

Complexity and Advanced Algorithms
Monsoon 2011

Parallel Algorithms
Lecture 4

Advanced Optimal Solutions

• General technique suggests that we solve a
smaller problem and extend the solution to the
larger problem.

• To apply our technique we should use the pointer
jumping based solution on a sub-list of size n/log n.

• How to identify such a sublist?

1 8 5 11 2 6 10 4 3 7 12 9

Advanced Solutions

● Cannot pick equidistant as earlier.
● However, can pick independent nodes.

➢ Removing independent nodes is easy!
➢ Formally, an independent set of nodes.
➢ Can extend the solution easily in such a case.

1 8 5 11 2 6 10 4 3 7 12 9

1 5 11 6 4 3 12 9

Advanced Solutions

● Formally, in a graph G = (V, E), a subset of
nodes U ⊆V is called an independent set if for
ever pair of vertices u,v in U, (u,v) ∉ E.

● Linked lists (viewed as a graph) have the
property that they have large independent sets.

Advanced Solutions

• Transfer current rank along with successor

during removal.

1 8 5 11 2 6 10 4 3 7 12 9

1 5 11 6 4 3 12 9

(1) (2) 1) (2) (2) (1) (2) (1)

1 5 11 6 4 3 12 9

(1) (3) (4) (6) (8) (9) (11) (12)

8
(2)

List with

elements

removed Ranked

short list

reintroduce element 8

Advanced Optimal Solutions

• Algorithm outline:
– Remove an independent set of nodes in the linked list.
– Rank the remaining list, and then
– Rank the removed elements.

• Several algorithms use this technique with variations:
Anderson-Miller, Hellman-JaJa, Reid-Miller,...

1 8 5 11 2 6 10 4 3 7 12 9

1 5 11 6 4 3 12 9

Advanced Solutions

• Issue 1: How to find a large independent set of

nodes in parallel?

• Issue 2: How many iterations needed to reduce

the size of the list?

• Issue 3: How to rank the removed elements?

Advanced Solutions

• Issue 1:
– Use techniques from parallel symmetry breaking.
– Can obtain an independent set of size ≥ n/3.

• Issue 2:
– The naïve algorithm is slightly non-optimal (by a

factor of O(log n)
– Hence, reduce the size of the list from n to n/log n.

• Issue 3:
– Bookkeep enough details during removal
– Reintroduce in the reverse order.

Symmetry Breaking

• A way to induce differences between like

(symmetric) participants.

• Useful in applications such as graph coloring

– Generally, difficult using deterministic techniques.

• Need randomization
• Special cases where fast, deterministic symmetry

breaking can be achieved.
• Linked lists and directed cycles are an example.

Coloring by Symmetry Breaking

• Consider a directed cycle of n nodes numbered 1 to n.
• Treat the number of the node as its initial color.
• Can reduce colors to log n in one step.

–Compare color with parent, Newcolor(u) = 2k + color(u)
k

–
k is the index of the first bit position that u and v differ from LSB

110

101

110

New Color(u)u v
000

000 100

100 111

010 001

000 111100

011

010

001
001 011

011 101

111 010

101 110

00 (k = 0)

100 (k = 2)

11 (k = 0)

00 (k = 0)

10 (k = 1)

11 (k = 1)

01 (k = 0)

 10 (k = 1)

Coloring by Symmetry Breaking

● Claim: New colors are valid.
● Proof: Suppose that for u and v such that

u  v, NewColor(u) = NewColor(v).
● Let NewColor(u) = 2k + color(u)

k
, and

NewColor(v) = 2r + color(v)
r
.

● Let k = r. However, color(u)
k
 = color(v)

k
.

Why?
● Let k = r. Then, color(u)

k
 – color(v)

r
 =

2(r – k).
➢ The LHS has an absolute value of 1 and

the RHS has an absolute value of 2.

111

010

001

u

v

r

Coloring by Symmetry Breaking
● In one iteration, can reduce the number of colors

from n to 2log n.
➢ Initial colors are log n bits
➢ New colors are only 1+ ⌈loglog n⌉ bits.

● Can we repeat again?
➢ Yes.
➢ Reduces number of bits from t to 1+⌈log t⌉.
➢ But, at some point t < 1 + ⌈log t⌉. No advantage

any further.
➢ Happens at t = 3.

● So, repeat till only 8 colors are used.

