance of the above theorem comes from the beleif orconjecture that no language in
NP-complete is sparse. Given that the satisfiability problem, or the language of satisfiable Boolean CNF
formulas, SAT, is NP-complete, we just have to show that SAT is Cook-reducible to a sparse language if and
only if NP ⊆ Ppoly.

Let SAT be Cook-reducible to a sparse languageL. We show that SAT∈ Ppoly as follows. Since SAT
is Cook-reducible to a sparse language, there is a polynomial time oracle machine,ML that can solve SAT
given oracle access toL. The proof is done by exhibiting a polynomial sized advice string for inputs of a
given length.

Let the machineML run in timepml(n) on inputs of lengthn, wherepml is a polynomial. It therefore
follows thatML makes at mostpml(|w|) queries to the oracle decidingL on an inputw. We construct the
advice string as follows. LetLn be the set of all strings inL of length at mostpml(n) wheren = |w|. Notice
that asL is sparse, also|Ln| is a polynomial, saypl(n). Concatenate all the strings inLn and set it toan.
Notice that:

|an| =

pl(i)
∑

i=1

pml(i) · i = O(pml(pl(n)) · pl(n)2)

From the above,an is of polynomial length. This can be used to show that there isa nonuniform
polynomial time machineM with the advice stringan as defined above. For an inputw of lengthn, M can
look up the entirean for getting the answer to each of the queries thatML would have made. The runtime
of M is in O(|an|·l (n)) which is still a polynomial.

For the other direction, we need to show that if SAT∈ Ppoly then SAT Cook reduces to some sparse
language. Since SAT∈ Ppoly, there is a nonuniform polynomial time machineMu that given access to
advice stringsan for inputs of lengthn can decide SAT. The sparse language to which SAT Cook reduces
to can be defined as follows. We know that there exists a polynomial p(n) so that|an| = p(n). The idea of
this proof is to simulate ⊓⊔

3 Gaps in Space and Time

One of the important questions in complexity theory is to study what is not computable within a given
resource. If the resource is time, then the question is to seewhether there are problems that can be computed
in time t(n) but never in time “smaller” than timet(n). An answer to this question indicates whether there
is a refined hierarchy of languges that are decidable in a given time. Further, such a hierarchy shows that
with more resources, indeed more computation can be achieved. In this section, we show that indeed such a
hierarchy exists.

3.1 A Hiearchy Theorem for Space

We start with the following definition.

Definition 3.1 A functionf : IN → IN is said to be space constructible if there exists a Turing machine that
on input1n computesf(n) using space inO(f(n)).

It can be noted that most commonly occuring functions such aspolynomials, logarithmic functions, and
the like are space constructible. Some aspects of this will be a homework exercise.

The importance of the notion of space constructibility can be understood as follows.

Theorem 3.2 Let f be any space constructible function. Then, there exists a languageL such thatL can
be decided inO(f(n)) space but not ino(f(n)) space.

3

Proof. The main idea of the proof is to exhibit a language that cannotbe decided ino(f(n)) time but can be
decided inO(f(n)) time. Unlike other examples of languages, such languages tend to be artificial in their
description. This is due to the proof construction that creates such languages.

The proof builds an algorithm that essentially shows how to create such languages. The algorithm
simulates every machine that can decide some language ino(f(n)) time. Using a technique similar to
diagonalization, one can think of listing each such machine. In that list, each machine corresponds to some
language that can be decided ino(f(n)) time. So the language we seek should differ from each of these
languges in some way. To arrange for that, we make the new language that we build will be made to differ at
the string denoting the machine itself. So, if the machineM acceptsM as an input, we make the language
to not containM . So, the language will containM if M rejectsM and does not containM if M accepts
M . There are a few details to be worked out in this scheme as the following shows.

What do we do when a stringM does not correspond to any machine that decides some language in
o(f(n)) time? It turns out that it does not matter what we do with such strings. In general, the algorithm on
an inputw we first check ifw corresponds to some Turing machineM . If so, the machineM is simulated
on the stringM itself. The output is reversed as explained earlier.

What do we do when the machineM does not halt? How to know whetherM is entering an infinite
loop, how to know ifM is using more thano(f(n)) space? IfM runs ino(f(n)) space, then certainly it
cannot use more than2o(f(n)) time. So one can count the number of steps thatM is using on inputM . If
this count exceeds2f(n) then the stringM is kept out of the language.

One final issue is with respect to asymptotics. For instance,for small input strings, even ifM runs in
o(f(n)) space, due to the constants involved, the actual space used may be more thanf(n). We have to
guard against this problem. For this, instead of simulatingM on inputM we simulateM whenever the
input is of the formM10∗. ⊓⊔

The following corollaries follow the above theorem.

