
Space Complexity

1 Introduction

So far, we have used time as a resource that has to be optimizedduring computation. This week, we shall
study also time as a resource and the implications of the same. In our exploration, we still use the Turing
machine as our computational model. Our interest is to be able to define appropriate complexity classes
based on the space used. We shall also study how these complexity classes relate to complexity classes
defined with respect to time. We will study how the deterministic and the nondeterministic machines may
differ in their space complexity. Further, we can also see ifthere is a hierarchy of complexity classes with
respect to space.

1.1 Space

We start with the following definition. We consider TMs with three tapes, an input tape that is read-only, a
work-tape that is both read-write, and an output tape that iswritable. The TM cannot write in the input tape
but can read any cell of this tape. The number of cells used by aTM is the number of cells written on the
work tape.

Definition 1.1 (DSpace)Lets : IN → IN and letL ⊆
zo. Let M be a deterministic Turing machine that decidesL with the property that for anyw ∈ {0, 1}∗,
M executing on inputw uses at mostc · s(|w|) tape cells, for a constantc before deciding whetherw ∈ L.
Then, we say thatL ∈ DSpace(s(n)).

Notice the similarity to that of deterministic time complexity that one can define. However, there is a
fundamental difference between the resources space and time. Unlike time, space can be reused and this
property has far reaching implications. Consider for example a TM that implements a counter for bit strings
of lengthn. While it has run for2n time steps, it can run in a space ofn. We first show the following
example and then generalize the same.

Example. 1.2 Recall the problem CLIQUE defined as:

CLIQUE= {〈G, k〉 | G has a clique of sizek}.

It is known that CLIQUE∈ NP and also that CLIQUE∈ NP-complete. Therefore, it is unlikely that
there will be a polynomial time algorithm for CLIQUE. However, a deterministic TM can be designed to
solve the CLIQUE problem using space inO(n) as follows.

Recall that each candidate solution to the CLIQUE problem can be represented as a subset ofk vertices
out of then vertices. Such a subset can be in turn represented as a bit string of lengthn. The TM M does
this by writing bit strings corresponding tok subsets ofn in a lexicigraphic order. To verify if a particular
subset is a solution, the TM can verify in polynomial time if the vertices belonging to the subset are mutual
neighbors. In this case, the machine can accept the input. Ifall subsets fail to be valid solutions, the machine
rejects the input. The spae used byM on its work tape is inO(n).

1

Notice also how separating the input tape and the work tape isconvenient. In the above example, it is
still true that the input can also be represented in polynomial space. As we define compelxity classes with
respect to space that are sub-linear, this difference becomes more important.

The above example is not an exception with respect to problems in NP. As the following theorem shows,
it appears that space is more powerful than time. Let PSPACE= ∪k∈INDSpace(nk).

Theorem 1.3 P ⊆ NP⊆ PSPACE.

The proof of the above theorem is left as an assignment. The above proof can be shown by using the
following claim on the following notion ofconfiguration graphsof TMs.

Let M be a TM that is either deterministic of nondeterministic. Aconfigurationof M is a description of
the contents of all the non-blank cells of the work tape ofM , along with the state ofM and the position of its
head. Given a TMM and an inputw to M , the configuration graphGMw, a directed graph, can be defined
as follows. The nodes inGMw are the configurations thatM can reach from the starting configuration
with w on the input tape and the state being the start state, and the head at the first symbol inw. An edge
between configurationsCl andC2 exists ingmw iff from C1 the machine can reachC2 in one step. IfM is
deterministic, then the outdegree ofGMw is 1 and ifM is nondeterministic, then without loss of generality
we can take thatGMw has outdegree 2. Further, we can assume thatM has only one accepting state, and
also one accepting configuration,Caccept. So,M acceptsw iff there is a directed path fromCstart to Caccept

in GMw. The following claim is easy to show.

Claim 1.4 LetM be a machine that decides some languageL ∈ {0, 1}∗ using spaces(n). LetGMw be the
configuration graph ofM on inputw. Then,

1. GMw has2O(s(n)) nodes.

2. Two configurationsC1 andC2 are neighbors inGMw if and only if there exists a Boolean formula of
sizes(n) in CNF that is satisfiable.

Proof. A basic counting argument establishes item (i) as follows. Aconfiguration is completely determined
by the symbols on the tape, the position of the head, and the state of the machine. If the TM uses at most
s(n) tape cells, then the number of different ways the symbols canbe arranged on the tape is2s(n), assuming
that the alphabet is{0, 1}. The number of states|Q| can be taken to be a constant, and the position of the
head has at mosts(n) choices. Put together, the total number of nodes in the graphis O(2s(n)).