Coloring by Symmetry Breaking
● At that point, can still reduce the number of

colors as follows:
● For i = 8 downto 3 in sequence

➢ If node u is colored i, then u chooses a color
among {1,2,3} that is not same as the colors of its
neighbors.

● Possible to do so. Why?

Coloring by Symmetry Breaking
● At that point, can still reduce the number of

colors as follows:
● For i = 8 downto 3 in sequence

➢ If node u is colored i, then u chooses a color
among {1,2,3} that is not same as the colors of its
neighbors.

● Possible to do so. Why?
➢ Each node has only two neighbors.
➢ So, only two colors amongst {1,2,3} can be used

up already.

Coloring by Symmetry Breaking

● Total time analyzed as follows:
➢ Each iteration of symmetry breaking reduces

number of bits from to 1+⌈log t⌉.
➢ The recurrence relation is T(n) = T(log n) + 1
➢ Solution: T(n) = O(log* n).
➢ In the next phase, only 5 iterations.
➢ So, overall time = O(log* n)

● Work however is O(nlog* n).
● Log* n = i such that

 log(log(......(log n))) = 1;

● The algorithm extends to lists and trees also.
i

Coloring to Independent Sets
● For bounded degree graphs colored with O(1)

colors, a coloring is equivalent to finding a large
independent set.

● Iterate on each color and count the number of
nodes with a given color.

● Pick the subset of like colored nodes of the
largest size.
➢ Clearly, an independent set.
➢ Has a size of at least a fraction of n.

Back to List Ranking

● Our algorithm outline:

● Question: How many iterations required?

Algorithm Rank(L)
L
1
 = L;

For r iterations do
 Color the list L with 3 colors
 Pick an independent set U

i
 of nodes of size ≥ n/3

 L
i
 = Remove nodes in U

i
 from L

i-1
;

End-for

Rank the list L
r
 using pointer jumping.

For i = r down to 1 do
 Reinsert the nodes in U

i
 into L

i

End-for
End.

Back to List Ranking
● Each iteration of coloring the list can give an MIS

of size at least n/3.
● We require that only n/log n nodes remain at the

end.
● Hence, O(log log n) iterations are required.

➢ (n/3)r = n/log n at r = O(log log n).

Back to List Ranking
● Time taken:

➢ To shrink the list: Each iteration is O(log* n). At
O(log log n) iterations, this takes O(log *n . log log
n) time.

➢ To rank the remaining list using pointer jumping:
O(log n) time

➢ To reintroduce the removed elements: Over r =
O(log log n) iterations, O(log log n) time.

➢ Total = O(log n).
● Work: O(nlog log n)

➢ Dominated by the work done in reintroducing the
removed elements

Back to List Ranking
● A different way:

➢ Reintroducing can be slowed down to make it
optimal.

➢ Use only n/log n processors, with each iteration
taking O(log n) time.

➢ Total time = O(log n log log n).
➢ Total work = O(nlog* n).

 Dominated by the time taken to find an independent
set.

Back to List Ranking
● Yet another way:

➢ Use an optimal approach to finding an
independent set.

➢ Takes O(log n) time and O(n) work.
● Overall time and work:

➢ Time = O(log n log log n)
➢ Work = O(n)
➢ Optimal!

Back to List Ranking
● In general, if one can spend O(t) time and O(n)

work in each iteration of removing nodes, then
➢ Time = O(t log log n + log n)
➢ Work = O(n).

● Have to lower t to get O(log n) optimal list
ranking.

● There are such algorithms.
➢ Anderson-Miller is one such example.

● Further reading
➢ Anderson Miller described in JaJa's book
➢ Hellman-JaJa is another popular approach

 Used by most practical papers in recent times.

After a long break, welcome again.

Have to make up two lectures and one exam.

Lectures: What if we continue our classes till 4 PM
for the next 6 lectures? With a small break after 1
hour.

Exam: Will hold it some day after possibly 2 weeks
from now. May be one hour exam, with only 15%
weightage.

Tree Processing
● Now that we know how to process linked lists, let

us consider tree algorithms.
● Problems we will consider:

➢ Traversal
➢ Expression evaluation
➢ Least common ancestor, range minima

Traversal via Euler Tour

● Given a tree T = (V, E), we use an Euler tour as a
primitive for tree traversal algorithms.

● Euler tour: Given a graph, an Euler tour is a cycle
that includes every edge exactly once.
➢ A directed graph G has an Euler tour if and only if

for every vertex, its in-degree equals its out-degree.

