Complexity and Advanced Algorithms Monsoon 2011

Distributed Algorithms

Lecture 1

Distributed Computing - Basics

- Distributed computing: Consider a collection of homogeneous processors (computers) linked with an interconnection network.

Distributed Computing - Basics

- Computation is distributed across the processors, possibly exchanging partial results as messages.
- Also called as the message passing
 model or the network model.

Distributed Computing - Basics

- Several interesting questions arise
- How to indeed distribute the computation?
- How to send/receive messages?
- How to analyze such an algorithm?
, What are the important parameters?
, How to quantify each parameter?

Distributed Computing - Basics

- Typically, computation proceeds in rounds.
- In each round, each node can send/receive messages to all its neighbors.
» Any limits on the message size?
- In each round, nodes can perform some local computation also.
' Any limits on the amount of computation?
- Rounds are assumed to be synchronous.

Distributed Computing - Basics

- Parameters to analyze algorithms
» Number of rounds required - Equivalent to time taken to finish
, Local computation - Most often ignored, as only simple computations are involved.
- Message volume - total number of bits/bytes across the overall execution. Also called as the message complexity.
- Important as communication is a huge consumer of energy.

Basic Problems I - MIS

- Given a graph $G=(V, E)$ recall that an independent set of nodes is a subset $U \subseteq V$ s.t. no two elements of U are neighbors in G.
> U is called a maximal independent set (MIS) if no proper superset of U is also independent.

A Sequential Algorithm for MIS

```
Algorithm Greedy-MIS(G)
Begin
    I = {};
    for v = 1 to n do
        if I \cap N(v) =
|}\mathrm{ then
    add v to I.
    end-for
End.
```

- Greedy algorithm.
> Produces lexicographically first MIS.

Example

Parallel/Distributed Algorithm for MIS

- The sequential algorithm is not good to parallelize.
- Indeed several complexity theoretic notions surrounding MIS in parallel.
> Will visit them in due course.

Parallel/Distributed Algorithm for MIS

- Some pointers towards a solution
, Think of an iterative approach, but
» Add more vertices in each iteration to I than just a single vertex.
* Amounts to finding an independent set S in each iteration.
» Each iteration also should run in parallel efficiently.
- The set S should be large enough in each iteration.
> So that there are fewer iterations.

A Randomized Algorithm

- To find such a set S, we start with a random set R that is larger than S in size.
- The set R may not be independent, but can trim R suitably.
- Favor vertices of higher degree!

The Algorithm

```
Algorithm Parallel-MIS(G)
Begin
    I =\varnothing;
    repeat
        1. for all v \in V do in parallel
            if d(v) = 0 then add v to I and delete v from V;
            else mark v with probability 1/2d(v);
            2. for all (u,v) \in E do in parallel
            if both }u\mathrm{ and v are marked then
                unmark the vertex of lower degree
            3. for all v \inV do in parallel
            If v is marked then add v to S.
            4. I = I \cup S;
            5. Delete S \cupN(S) from V, and all incident edges from E
    until V =\varnothing;
End.
```


Analysis

- Wish to show that the algorithm terminates in O(log n) iterations, on expectation.
- For this, we show that in every iteration, at least a constant fraction of the edges are deleted on expectation.

Analysis

- To carry out the analysis, define:
> A vertex v is good if at least $1 / 3^{\text {rd }}$ of its neighbors have degree less than $d(v)$.
- A vertex v is bad if at least $2 / 3^{\text {rd }}$ of its neighbors have degree at least $d(v)$.
2 An edge e is good if at least one endpoint of e is good.
2 An edge e is bad if both its endpoints are bad.

Analysis - Sketch

- Good vertices have enough low degree neighbors.
- So at least one such low degree neighbors is in S with good probability.
> Helps delete good vertices.
, This in turn helps delete good edges.
- If we can show that there are enough good edges, then suffices if a fraction of them are deleted.

Analysis - Claim 1

- For every good vertex v with $\mathrm{d}(\mathrm{v})>0$, the probability that some neighbor w of v gets marked is at least $1-\mathrm{e}^{-1 / 6}$
- Proof: $\operatorname{Pr}(w$ is marked $)=1 / 2 d(w)$.
- Since v is good, at least $d(v) / 3$ neighbors have degree at most $d(v)$. Let w be such a neighbor.
- $\operatorname{Pr}(\mathrm{w}$ is marked $)=1 / 2 d(w) \geq 1 / 2 d(v)$.
- $\operatorname{Pr}($ no neighbor of v is marked) \leq

$$
(1-1 / 2 d(v))^{d(v) / 3}=e^{-1 / 6} .
$$

Analysis - Claim 2

- If a vertex w is marked, then $\operatorname{Pr}(w$ in $S) \geq 1 / 2$.
- Proof: If w is marked, then w is not in S only if some high degree neighbor of w is also marked.
- Each such high degree neighbors of w is marked with probability at most $1 / 2 \mathrm{~d}(\mathrm{w})$.
- Number of such high-degree neighbors $\leq \mathrm{d}(\mathrm{w})$.
$\operatorname{Pr}(w$ in $S)=1-\operatorname{Pr}(w$ not in $S)$

$$
\begin{aligned}
& =1-\operatorname{Pr}(\exists \mathrm{u} \in N(\mathrm{w}), \mathrm{d}(\mathrm{u}) \geq d(\mathrm{w}), \mathrm{u} \text { marked) } \\
& =1-|u \in N(w), d(u) \geq d(w)| 1 / 2 d(w) \\
& \geq 1-|u \in N(w)|^{1 / 2 d} d(w)=1-d(w) .1 / 2 d(w) \\
& =1 / 2 .
\end{aligned}
$$

Analysis - Claim 3

- Let v be a good vertex. Then, $\operatorname{Pr}(\mathrm{v}$ is deleted $) \geq\left(1-\mathrm{e}^{-1 / 6}\right) / 2$.
- Proof: Combine Claims 1 and 2.

Analysis - Claim 4

- At least half the edges are good.
- Proof: For every bad edge e, associate a pair of edges via a function $f: E_{B} \rightarrow\binom{E}{2}$ such that for any two distinct bad edges e_{1} and $\mathrm{e}_{2}, \mathrm{f}\left(\mathrm{e}_{1}\right) \cap \mathrm{f}\left(\mathrm{e}_{2}\right)=$ \varnothing.
- Completes the proof since only $|E| / 2$ such pairs exist.
- The function f defined as follows.

Analysis - Claim 4

- For each edge $(u, v) \in E$, orient it towards the vertex of higher degree.
- Consider a bad edge e = (u,v) oriented towards v.
- Since v is bad, the out-degree of v is at least twice its in-degree.
- So, there exists a way to pick a pair of edges for every bad edge.

Putting Everything Together

- In each iteration, it is expected that a constant fraction of edges are deleted.
» Half the edges are good, and a good edge is deleted with probability at least $\left(1-\mathrm{e}^{-1 / 6}\right) / 2$.
- So, on expectation, only $\mathrm{O}(\log \mathrm{m})=\mathrm{O}(\log \mathrm{n})$ iterations suffice.
- Can also show that with high probability $\mathrm{O}(\log \mathrm{n})$ iterations suffice.