For item (ii), this observation is the essence of the NP-completeness of SAT as shown by Cook in his
famous theorem. Essentially, we can use a sequence of Boolean And operators to check if two configurations
are neighbors in the above graph. Each such Boolean formula has a constant size, constant based on the
number of states and the size of the alphabet. ⊓⊔

To continue further, let us see how DTMs and NTMs can differ intheir space usage. In this direction,
we first extend Definition as follows.

Definition 1.5 (NSpace)Lets : IN → IN and letL ⊆ {0, 1}∗. LetM be a nondeterministic Turing machine
that decidesL with the property that for anyw ∈ {0, 1}∗, M executing on inputw uses at mostc · s(|w|)
tape cells, for a constantc before deciding whetherw ∈ L. Then, we say thatL ∈ NSpace(s(n)).

Recall that simulating a computation of an NTM on a DTM seems to require an exponential increase
in time. For instance, an NTM running int(n) time can be simultaed by a DTM in timeO(2t(n)). In a
remarkable result, Savitch showed that however deterministic TMs can simulate nondeterministic TMs with
a very small space overhead.

2

Theorem 1.6 (Savitch) Lets : IN → IN be such thats(n) ≥ n. Then,

NSpace(s(n)) ⊆ DSpace(s(n)2)

Proof. To think about the proof, here is an idea. We need to show that adeterministic TM can simulate the
actions of a non-deterministic TM that uses a space ofs(n). Using Claim?? is a possibility. We need to
check in spaces(n)2 if the starting configuration leads to the accepting configuration. The number of nodes
in the graph is indeed2O(s(n)). But given that the outdegree is 2, the number of paths in the graph is in
O(22O(s(n))

). If we have to systematically explore all these paths, to represent a path by its number, we need
a space ofO(2s(n)), which is much more thanO(s(n)2) as promised by the theorem.

So we need a new trick here. Indeed, counting all possible paths is rather naive. There are several
simple graphs with polynomial number of nodes but exponential number of paths.[[Create one such graph
to convince yourself.]] The trick is to think of the graph reachability problem whichneed not be solved in
such a brute-force manner.

The trick is to therefore mimic the graph reachability solution by using as little space as possible. The
details follow. LetC1 andC2 be two configurations and let the predicateReach(C1, C2, t) return Yes or
No depending on whether from configurationC1 there is path to configurationC2 in at mostt steps. The
predicateReach can be used recursivley starting fromReach(C1, Caccept, t), wheret = 2cs(n)) for a
suitable constantc. [[Why should t be so high?]]. The predicate can be answered recursively as follows.
To decideReach(C1, C2, t) one can recursively check if there exists a configurationCmid such that both
Reach(C1, Cmid, t/2) andReach(Cmid, C2, t/2) are both true. (In the above, we can take thatt is an exact
power of 2, or consider ceil(t/2).) The recursive program can be written as shown below:

Algorithm Reach(C1, C2, t)
begin

If t = 1 then
Check if eitherC1 = C2 or C1 andC2 are neighboring configurations.
If so, return True, else return False;

end-if
else

For each configurationCmid do
result1 = Reach(C1, Cmid, t/2);
result2 = Reach(Cmid, C2, t/2);
return result1and result2;

end-for
End-if

End-Algorithm

The determinstic machineM that simulates thes(n)-space nondeterministic machineN simply imple-
ments the above program. Let us now see how much spaceM needs for this simulation. For each recursive
call, M needs to store three variables namely,C1, C2, andt. Since each is in2O(s(n)), each of them can be
stored by usingO(s(n)) bits. There are alsolog 2O(s(n)) stages in the recursion. So, the overall space used
by M is in O(s(n)2). ⊓⊔

An immediate implication of Svaitch;s theorem is the following corollary.

Corollary 1.7
P ⊆ NP⊆ PSPACE= NSpace⊆ EXPTIME.

3

Figure 1: Containments among complexity classes, as is widely beleived.

In the above list of containments, we do not know if any of the containments are proper. It is possible
to show that P6= EXPTIME. Therefore, in the list of containments, one more ofthem has to be proper.
A picture of the above containments, assuming that all are proper except the one indicated to be equal, is
shown in Figure 1. It is widely beleived that the situation isas shown in Figure 1.

