
Complexity and Advanced Algorithms
Monsoon 2011

Distributed Algorithms
Lecture 1

Distributed Computing – Basics

 Distributed computing: Consider a collection of
homogeneous processors (computers) linked
with an interconnection network.

Distributed Computing – Basics
 Computation is

distributed across
the processors,
possibly
exchanging partial
results as
messages.

 Also called as the
message passing
model or the
network model.

Distributed Computing – Basics
 Several interesting questions arise
 How to indeed distribute the computation?
 How to send/receive messages?
 How to analyze such an algorithm?

 What are the important parameters?
 How to quantify each parameter?

Distributed Computing – Basics

 Typically, computation proceeds in rounds.
 In each round, each node can send/receive

messages to all its neighbors.
 Any limits on the message size?

 In each round, nodes can perform some local
computation also.
 Any limits on the amount of computation?

 Rounds are assumed to be synchronous.

Distributed Computing – Basics
 Parameters to analyze algorithms

 Number of rounds required – Equivalent to time
taken to finish

 Local computation – Most often ignored, as only
simple computations are involved.

 Message volume – total number of bits/bytes
across the overall execution. Also called as the
message complexity.

 Important as communication is a huge consumer of
energy.

Basic Problems I – MIS

 Given a graph G = (V, E) recall that an
independent set of nodes is a subset U ⊆ V s.t.
no two elements of U are neighbors in G.
 U is called a maximal independent set (MIS) if no

proper superset of U is also independent.

A Sequential Algorithm for MIS

 Greedy algorithm.
 Produces lexicographically first MIS.

Algorithm Greedy-MIS(G)
Begin
 I = {};
 for v = 1 to n do
 if I ∩ N(v) =
∅then
 add v to I.
 end-for
End.

Example

Parallel/Distributed Algorithm for MIS
 The sequential algorithm is not good to

parallelize.
 Indeed several complexity theoretic notions

surrounding MIS in parallel.
 Will visit them in due course.

Parallel/Distributed Algorithm for MIS
 Some pointers towards a solution

 Think of an iterative approach, but
 Add more vertices in each iteration to I than just a

single vertex.
 Amounts to finding an independent set S in each

iteration.
 Each iteration also should run in parallel

efficiently.
 The set S should be large enough in each

iteration.
 So that there are fewer iterations.

A Randomized Algorithm

 To find such a set S, we start with a random set
R that is larger than S in size.

 The set R may not be independent, but can trim
R suitably.
 Favor vertices of higher degree!

The Algorithm

Algorithm Parallel-MIS(G)
Begin
 I =∅;
 repeat
 1. for all v ∈ V do in parallel
 if d(v) = 0 then add v to I and delete v from V;
 else mark v with probability 1/2d(v);
 2. for all (u,v) ∈ E do in parallel
 if both u and v are marked then
 unmark the vertex of lower degree
 3. for all v ∈V do in parallel
 If v is marked then add v to S.
 4. I = I ∪ S;
 5. Delete S ∪ N(S) from V, and all incident edges from E
 until V =∅;
End.

Analysis
 Wish to show that the algorithm terminates in

O(log n) iterations, on expectation.
 For this, we show that in every iteration, at least

a constant fraction of the edges are deleted on
expectation.

Analysis
 To carry out the analysis, define:

 A vertex v is good if at least 1/3rd of its neighbors
have degree less than d(v).

 A vertex v is bad if at least 2/3rd of its neighbors
have degree at least d(v).

 An edge e is good if at least one endpoint of e is
good.

 An edge e is bad if both its endpoints are bad.

Analysis – Sketch
 Good vertices have enough low degree

neighbors.
 So at least one such low degree neighbors is in

S with good probability.
 Helps delete good vertices.
 This in turn helps delete good edges.

 If we can show that there are enough good
edges, then suffices if a fraction of them are
deleted.

Analysis – Claim 1
 For every good vertex v with d(v) > 0, the

probability that some neighbor w of v gets
marked is at least 1 – e-1/6

 Proof: Pr(w is marked) = ½d(w).
 Since v is good, at least d(v)/3 neighbors have

degree at most d(v). Let w be such a neighbor.
 Pr(w is marked) = 1/2d(w) ≥ ½d(v).
 Pr(no neighbor of v is marked) ≤

 (1- ½d(v))d(v)/3 = e-1/6.

Analysis – Claim 2

 If a vertex w is marked, then Pr(w in S) ≥ ½.
 Proof: If w is marked, then w is not in S only if

some high degree neighbor of w is also marked.
 Each such high degree neighbors of w is marked

with probability at most ½d(w).
 Number of such high-degree neighbors ≤ d(w).
Pr(w in S) = 1 – Pr(w not in S)
 = 1 – Pr(∃u ∈N(w), d(u) ≥ d(w), u marked)

 = 1 - |u∈ N(w), d(u) ≥ d(w)| ½d(w)
 ≥ 1 - |u∈N(w)| ½d(w) = 1 – d(w). ½d(w)
 = ½.

Analysis – Claim 3
 Let v be a good vertex. Then,
 Pr(v is deleted) ≥ (1 – e-1/6)/2.
 Proof: Combine Claims 1 and 2.

Analysis – Claim 4
 At least half the edges are good.

 Proof: For every bad edge e, associate a pair of

edges via a function f:E
B
 → such that for any

two distinct bad edges e
1
 and e

2
, f(e

1
) ∩ f(e

2
) =

∅.
 Completes the proof since only |E|/2 such pairs

exist.
 The function f defined as follows.

2

E

 For each edge (u, v) E, orient it towards the ∈
vertex of higher degree.

 Consider a bad edge e = (u,v) oriented towards v.
 Since v is bad, the out-degree of v is at least twice

its in-degree.
 So, there exists a way to pick a pair of edges for

every bad edge.

Analysis – Claim 4

Putting Everything Together
 In each iteration, it is expected that a constant

fraction of edges are deleted.
 Half the edges are good, and a good edge is

deleted with probability at least (1 – e-1/6)/2.
 So, on expectation, only O(log m) = O(log n)

iterations suffice.
 Can also show that with high probability O(log n)

iterations suffice.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

