Space Complexity

1 Introduction

So far, we have used time as a resource that has to be optichized) computation. This week, we shall
study also time as a resource and the implications of the .sémur exploration, we still use the Turing
machine as our computational model. Our interest is to be &btlefine appropriate complexity classes
based on the space used. We shall also study how these cimplasses relate to complexity classes
defined with respect to time. We will study how the deterntiniand the nondeterministic machines may
differ in their space complexity. Further, we can also sdbdfe is a hierarchy of complexity classes with
respect to space.

1.1 Space

We start with the following definition. We consider TMs withirée tapes, an input tape that is read-only, a
work-tape that is both read-write, and an output tape thatitable. The TM cannot write in the input tape
but can read any cell of this tape. The number of cells used iyl & the number of cells written on the
work tape.

Definition 1.1 (DSpace)Lets : IN — IN and letL C

zo. Let M be a deterministic Turing machine that decidesvith the property that for any € {0,1}*,
M executing on inputy uses at most - s(|w|) tape cells, for a constantbefore deciding whethen € L.
Then, we say thal € DSpacés(n)).

Notice the similarity to that of deterministic time compikgxthat one can define. However, there is a
fundamental difference between the resources space aed timlike time, space can be reused and this
property has far reaching implications. Consider for exiamapr M that implements a counter for bit strings
of lengthn. While it has run for2™ time steps, it can run in a space@of We first show the following
example and then generalize the same.

Example. 1.2 Recall the problem CLIQUE defined as:
CLIQUE = {(G, k) | G has a clique of siz&}.

It is known that CLIQUE= NP and also that CLIQUE: NP-complete. Therefore, it is unlikely that
there will be a polynomial time algorithm for CLIQUE. Howeva deterministic TM can be designed to
solve the CLIQUE problem using space(in) as follows.

Recall that each candidate solution to the CLIQUE problem loa represented as a subsetofertices
out of then vertices. Such a subset can be in turn represented as a g gf lengthn. The TM M does
this by writing bit strings corresponding tosubsets of in a lexicigraphic order. To verify if a particular
subset is a solution, the TM can verify in polynomial timéé vertices belonging to the subset are mutual
neighbors. In this case, the machine can accept the inpall dtibsets fail to be valid solutions, the machine
rejects the input. The spae usedlyon its work tape is irO(n).

Notice also how separating the input tape and the work taperigenient. In the above example, it is
still true that the input can also be represented in polyabspace. As we define compelxity classes with
respect to space that are sub-linear, this difference besonore important.

The above example is not an exception with respect to prabieMP. As the following theorem shows,
it appears that space is more powerful than time. Let PSPACEyDSpacén”).

Theorem 1.3 P C NP C PSPACE.

The proof of the above theorem is left as an assignment. Toveegliroof can be shown by using the
following claim on the following notion o€onfiguration graphef TMs.

Let M be a TM that is either deterministic of nondeterministiccéafigurationof M is a description of
the contents of all the non-blank cells of the work tap@falong with the state af/ and the position of its
head. Given a TMV/ and an inputw to M, the configuration graptr,;.,, a directed graph, can be defined
as follows. The nodes G/, are the configurations that/ can reach from the starting configuration
with w on the input tape and the state being the start state, ance#tibdt the first symbol i. An edge
between configurationS; andC, exists ingmuw iff from C the machine can react, in one step. IfM is
deterministic, then the outdegree@®@f,, is 1 and if M is nondeterministic, then without loss of generality
we can take tha€7,,,, has outdegree 2. Further, we can assumethdtas only one accepting state, and
also one accepting configuratiaf.c.pt. S0,M acceptsw iff there is a directed path fromart, t0 Caccept
in G 1, The following claim is easy to show.

Claim 1.4 Let M be a machine that decides some languége {0, 1}* using space(n). LetG s, be the
configuration graph of\/ on inputw. Then,

1. Gy has20¢() nodes.

2. Two configurationg’; and C, are neighbors inG,, if and only if there exists a Boolean formula of
sizes(n) in CNF that is satisfiable.

Proof. A basic counting argument establishes item (i) as followsoAfiguration is completely determined
by the symbols on the tape, the position of the head, and #te of the machine. If the TM uses at most
s(n) tape cells, then the number of different ways the symboldeaarranged on the tape2€™, assuming
that the alphabet i§0, 1}. The number of stateg)| can be taken to be a constant, and the position of the
head has at mos{(n) choices. Put together, the total number of nodes in the geaPii25(™).

