Homework 5 Complexity and Advanced Algorithms

Due November 4, 2011.

Problem 1. In the expression tree evaluation using the rake technique, consider raking a leaf node u with sibling v and parent w. Show how to update the labels on node v when the operator at node w is (a) subtraction, (b) division, and (c) exponentiation. In case of (b) and (c) above, you may have to think of additional labels. (4 Points)

Problem 2. The aim of this problem is to show how to solve the LCA problem on complete binary trees. Let T be a complete binary tree with $n=2^{k}-1$ vertices. Let each node be given a number according to the inorder traversal. For any node u, let $r(u)$ be defined as the index of the rightmost bit position with value 1 . (Bit positions start with the LSB as index 0 , and increase towards the left). Show the following:

1. All the descendants of u have the same $r(u)-k$ leftmost bits.
2. No descendant of u has more than k consecutive righmost 0 bits, and
3. Given two nodes u and v in T, statements (1) and (2) above can be used to find the LCA of u and v.

(4 Points)

Problem 3. Use the Euler tour of a rooted binary tree to compute the inorder number of nodes in tree. The inorder number of a node is the index of the node in the inorder traversal of the tree. Your algorithm should use only $O(n)$ operations. (3 Points)

Problem 4. Let T be a rooted tree. How many times would a node appear in an Euler path of T. (2 Points)
Problem 5. Find classes of graphs which have: (a) an indpendent set that is a constant fraction of the number of nodes, (b) an independent set that has only $O(1)$ size irrespective of the number of nodes in the graph. (2 Points)