Corollary 3.3 For two functionsf1, f2 : IN → IN, if f1(n) ∈ o(f2(n)), then also DSpace(f1(n)) ⊂
DSpace(f2(n)).

So all space is not the same. For instance, DSpace(nc1) ⊂ DSpace(nc2) for any real numnbers0 ≤
c1 < c2.

Corollary 3.4 NLogSpace⊂ PSPACE.

Let us denote by EXPSPACE the class of problems that can be solved in space2nk

for a constantk.

Corollary 3.5 PSPACE⊂ EXPSPACE.

Similar notions can be shown also for time hiearchies. One can define a notion of time constructibility
similar to that of Definition??. With that definition, the following theorem can be shown.

Theorem 3.6 Letf be any time constructible function. Then, there exists a languageL such thatL can be
decided inO(f(n)) time but not ino(f(n)/ log(f(n))) time.

The proof of the above theorem is similar to the proof of the space hiearchy theorem. One can wonder
then why the additional logarithmic term in the deonominator. Can we hope for a better theorem that is
essentially similar to the space hierarchy theorem. Presently not for it is not known how to simulate af(n))
time Turing machine, even assuming a single tape, cannot be simulated with only a constant factor overhead.
In fact, nothing is known as to if such a simulation can be doneany faster asympototically.

Some corollaries similar to those that follow from the spacehierarchy theorem also apply here.

4

4 The Polynomial Hierarchy

Recall the definition of oracle computations. One interesting question is to study the power of oracles.
Specifically, one can seek the nature of languages that are deciable by machines that can recognize a certain
set of languages given oracle access to machines that can decide another set of languages. One such question
could be: what languages are decidable by polynomial time deterministic Turing machines with oracle
access to the class of NP? In this case, there is a Cook reduction fromL to some language in NP. A general
question is: for two complexity classesC1 andC2, what languages are decidable by machines forC1 given
oracle access toC2. We make the following definition.

Definition 4.1 LetM be a Turing machine andA be a language. The languageL(MA) is the set of strings
accepted by the machineM with oracle access toA.

Notice the difference to the definition of Cook reduction. Inthe case of Cook reduction,M has to be a
deterministic polynomial time machine. In the above definition, there is no such restriction onM . M can be
a nondeterministic or a nonpolynomial or a randomized machine. All such choices make sense as we move
towards the following definition.

We can generalize Definition 4.1 to replace the languageA by a class of languages to get the following
definition.

Definition 4.2 Let C be a class of languages andM is a Turing machine. Then,MC denotes the set of
languages that are accepted byM given oracle access to some language inC. So,

MC = {L(MA)|A ∈ C}

We slighlty abuse notation of the above definition by saying thatCC2

1 , whenC1 andC2 are classes of
languages, refers to the set of languages{L(MA)|L(MΦ) ∈ C1 andA ∈ C2)}. In the above, we use the
notationMΦ to denote the machineM given no oracle, or empty oracle. Some examples follow.

• NP⊆ PNP.

• coNP⊆ PNP.

For the first item, the machineM can simply mimic the actions of the oracle. For the second item, the
machine simply reverses the actions of the oracle. The abovetwo relations indicate that indeed NP∪coNP⊆
PNP .

To use the above framework, we make the following definition.

Definition 4.3 (Polynomial Hierarchy) Define a sequence of sets of languagesΣi as follows. Σ1 = NP
andΣi+1 = NPΣi . Similarly, define a sequence of sets of languages as follows. Π1 = coNP, and in general
Πi = co − Σi. Finally, define∆i+1 = PΣi for i ≥ 1.

We define the polynomial hierarchy, denotedPH as,

PH := ∪iΣi.

Some of the following results that follow the above definition are:

Corollary 4.4 The following results hold:

• Σi ∪ Πi ⊆ ∆i+1 ⊆ Σi+1 ∩ Πi+1.

5

• PΣi = PΠi and NPΣi = NPΠi .

Proof. The first part of the first item is clear from the definitions ofΣ,Π, and∆. For the second part of the
first item, notice that∆i+1 = PΣi ⊆ NPΣi = Σi+1. Also, for anyL ∈ PΣi , it holds that alsoL ∈ PΣi as
PΣi is closed under complementation. Therefore,L ∈ PΣi ⊆ NPΣi = Σi+1 and henceL ∈ Πi+1.

For the second item, notice that in each of the cases, the machine in P (respectively NP) has to simply
flip the output of the oracle. It can be seen as either flipping the output of the oracle, or considering an oracle
for the complement of a language. ⊓⊔

Other important observations that follow from the above definition are given as follows.

Theorem 4.5 PH ⊆ PSPACE.

Proof. Using induction. Exercise. ⊓⊔

Finally, the motivation of defining the polynomial hierarchy is captured by the following lemmata.

Lemma 4.6 If NP = coNP thenPH ⊆ NP.

6