For item (ii), this observation is the essence of the NP-detapess of SAT as shown by Cook in his
famous theorem. Essentially, we can use a sequence of Boditehoperators to check if two configurations
are neighbors in the above graph. Each such Boolean fornaslaltonstant size, constant based on the
number of states and the size of the alphabet. O

To continue further, let us see how DTMs and NTMs can diffethigir space usage. In this direction,
we first extend Definition as follows.

Definition 1.5 (NSpace)Lets : IN — IN and letL C {0, 1}*. LetM be a nondeterministic Turing machine
that decides. with the property that for any € {0, 1}*, M executing on inputv uses at most - s(|w|)
tape cells, for a constantbefore deciding whether € L. Then, we say thal € NSpacés(n)).

Recall that simulating a computation of an NTM on a DTM seemgetjuire an exponential increase
in time. For instance, an NTM running itf) time can be simultaed by a DTM in tim@(2:(™). In a
remarkable result, Savitch showed that however detertiiii$ls can simulate nondeterministic TMs with
a very small space overhead.

Theorem 1.6 (Savitch) Lets : IN — IN be such that(n) > n. Then,
NSpacés(n)) C DSpacés(n)?)

Proof. To think about the proof, here is an idea. We need to show tHatexministic TM can simulate the
actions of a non-deterministic TM that uses a space(of. Using Claim?? is a possibility. We need to
check in space(n)? if the starting configuration leads to the accepting conijan. The number of nodes
in the graph is indeed®("). But given that the outdegree is 2, the number of paths in thphgis in
O(220(S(n))). If we have to systematically explore all these paths, toasgnt a path by its number, we need
a space 00 (2°(), which is much more tha®(s(n)?) as promised by the theorem.

So we need a new trick here. Indeed, counting all possiblespatrather naive. There are several
simple graphs with polynomial number of nodes but expoaéntimber of paths|Create one such graph
to convince yourself.] The trick is to think of the graph reachability problem whioked not be solved in
such a brute-force manner.

The trick is to therefore mimic the graph reachability simintby using as little space as possible. The
details follow. LetC; andC> be two configurations and let the predic@teach(C1, Co,t) return Yes or
No depending on whether from configuratich there is path to configuratiof’, in at mostt steps. The
predicateReach can be used recursiviey starting fraeach(C1, Cacceptt), Wheret = 2¢5(n)) for a
suitable constant. [Why should ¢ be so high?]. The predicate can be answered recursively as follows.
To decideReach(C1, Co,t) one can recursively check if there exists a configuralipgg such that both
Reach(C1, Cppig» t/2) andReach(Ciyig, C2,t/2) are both true. (In the above, we can take thatan exact
power of 2, or consider c€il/2).) The recursive program can be written as shown below:

Algorithm ReackiC1, Cs, t)
begin
If t =1then
Check if eitherC'y = Cy or C7 andC, are neighboring configurations.
If so, return True, else return False;
end-if
else
For each configuratiofty,;q do
resultl = ReacfC1, Cyig, t/2):
result2 = ReadfCpig; C2,t/2);
return resultland result2;
end-for
End-if
End-Algorithm

The determinstic maching/ that simulates the(n)-space nondeterministic machinésimply imple-
ments the above program. Let us now see how much spaneeds for this simulation. For each recursive
call, M needs to store three variables namély, Cs, andt. Since each is iR°((") | each of them can be
stored by using)(s(n)) bits. There are alslvg 2°(5(") stages in the recursion. So, the overall space used
by M is in O(s(n)?). O

An immediate implication of Svaitch;s theorem is the foliogycorollary.

Corollary 1.7
P C NP C PSPACE= NSpaceC EXPTIME

Figure 1. Containments among complexity classes, as idyvidgeived.

In the above list of containments, we do not know if any of tbatainments are proper. It is possible
to show that P2 EXPTIME. Therefore, in the list of containments, one mordh@fm has to be proper.
A picture of the above containments, assuming that all avpasrexcept the one indicated to be equal, is
shown in Figure 1. It is widely beleived that the situatiomssshown in Figure 1.