4

2 PSPACE and PSPACE-Completeness

A natural question to ask when we define a new complexity classis to seek problems that are complete
with respect to that class. Recall the class PSPACE of problems. We now seek the notion of PSPACE-
completeness for the class PSPACE.

Definition 2.1 A languageL is said to be PSPACE-complete if:

• L is in PSPACE, and

• Every languageL′ in PSPACE is polynomial time reducible toL.

Notice the limitation on the reduction in the above definition. We are following the general rule that
the comptuational class the reduction function belongs to must be weaker than the class for which we want
to establish reduction. Analogous to the satisfiability problem for NP-completeness, we have a quantied
formual satisfiability that can be shown to be PSPACE-complete.

Quantified Boolean formulae can be defined as follows. Recallthe universal quantifiers(∀) and the
existential quantifier(∃). Certain mathematical statements require the use of quantifiers to indicate the
scope of applicability of the statement. For instance, whenone considers natural numbers, the statement
x2 + y2 = z2 is true only some triplesx, y, andz. So, one can write the above as∃x∃y∃z x2 + y2 = z2.
Such a statement is called a quanitified formula. Another example is the following:∀x〈∃y∃d x = y · d〉 ∧
〈∃z∃e x = z · e. What does the above statement capture? Is it true? Assume that x, y, andz are positive
integers.

The difference between the above two examples is that in the former all quantifiers appear at the be-
ginning of the statement. Such a statement is called to beprenex normal form. When we consider that the
variables are from{0, 1} then quantified statements in prenex normal form are called quantified Boolean
statement. Further, when all variables have some quantifierassociated with the varaible, then the statement
is called as afully qualified. We define the languageTQBF as:

TQBF = {Φ|Φ is a true fully quantifiable Boolean formula}.

We show now thatTQBF is PSPACE-complete.

Theorem 2.2 TQBF is PSPACE-complete.

Proof. As usual there are two items to show. One is to show that TQBF isin PSPACE and the second is to
show that every other language in PSPACE is reducible to TQBF.

For the first item, consider a TQBF formulaΦ. A deterministic TM for checking whetherΦ ∈ TQBF
can be designed as follows. There are at most a polynomial number of variables inΦ. For each variable, there
are only two possible values: 0 and 1. The TM can systematically explore all possible values for all variables.
For each such assignment, the TM checks ifΦ is true. The TM accepts if there is an assignment under which
Φ is true. Otherwise the TM rejects. Since the space used for writing the current assignment can be reused,
the total space used by the TM is polynomial in the length of the input. Hence,TQBF ∈ PSPACE.

The second item is more involved. LetL be a PSPACE language and letM be a TM that recognizesL.
We wish to show that the action ofM on an inputw can be coded into a fully quantified Boolean formulaΦ
so thatΦ is true iff w ∈ L.

Notice the similarity between the present problem and that of reducing any languageL in NP-complete
to SAT. Briefly, the proof of the latter constructs a Boolean formula that is satisfiable iff the machine forL
accepts an inputw.

5

One can check that the above approach fails for the PSPACE machine M for the following reason.
M , being bound by polynomial space can run for an exponential amount of steps. Therefore, the Boolean
formula that represents the actions ofM on inputw can be exponentially long. The reduction however is
limited to be polynomial in time. So, such a reduction would not work.

Let us see if the configuration graph we defined forM on inputw, GM,w helps. One can use the proof
technique of Savitch’s theorem to say thatM acceptsw iff there exists a configurationCmid so that the
formula corresponding to [Cstart can reachCmid in t/2 steps] and the formula corresponding to [Cmid can
reachCaccept in t/2 steps] are both true. Let us represent the above by saying that Φc1,c2,t corresponds to the
Boolean formula withc1 as the starting configuration andc2 as the ending configuration andt is the time
allowed for reaching fromc1 to c2. The formulaΦc1,c2,t can be constructed recursively as:

Φc1,c2,t = ∃c′Φc1,c′,t/2 ∧ Φc′,c2,t/2

For t = 1, we just have to check if the configurations inΦ are neighboring configurations inGM,w.
While the above is technically correct, there is one problem.

The length of the expressionΦCstart,Caccept,t for t ∈ 2O(nk) can be super-polynomial in length. The
recursion is controlled by the parametert and every recursive call reducest to t/2, but also doubles the size
of the formula. So, the formula ends up having an exponentiallength ast can be exponential. The reduction
cannot write such a long formula.

