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Distributed Computing – Basics

 Distributed computing: Consider a collection of 
homogeneous processors (computers) linked 
with  an interconnection network.



Distributed Computing – Basics
 Computation is 

distributed across 
the processors, 
possibly 
exchanging partial 
results as 
messages.

 Also called as the 
message passing 
model or the 
network model.



Distributed Computing – Basics
 Several interesting questions arise
 How to indeed distribute the computation?
 How to send/receive messages?
 How to analyze such an algorithm?

 What are the important parameters?
 How to quantify each parameter?



Distributed Computing – Basics

 Typically, computation proceeds in rounds.
 In each round, each node can send/receive 

messages to all its neighbors.
 Any limits on the message size?

 In each round, nodes can perform some local 
computation also.
 Any limits on the amount of computation?

 Rounds are assumed to be synchronous.



Distributed Computing – Basics
 Parameters to analyze algorithms

 Number of rounds required – Equivalent to time 
taken to finish

 Local computation – Most often ignored, as only 
simple computations are involved.

 Message volume – total number of bits/bytes 
across the overall execution. Also called as the 
message complexity.

 Important as communication is a huge consumer of 
energy.



Basic Problems I – MIS

 Given a graph G = (V, E) recall that an 
independent set of nodes is a subset U ⊆  V s.t. 
no two elements of U are neighbors in G.
 U is called a maximal independent set (MIS) if no 

proper superset of U is also independent. 



A Sequential Algorithm for MIS 

 Greedy algorithm.
 Produces lexicographically first MIS.

Algorithm Greedy-MIS(G)
Begin
   I = {};
   for v = 1 to n do
       if I ∩ N(v) = 
∅then
          add v to I.
   end-for
End.



Example



Parallel/Distributed Algorithm for MIS
 The sequential algorithm is not good to 

parallelize. 
 Indeed several complexity theoretic notions 

surrounding MIS in parallel.
 Will visit them in due course.



Parallel/Distributed Algorithm for MIS
 Some pointers towards a solution

 Think of an iterative approach, but
 Add more vertices in each iteration to I than just a 

single vertex.
 Amounts to finding an independent set S in each 

iteration.
 Each iteration also should run in parallel 

efficiently.
 The set S should be large enough in each 

iteration.
 So that there are fewer iterations.



A Randomized Algorithm

 To find such a set S, we start with a random set 
R that is larger than S in size.

 The set R may not be independent, but can trim 
R suitably.
 Favor vertices of higher degree!



The Algorithm

Algorithm Parallel-MIS(G)
Begin
   I =∅; 
   repeat 
       1. for all v ∈ V do in parallel 
            if d(v) = 0 then add v to I and delete v from V;
            else mark v with probability 1/2d(v);
       2. for all (u,v) ∈ E do in parallel
            if both u and v are marked then
               unmark the vertex of lower degree      
       3. for all v ∈V do in parallel 
             If v is marked then add v to S.
       4. I = I ∪ S;
       5. Delete S ∪ N(S) from V, and all incident edges from E
   until V =∅;
End.



Analysis
 Wish to show that the algorithm terminates in 

O(log n) iterations, on expectation.
 For this, we show that in every iteration, at least 

a constant fraction of the edges are deleted on 
expectation.



Analysis
 To carry out the analysis, define:

 A vertex v is good if at least 1/3rd  of its neighbors 
have degree less than d(v).

 A vertex v is bad if at least 2/3rd of its neighbors 
have degree at least d(v).

 An edge e is good if at least one endpoint of e is 
good.

 An edge e is bad if both its endpoints are bad.



Analysis – Sketch 
 Good vertices have enough low degree 

neighbors.
 So at least one such low degree neighbors is in 

S with good probability.
 Helps delete good vertices.
 This in turn helps delete good edges.

 If we can show that there are enough good 
edges, then suffices if a fraction of them are 
deleted. 



Analysis – Claim 1
 For every good vertex v with d(v) > 0, the 

probability that some neighbor w of v gets 
marked is at least 1 – e-1/6

 Proof: Pr(w is marked) = ½d(w).
 Since v is good, at least d(v)/3 neighbors have 

degree at most d(v). Let w be such a neighbor.
 Pr(w is  marked) = 1/2d(w) ≥ ½d(v).
 Pr(no neighbor of v is marked) ≤ 

              (1- ½d(v))d(v)/3 =  e-1/6.



Analysis – Claim 2

 If a vertex w is marked, then Pr(w in S) ≥  ½. 
 Proof: If w is marked, then w is not in S only if 

some high degree neighbor of w is also marked.
 Each such high degree neighbors of w is marked 

with probability at most ½d(w). 
 Number of such high-degree neighbors ≤  d(w).
Pr(w in S) = 1 – Pr(w not in S)
                 = 1 – Pr(∃u ∈N(w), d(u) ≥ d(w), u  marked) 

                             = 1 - |u∈ N(w), d(u) ≥ d(w)| ½d(w) 
                 ≥ 1 - |u∈N(w)| ½d(w) = 1 – d(w). ½d(w)
                 = ½.



Analysis – Claim 3
 Let v be a good vertex. Then, 
           Pr(v is deleted) ≥ (1 – e-1/6)/2.
 Proof: Combine Claims 1 and 2.



Analysis – Claim 4
 At least half the edges are good.

 Proof: For every bad edge e, associate a pair of 

edges via a function f:E
B
 →     such that for any 

two distinct bad edges e
1
 and e

2
, f(e

1
) ∩ f(e

2
) = 

∅.
 Completes the proof since only |E|/2 such pairs 

exist.
 The function f defined as follows.







2

E



 For each edge (u, v)  E, orient it towards the ∈
vertex of higher degree. 

 Consider a bad edge e = (u,v) oriented towards v.
 Since v is bad, the out-degree of v is at least twice 

its in-degree. 
 So, there exists a way to pick a pair of edges for 

every bad edge.

Analysis – Claim 4



Putting Everything Together
 In each iteration, it is expected that a constant 

fraction of edges are deleted.
 Half the edges are good, and a good edge is 

deleted with probability at least (1 – e-1/6)/2.
 So, on expectation, only O(log m) = O(log n) 

iterations suffice.
 Can also show that with high probability O(log n) 

iterations suffice.
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