2 PSPACE and PSPACE-Completeness

A natural question to ask when we define a new complexity dass seek problems that are complete
with respect to that class. Recall the class PSPACE of prubleWe now seek the notion of PSPACE-
completeness for the class PSPACE.

Definition 2.1 A languageL is said to be PSPACE-complete if:
e L isin PSPACE, and

e Every languagd.’ in PSPACE is polynomial time reducible fo

Notice the limitation on the reduction in the above defimtidNe are following the general rule that
the comptuational class the reduction function belongsuetrhe weaker than the class for which we want
to establish reduction. Analogous to the satisfiabilitybgbean for NP-completeness, we have a quantied
formual satisfiability that can be shown to be PSPACE-cotaple

Quantified Boolean formulae can be defined as follows. Relkalluniversal quantifierév) and the
existential quantifie(d). Certain mathematical statements require the use of digastto indicate the
scope of applicability of the statement. For instance, wine® considers natural numbers, the statement
z2 + y? = 22 is true only some triples, y, andz. So, one can write the above as3y3z 22 + 32 = 22
Such a statement is called a quanitified formula. Anothemgta is the following:Vx(Jy3d x = y - d) A
(32Je x = z - e. What does the above statement capture? Is it true? Asswne, th) andz are positive
integers.

The difference between the above two examples is that indivedr all quantifiers appear at the be-
ginning of the statement. Such a statement is called foré@ex normal formWhen we consider that the
variables are fron{0, 1} then quantified statements in prenex normal form are calleshtified Boolean
statement. Further, when all variables have some quarddgociated with the varaible, then the statement
is called as dully qualified We define the languadé@ BF as:

TQBF = {®|? is a true fully quantifiable Boolean formula
We show now thaf'@Q BF' is PSPACE-complete.
Theorem 2.2 TQBF is PSPACE-complete.

Proof. As usual there are two items to show. One is to show that TQBFRSPACE and the second is to
show that every other language in PSPACE is reducible to TQBF

For the first item, consider a TQBF formula A deterministic TM for checking whethar €¢ TQBF
can be designed as follows. There are at most a polynomiabeuaf variables irb. For each variable, there
are only two possible values: 0 and 1. The TM can systemBbtiesplore all possible values for all variables.
For each such assignment, the TM checlkB i true. The TM accepts if there is an assignment under which
® is true. Otherwise the TM rejects. Since the space used iting/the current assignment can be reused,
the total space used by the TM is polynomial in the length efitiput. Hence7'QQ BF € PSPACE.

The second item is more involved. Letbe a PSPACE language and Mdtbe a TM that recognizes.
We wish to show that the action 8f on an inputw can be coded into a fully quantified Boolean forméla
so that® is true iffw € L.

Notice the similarity between the present problem and thegaucing any languagé in NP-complete
to SAT. Briefly, the proof of the latter constructs a Booleamiula that is satisfiable iff the machine fbr
accepts an inpub.

One can check that the above approach fails for the PSPACEingat/ for the following reason.
M, being bound by polynomial space can run for an exponentiguat of steps. Therefore, the Boolean
formula that represents the actionsidfon inputw can be exponentially long. The reduction however is
limited to be polynomial in time. So, such a reduction woutd work.

Let us see if the configuration graph we definedféron inputw, G, helps. One can use the proof
technique of Savitch’s theorem to say thidt acceptsw iff there exists a configuratiod’ ;4 so that the
formula corresponding tcf;..; can reactC,,;q in t/2 steps] and the formula corresponding @,}; can
reachCaccept iN t/2 Steps] are both true. Let us represent the above by sayih@tha, corresponds to the
Boolean formula withe; as the starting configuration amg as the ending configuration amds the time
allowed for reaching froma; to c. The formula®,, ., + can be constructed recursively as:

/
q)017027t =dc (I)c1,c’,t/2 A (I)c’,cg,t/Z

Fort = 1, we just have to check if the configurationsdnare neighboring configurations @xy,.,.
While the above is technically correct, there is one problem
The length of the expressioBc,,, . c.ccepe,t fOr ¢ € 20(n") can be super-polynomial in length. The
recursion is controlled by the parametend every recursive call reduceto ¢/2, but also doubles the size
of the formula. So, the formula ends up having an exponeletigjth as can be exponential. The reduction
cannot write such a long formula.