We therefore need another method to encode the actions ofM into a polynomial sized fully quantified
Boolean formula. This can be done as follows. The trick is to not double the length of the formula every
recursive step. This is done by redefiningΦc1,c2,t as:

Φc1,c2,t := ∃Cmid∀(c, d) ∈ {(Cstart, Cmid), (Cmid, Caccept)} 〈Φc,d,t/2〉.

While this does not increase the size of the Boolean formula every recursive step, the scope of the
variablesc andd is no longer Boolean. However, that can be easily fixed by writing the subexpression
∀(c, d) ∈ {(Cstart, Cmid) 〈Φc,d,t/2〉 as(c, d) = (Cstart, Cmid) ∩ (c, d) = (Cmid, Cstart) → 〈Φc,d,t/2〉. This
way, the length of the formulaΦCstart,Caccept,t is polynomial in|w|. ⊓⊔

An important observation regarding languages in PSPACE is that winning strategies for most games can
be captured using quantified Boolean formulae. Most board games can thus be shown to be PSPACE-hard.

6

3 Sub-linear Space

In this section, we explore problems that can be solved by using space is that less than the space consumed
by the input itself. Hence, ifn denotes the size of the input, we are interested in problems that can be solved
in sublinear space. Notice that the machine does have enoughtime to actually read the entire input while still
working in sublinear space. So this notion is not ill-defined. Interestingly however, there is an equivalent
notion with respect to time called sub-linear algorithms which were studied recently in the works of Indyk.
While we may not have time to study some of the sublinear time works, plesae see [] for more details.

Given that we are consdiering sublinear space, what are the right sublinear space functions that are
interesting? Should we seek problems that can be solved inO(

√
n)-space?,O(nǫ)-space for some constant

ǫ < 1?, or should we investigateO(log n)-space?, or further small space such asO(log log n)-space? It turns
that logarithmic space is a good candidate to study as it provides some natural intuitions to think about. In
logarithmic space, one can essentially have space just enough to store a constant number of pointers into the
input! Still it turns out that there is a class of interestingproblems that can be solved in logarithmic space.
Further, this class of functions is invariant to simple changes to the Turing machine model such as addingg
more tapes, or increasing the size of the alphabet, etc. Therefore, studying logarithmic space is interesting.

Definition 3.1 We define LogSpace to be the class of languages that can be decided by a deterministic
Turing machineM using at mostO(log n) cells of the tape wheren is the size of the input. In other words,

LogSpace= DSpace(log n)

The following example shows a simple language that can be decided in logarithmic space.

Example. 3.2 LetL be the language{〈G〉|G has no triangle}. ThenL can be recognized in LogSpace as
follows. On the work tape, the machineM can write all 3 tuples of the vertices ofG. For each tuple written,
the machine checks if there is a trinalge passing through those vertices. If all tests fail, thenM accepts,
otherwiseM rejects. The space used byM is space enoug to store three vertex identifiers, thereforeL is in
LogSpace.

Analogous to the definition of NSpace, also LogSpace has a nondeterministic equivalent.

Definition 3.3 We define NLogSpace to be the class of languages that can be decided by a nondeterministic
Turing machineM using at mostO(log n) cells of the tape wheren is the size of the input. In other words,

NLogSpace= NSpace(log n)

The following example illustrates a problem that can be solved nondeterministically using logarithmic
space.

Example. 3.4 Extend the above example to define the languageL as the language{〈G〉|G is bipartite}.
It can be shown thatL is in NLogSpace as follows. The nondeterminitic machine guesses an odd integerk
such that1 ≤ k ≤ n whereG hasn vertices. For this value ofk it starts by guessingk vertices that form a
cycle inG. Notice that thek vertices need not be stored all at the same time. Only neighbouring vertices on
the cycle need be stored on the tape. ThereforeL ∈ NLogSpace.

Example. 3.5 Let PATH be defined as the language{〈G,u, v〉 | G is a directed graph andu v}. PATH
essentially tries to see if the given directed graphG has a path from a vertexu to vertexv in the graphG.
Recall that there are standard algorithms that run in polynomial time and space that can decide the PATH
problem. The challenge however is to show that indeed a smallspace suffices.

7

A nondeterministic machineM that decides PATH can be designed as follows. On its work tape, M
guesses the next node on a path fromu to v. M starts by guessing one of the out-neighbors ofu, sayu1. M
writesu1 on its work tape. It then guesses an outneighbor ofu1 and writes the id of this node on the work
tape in the same spaceu1 is written. IfM is able to reachv via these guesses, thenM accepts. IfM makes
more thann = |V (G)| gusses, thenM rejects the input.

