Homework 1 Complexity and Advanced Algorithms

Due August 9, 2011.

Problem 1. Design a TM for computing the following functions.

- $f(n)=\lceil\log n\rceil$.
- $f(n)=\lfloor\sqrt{n}\rfloor$.

($\mathbf{2} \times \mathbf{2}=\mathbf{4}$ Points)

Problem 2. Consider a pushdown automata (PDA) that is equipped with two stacks with the restriction that the size of the stacks is bounded by a polynomial in the length of the input. What is the set of languages that can be accepted by such a modified PDA. Justify your answer. (4 Points)

Problem 3. Consider the satisfiability problem in which each clause has only 2 literals. Call the corresponding language as 2SAT. Is 2SAT in NP? Is it NP-complete? Justify your answers. (4 Points)

Problem 4. Solve the recurrence relation below for all possible values of a_{1} and a_{2} being positive real numbers.

$$
T(n)=T\left(a_{1} n\right)+T\left(a_{2} n\right)+O(n)
$$

Show all your work and justify your answers. (4 Points)
Problem 5. Consider a set of n processes with running times $r_{1}, r_{2}, \cdots, r_{n}$ units. To execute these, there is one machine M with an available running time of R units. Design an algorithm to select a set of processes from the above so that their total running time is at most and as closest to R. Argue why your algorithm is correct. (4 Points)