We therefore need another method to encode the actiohs ioto a polynomial sized fully quantified
Boolean formula. This can be done as follows. The trick isabdouble the length of the formula every

recursive step. This is done by redefinig, ., ; as:

q)cl,CQ,t = EIcmid\v/(cy d) € {(Cstarta Cmid)> (Cmidycaccopt)} <q)c,d,t/2>-

While this does not increase the size of the Boolean formuéayerecursive step, the scope of the
variablesc andd is no longer Boolean. However, that can be easily fixed byingithe subexpression
V(C, d) € {(Cstartacmid) <(I)c,d,t/2> as(c, d) = (Cstartacmid) N (C7 d) = (Cmid7cstart) - <(I)c,d,t/2>' This
way, the length of the formuléc,,, . ¢ is polynomial in|w|. O

Caccept)

An important observation regarding languages in PSPACHaiswinning strategies for most games can
be captured using quantified Boolean formulae. Most boantegacan thus be shown to be PSPACE-hard.

3 Sub-linear Space

In this section, we explore problems that can be solved byguspace is that less than the space consumed
by the input itself. Hence, if denotes the size of the input, we are interested in probleaisan be solved
in sublinear space. Notice that the machine does have erimoglo actually read the entire input while still
working in sublinear space. So this notion is not ill-defindaterestingly however, there is an equivalent
notion with respect to time called sub-linear algorithmsakitwere studied recently in the works of Indyk.
While we may not have time to study some of the sublinear tiragksy plesae see [] for more details.

Given that we are consdiering sublinear space, what areighe sublinear space functions that are
interesting? Should we seek problems that can be solved i)-space?(O(n)-space for some constant
e < 17, or should we investigate(log n)-space?, or further small space sucldkg log n)-space? Itturns
that logarithmic space is a good candidate to study as itigeesvsome natural intuitions to think about. In
logarithmic space, one can essentially have space jusgbrioistore a constant number of pointers into the
input! Still it turns out that there is a class of interestp@blems that can be solved in logarithmic space.
Further, this class of functions is invariant to simple apesto the Turing machine model such as addingg
more tapes, or increasing the size of the alphabet, etcefidrer studying logarithmic space is interesting.

Definition 3.1 We define LogSpace to be the class of languages that can bdeddry a deterministic
Turing machinel using at mos© (log n) cells of the tape where is the size of the input. In other words,

LogSpace= DSpacélog n)
The following example shows a simple language that can bidegam logarithmic space.

Example. 3.2 Let L be the languagd (G)|G has no trianglé. ThenL can be recognized in LogSpace as
follows. On the work tape, the machifé can write all 3 tuples of the vertices 6f. For each tuple written,
the machine checks if there is a trinalge passing througlseheertices. If all tests fail, them/ accepts,
otherwiseM rejects. The space used By is space enoug to store three vertex identifiers, therefoiein
LogSpace.

Analogous to the definition of NSpace, also LogSpace has daterministic equivalent.

Definition 3.3 We define NLogSpace to be the class of languages that canided &y a nondeterministic
Turing machinel/ using at mos© (log n) cells of the tape where is the size of the input. In other words,

NLogSpace= NSpacélog n)

The following example illustrates a problem that can be elmondeterministically using logarithmic
space.

Example. 3.4 Extend the above example to define the language the languagd (G)|G is bipartite}.
It can be shown thaL is in NLogSpace as follows. The nondeterminitic machinesggsean odd integer
such thatl < k& < n whereG hasn vertices. For this value of it starts by guessing vertices that form a
cycle inG. Notice that thé: vertices need not be stored all at the same time. Only neigiMmpvertices on
the cycle need be stored on the tape. Therefore NLogSpace.

Example. 3.5 Let PATH be defined as the languagé-, v, v) | G is a directed graph and ~- v}. PATH
essentially tries to see if the given directed grapinas a path from a vertex to vertexv in the graphG.
Recall that there are standard algorithms that run in polgmal time and space that can decide the PATH
problem. The challenge however is to show that indeed a spatle suffices.

7

A nondeterministic maching/ that decides PATH can be designed as follows. On its work t&pe
guesses the next node on a path frete v. M starts by guessing one of the out-neighbors,&dayu,. M
writesu; on its work tape. It then guesses an outneighbosi,0dnd writes the id of this node on the work
tape in the same spaeg is written. If M is able to reachv via these guesses, théi accepts. IfM/ makes
more thann = |V (G)| gusses, the/ rejects the input.