Notice thatM does not keep the history of its guesses;M just has to decide to accept or reject and need
not show a path in case of acceptance.

The above example is rather remarkable. It turns out that ifG is an undirected graph, then nondetermin-
ism is not required. The undirected version of the above problem can be solved using logarithmic space by
a deterministic machine.

3.1 Savitch’s Theorem for LogSpace and NLogSpace

Recall from Savitch’s theorem that for space beyond linear,it holds that NSpace(s(n)) = DSpace(s(n)2).
In this section, we argue that a similar result holds also when s(n) ≥ log n. One of the important pieces in
the proof of Savitch’s theorem is the relation between the space used by a TM and the time the TM takes
to decide on any input. Specifically, we showed that ans(n)-space bounded TM runs in timeO(2s(n)). Is
this relation still true for logarithmic space TMs? Not so ata first glance. A TM running inO(1) space can
just read the entire input, and do nothing with it thereby consumingO(n) time. We therefore introduce the
following definition that relates the space and time for every functions(n).

Definition 3.6 Consider a multitape TMM with a separate read-only input tape. Letw be an input toM .
A configuration ofM onw consists of the state ofM , the contents on its work tape, and the positions of its
heads, including the head of the read-only tape.

The essence of this definition is to separate the input from the configuration of a TM. This is not a
problem as the input is read-only, and the position of the head is included in the configuration.

Using the above definition, it now holds that if a TM runs in spaces(n), then on an inputw of length
|w|, the number of configurations is inO(n · 2s(n)). How?

Finally, Savitch’s theorem can be proved using the above number of configurations. The configuration
graph again hasn2O(s(n)) nodes and we have solve a reachability problem. Storing the parameters for every
recursive call now requires a space oflog(n2O(s(n))) = log n+O(s(n)). Therefore, so long ass(n) ≥ log n,
Savitch’s theorem holds.

3.2 NLogSpace-Completeness

Analogous to the definition of time based complexity classesP and NP, we have now defined logarithmic
space based complexity classes LogSpace and NLogSpace. So,it is natural to ask the relation between the
classes LogSpace and NLogSpace. Clearly, LogSpace⊆ NLogSpace, and the question therefore is whether
LogSpace= NLogSpace or not. This sounds very similar to the P versus NP question. To create evidence
that P is not equal to NP, there is the notion of NP-complete that shows that certain problems in NP are
not likely to be in P. In the same flavour, one can build evidence to show that LogSpace6= NLogSpace by
searching for complete problems with respect to NLogSpace.

As with the general definition of a problem complete for a class, an NLogSpace-complete problem
represents a problem that is most difficult in the class NLogSpace. Therefore, a problemA is NLogSpace
complete if it is in NLogSpace and every other problem in NLogSpace reduces toA. What has to be specified
in the above notion is the time allowed for the reduction function. If we use polynomial reducibility, then
there is a small inconsistency. All problems in NLogSpace are solvable in polynomial time. So, every

8

pair of problems in NLogSpace, except the pairΦ andΣ∗ are reducible to each other. This suggests that
polynomial reducibility is too powerful a notion in the caseof NLogSpace completeness. (In general, when
defining complete problems with respect to a class, the powerallowed to the reduction must be smaller than
the resources sufficient to decide the class itself). We therefore introduce the following notion of log space
reducibility.

Definition 3.7 A languageL1 is log space reducible to a languageB, writtenA ≤L B if positive instances
of A can be converted to positive instances ofB using a functionf : Σ∗ → Σ∗ wheref is a log space
computable function. A log space computable function is a function such that there is a Turing machine
M with a read-only input tape, aO(log n) long work tape, and a write-only output tape, which on input
w ∈ Σ∗ on the input tape computesf(w) and writesf(w) on the output tape.

Using the above definition, a problemL1 is NLogSpace complete ifL1 ∈ NLogSpace and every problem
in NLogSpace is log space reducible toL1. Standard results of the above definition that follow are given
below.

Theorem 3.8 The following are both true.

• If A ≤L B andB ∈ LogSpace then alsoA ∈ LogSpace.

• If any NLogSpace-complete language is in LogSpace then LogSpace= NLogSpace.

To end this section, we finally show that the PATH problem defined earlier is NLogSpace-complete.

Theorem 3.9 PATH is NLogSpace-complete.