Notice that) does not keep the history of its guessesjust has to decide to accept or reject and need
not show a path in case of acceptance.

The above example is rather remarkable. It turns out th@ti#f an undirected graph, then nondetermin-
ism is not required. The undirected version of the abovelprolzan be solved using logarithmic space by
a deterministic machine.

3.1 Savitch’s Theorem for LogSpace and NLogSpace

Recall from Savitch’s theorem that for space beyond line&olds that NSpadg(n)) = DSpacés(n)?).

In this section, we argue that a similar result holds alsonwte) > log n. One of the important pieces in
the proof of Savitch’s theorem is the relation between theespused by a TM and the time the TM takes
to decide on any input. Specifically, we showed that@n)-space bounded TM runs in tin(é(2s(“)). Is
this relation still true for logarithmic space TMs? Not sadirst glance. A TM running i (1) space can
just read the entire input, and do nothing with it therebystoningO(n) time. We therefore introduce the
following definition that relates the space and time for gfanction s(n).

Definition 3.6 Consider a multitape TM/ with a separate read-only input tape. Letbe an input toM .
A configuration of\/ onw consists of the state @i/, the contents on its work tape, and the positions of its
heads, including the head of the read-only tape.

The essence of this definition is to separate the input fraenctinfiguration of a TM. This is not a
problem as the input is read-only, and the position of thelheacluded in the configuration.

Using the above definition, it now holds that if a TM runs in@pa(n), then on an inputv of length
lw|, the number of configurations is @(n - 2°(™)). How?

Finally, Savitch’'s theorem can be proved using the abovebmuraf configurations. The configuration
graph again has2°(*(")) nodes and we have solve a reachability problem. Storingahenpeters for every
recursive call now requires a spacd@f(n2°¢(")) = log n+0(s(n)). Therefore, so long agn) > log n,
Savitch’s theorem holds.

3.2 NLogSpace-Completeness

Analogous to the definition of time based complexity clag3esd NP, we have now defined logarithmic
space based complexity classes LogSpace and NLogSpadeis3wtural to ask the relation between the
classes LogSpace and NLogSpace. Clearly, LogSpadéogSpace, and the question therefore is whether
LogSpace= NLogSpace or not. This sounds very similar to the P versus Id3tepn. To create evidence
that P is not equal to NP, there is the notion of NP-compled shows that certain problems in NP are
not likely to be in P. In the same flavour, one can build evigetacshow that LogSpacg NLogSpace by
searching for complete problems with respect to NLogSpace.

As with the general definition of a problem complete for a €lamn NLogSpace-complete problem
represents a problem that is most difficult in the class Nlpag®. Therefore, a problerh is NLogSpace
complete ifitis in NLogSpace and every other problem in NEpgce reduces té. What has to be specified
in the above notion is the time allowed for the reduction fiorc If we use polynomial reducibility, then
there is a small inconsistency. All problems in NLogSpacae swivable in polynomial time. So, every

8

pair of problems in NLogSpace, except the phiand X* are reducible to each other. This suggests that
polynomial reducibility is too powerful a notion in the caseNLogSpace completeness. (In general, when
defining complete problems with respect to a class, the pall@ved to the reduction must be smaller than
the resources sufficient to decide the class itself). Weetbez introduce the following notion of log space
reducibility.

Definition 3.7 A languagel is log space reducible to a languadg written A <;, B if positive instances
of A can be converted to positive instancesiising a functionf : ¥* — X* where f is a log space
computable function. A log space computable function isnatfan such that there is a Turing machine
M with a read-only input tape, & (logn) long work tape, and a write-only output tape, which on input
w € X* on the input tape computggw) and writesf (w) on the output tape.

Using the above definition, a problel is NLogSpace complete if; € NLogSpace and every problem
in NLogSpace is log space reducible ig. Standard results of the above definition that follow aregiv
below.

Theorem 3.8 The following are both true.
e If A <; BandB € LogSpace then alsd € LogSpace.

e If any NLogSpace-complete language is in LogSpace thendaogS- NLogSpace.
To end this section, we finally show that the PATH problem defiaarlier is NLogSpace-complete.
Theorem 3.9 PATH is NLogSpace-complete.

Proof. There are two items to show. Firstly, we need to show that PATHILogSpace. But that is
already done in the example. Secondly, we need to show tlesy ether problem in NLogSpace is log
space reducible to PATH. For this, we need to exhibit a logspaduction that converts positive instances
of any problem in NLogSpace to positive instances of PATHe fidgduction works as follows.

Imagine for a moment that there is no restriction on the spaee for the reduction. Let us understand
how to reduce any problem in NLogSpace to the PATH problemt Be= NLogSpace and lei/ be a
nondeterministic TM that deciedds. One can think of constructing a graghy ., for input w such that
nodes inG s, correspond to the configurations of the machideon w. Now, if there is a path iy,
from the start configuration to the accepting configurateman instance of PATH, then is accepted by
M.

Let us now see how this graph can be constructed using ondyitbgnic space. The nodes 6fy; .,
are the configurations ¥/ on inputw. There areD(n*) nodes in this graph as there are ong (&™)
configurations. An edge exists @, ., from configurationC; to C iff either C; = C5 or C5 is reached in
one step of the machine frofty,. This can be checked given the definitionidf

To compute the graph in logarithmic space, one can procetmllass. Notice that only the work tape
is bounded by logarithmic space, but not the output tape.eSaribe a graph, one needs to simply describe
its nodes and edges. The nodes can be listed in a lexicogrpader as follows. Each node @, ., can be
represented i) (log n) bits. So, start by listing all bit strings of length(log n) on the work tape. For each
bit string b, check ifb is a valid configuration ofi/ on inputw. If so, writeb on the output tape. Write the
string next tab in the lexicographic order on the work tape, and repeat aliilit strings of lengthO(log n)
are checked. To list the edges, a similar technique can lk iN@w, we list pairs of bit strings of length
O(logn) in lexicographic order on the work tape. We check if the auirggair is a valid edge, and if so,
write the edge on to the output tape. This check can be donsibyg the transition function af/. O

An immediate corollary of the above theorem is the following

Corollary 3.10 NLogSpace_ P.

3.3 The ClasszoNLogSpace

We now turn our attention to another space based compldgitg @long with a surprising result. The class
coNLogSpace is the set of languages whose complement can lokedday a nondeterministic Turing ma-
chine using logarithmic space. The clasbBlLogSpace can be seen as analogous to the @ldb2. Itis gen-
erally beleived that NB% coNP. However, as the following theorem shows, NLogSpaa@NLogSpace.

Theorem 3.11 NLogSpace= coNLogSpace

Proof. We have to show that every problemdsNLogSpace is also in NLogSpace. Here is where complete
problems come to our rescue. Recall that PATH is NLogSpaceptete. So, ifPATH were shown to be
in NLogSpace, then also every problemcisNLogSpace would be in NLogSpace. The languBg&H is
the set of directed graphs with two verticegndv such that there iso path fromu to v. We now show a
nondeterministic loagrithmic space machine R&TH.

The nondeterministic machine should somehow concludenthpath exists between two verticesand
v in a given directed graph. Let us ignore the space aspectrfasraent. Then, one way of doing this is
as follows. The nondeterministic machine tries to paritibe vertex set of the given graph into two parts
Vr andVyg. Vg contains the set of vertices that are reachable fs@and Vi contains the set of vertices
that are not reachable from If v € Viyr thenM accepts and it € Ni then M rejects. To see whether a
vertexz is to be placed iz, M can check using nondeterminism if there is a path feoto . This can
be done also in logarithmic space. If such a verificatiorsfdtien it means that the vertexshould be in
Vnr. Once vertex is characterized, the machine can decide accordingly.

In the above, we are storing thebits to indicate whether a vertex is iy or its complement. This is
space more than what we can afford to use. To reduce spacatwheerfollowing observations. Firstly, we
need not know for every vertexif x is in Vy or not. It suffices if we can match up the number of vertices
in Vz. How do we know{Vz|? Assume so for a moment that we kngiiz|. Then, convince yourself that
the machine\/ can run in logarithmic space using nondeterminism.

To find |Vz| we proceed as followsVz can be written as the union of sét$ whereV}, is the set of
vertices that are at a shortest distance 6m . Note thatVg = {u}. And, V5" can be computed from
V}, as follows. For each vertex it is verified if thez is in V};. (Note: We cannot store this information). If
so, then it checks if for every vertex (z,y) is an edge irG. If so, theny is in Vé“. This is similar to a
space reduced version of BFS. O

10