Proof. There are two items to show. Firstly, we need to show that PATH∈ NLogSpace. But that is
already done in the example. Secondly, we need to show that every other problem in NLogSpace is log
space reducible to PATH. For this, we need to exhibit a log space reduction that converts positive instances
of any problem in NLogSpace to positive instances of PATH. The reduction works as follows.

Imagine for a moment that there is no restriction on the spaceused for the reduction. Let us understand
how to reduce any problem in NLogSpace to the PATH problem. Let B ∈ NLogSpace and letM be a
nondeterministic TM that deciedesB. One can think of constructing a graphGM,w for input w such that
nodes inGM,w correspond to the configurations of the machineM on w. Now, if there is a path inGM,w

from the start configuration to the accepting configuration,as an instance of PATH, thenw is accepted by
M .

Let us now see how this graph can be constructed using only logarithmic space. The nodes ofGM,w

are the configurations ofM on inputw. There areO(nk) nodes in this graph as there are onlyn2O(log n)

configurations. An edge exists inGM,w from configurationC1 to C2 iff either C1 = C2 or C2 is reached in
one step of the machine fromC1. This can be checked given the definition ofM .

To compute the graph in logarithmic space, one can proceed asfollows. Notice that only the work tape
is bounded by logarithmic space, but not the output tape. To describe a graph, one needs to simply describe
its nodes and edges. The nodes can be listed in a lexicogrpahic order as follows. Each node inGM,w can be
represented inO(log n) bits. So, start by listing all bit strings of lengthO(log n) on the work tape. For each
bit stringb, check ifb is a valid configuration ofM on inputw. If so, writeb on the output tape. Write the
string next tob in the lexicographic order on the work tape, and repeat untilall bit strings of lengthO(log n)
are checked. To list the edges, a similar technique can be used. Now, we list pairs of bit strings of length
O(log n) in lexicographic order on the work tape. We check if the current pair is a valid edge, and if so,
write the edge on to the output tape. This check can be done by using the transition function ofM . ⊓⊔

An immediate corollary of the above theorem is the following.

Corollary 3.10 NLogSpace⊆ P.

9

3.3 The ClasscoNLogSpace

We now turn our attention to another space based complexity class along with a surprising result. The class
coNLogSpace is the set of languages whose complement can be decided by a nondeterministic Turing ma-
chine using logarithmic space. The classcoNLogSpace can be seen as analogous to the classcoNP. It is gen-
erally beleived that NP6= coNP. However, as the following theorem shows, NLogSpace= coNLogSpace.

Theorem 3.11 NLogSpace= coNLogSpace

Proof. We have to show that every problem incoNLogSpace is also in NLogSpace. Here is where complete
problems come to our rescue. Recall that PATH is NLogSpace-complete. So, ifPATH were shown to be
in NLogSpace, then also every problem incoNLogSpace would be in NLogSpace. The languagePATH is
the set of directed graphs with two verticesu andv such that there isno path fromu to v. We now show a
nondeterministic loagrithmic space machine forPATH.

The nondeterministic machine should somehow conclude thatno path exists between two verticesu and
v in a given directed graph. Let us ignore the space aspect for amoment. Then, one way of doing this is
as follows. The nondeterministic machine tries to partition the vertex set of the given graph into two parts
VR andVNR. VR contains the set of vertices that are reachable froms andVNR contains the set of vertices
that are not reachable froms. If v ∈ VNR thenM accepts and ifv ∈ NR thenM rejects. To see whether a
vertexx is to be placed inVR, M can check using nondeterminism if there is a path fromu to x. This can
be done also in logarithmic space. If such a verification fails, then it means that the vertexx should be in
VNR. Once vertext is characterized, the machine can decide accordingly.

In the above, we are storing then bits to indicate whether a vertex is inVR or its complement. This is
space more than what we can afford to use. To reduce space, we not the following observations. Firstly, we
need not know for every vertexx if x is in VR or not. It suffices if we can match up the number of vertices
in VR. How do we know|VR|? Assume so for a moment that we know|VR|. Then, convince yourself that
the machineM can run in logarithmic space using nondeterminism.

To find |VR| we proceed as follows.VR can be written as the union of setsV i
R whereV i

R is the set of
vertices that are at a shortest distance ofi from u. Note thatV 0

R = {u}. And, V i+1
R can be computed from

V i
R as follows. For each vertexx, it is verified if thex is in V i

R. (Note: We cannot store this information). If
so, then it checks if for every vertexy, (x, y) is an edge inG. If so, theny is in V i+1

R . This is similar to a
space reduced version of BFS. ⊓⊔

10