1 2

3

4

5

6

7

8

9
10

Euler Tour of a Tree

● For a tree T = (V,E) to define an Euler tour, we
make it a directed tree:
➢ Define T

e
 = (V

e
, E

e
) with V

e
 = V.

➢ For each edge uv in E, add two directed edges
(u,v) and (v,u) to E

e
.

➢ T
e
 has an Euler tour.

a
c

b

d

e g

f

b
e g

a c

f

dT: T
e
:

Defining an Euler Tour on a Tree
● Just have to define a successor. Here, successor

for an edge.
● For a node u in T

e
 order its neighbors v

1
, v

2
, ...,

v
d
.

➢ Can be done independently at each node.
➢ For e = (v

i
, u), set s(e) = e' where e' = (u, v

i+1
).

 Compute indices modulo the degree of u.

Euler Tour on a Tree
● Claim: The above definition of s: E → E is a tour.
● Proof: By induction. Let n = 1. Obviously true.
● For n = 2, at most one edge present. The tour is

well defined according to s().
● Let the tour be well defined for n = k.
● Step: n = k+1.

➢ Every tree has at least one leaf, say v.
➢ T' = T \ {v} has an Euler tour defined by s':E(T') →

E(T') as |V(T')| = k.
➢ We now extend this definition of s' to define a

function s: E(T) →E(T).

Euler Tour on a Tree

● Let u be the neighbor of v in T.
➢ Let N(u) = {v

0
, ..., v

i-1
, v

i
=v, v

i+1
, ... v

d
}.

● Set s(u, v) := (v,u). Set s(v
i-1

,u) := (u,v).
● At all other edges eT, s(e):=s'(e).

u

v
l

v
r

u

v
v

l
v

r

Example

a
c

b

d

e g

f

T:

h j

i

d

b j

c i

d

e f

f g

h b

h c

d b

c a f

i c

j b

g f
d

a

Example

a d

b j

c i

d

e f

f g

h b

h c

d b

c a f

i c

j b

g f

s(b,c) = (c,i)

s(c,i) = (i,c)

s(i,c) = (c,d)

s(c,d) = (d,a)

s(d,a) = (a,d)

s(d,f) = (f,g)
s(f,g) = (g,f)

s(g,f) = (f,d)

s(a,d) = (d,f)d

s(f,d) = (d,c)

s(d,c) = (c,b)

s(c,b) = (b,j)

s(b,j) = (j,b)

s(j,b) = (b,h)

s(b,h) = (h,b)

s(b,c) = (c,i)
s(h,b) = (b,c)

Euler Tour:
(b,c)  (c,i)  (i,c)  (c,d)  (d,a)  (a,d)  (d,f)  (f,g)  (g,f)
 (f,d)  (d,c)  (c,b)  (b,j)  (j,b)  (b,h)  (h,b)  (b,c)

Applications of Euler Tour to Traversal
● We now show why the Euler tour is an important

construct for trees.
● Operations on a tree such as rooting, perorder

and postorder traversal can be converted to
routines on an Euler tour.

Rooting a Tree

● Designate a node in a tree as the root.
● All edges are directed towards the root.

a
c

b

d

e g

f

T:

h j

a
c

b

d

e g

f

T:

h j

Euler Tour:
(b,c)  (c,i)  (i,c)  (c,d)  (d,a)  (a,d)  (d,f)  (f,g)  (g,f)
  (f,d)  (d,c)  (c,b)  (b,j)  (j,b)  (b,h)  (h,b)  (b,c)

i i

Rooting a Tree

● Let (v
1
, v

2
, ..., v

d
) be the neighbors of the root node r. In this case,

say (i, d, b)
● Set s(e) = NULL for e = (v

d
, r). In this case, s((b,c)).

a
c

b

d

e g

f

T:

h j

a
c

b

d

e g

f

T:

h j

ii

Euler Tour:
(b,c)  (c,i)  (i,c)  (c,d)  (d,a)  (a,d)  (d,f)  (f,g)  (g,f)
  (f,d)  (d,c)  (c,b)  (b,j)  (j,b)  (b,h)  (h,b)  (b,c)

Rooting a Tree

● The edge (r,v
i
) appears before (v

i
,r).

● So, if u precedes v, then u = p(v). Orient the edge uv from v to u.

a
c

b

d

e g

f

T:

h j

a
c

b

d

e g

f

T:

h j

i

Euler Tour:
 (c,i)  (i,c)  (c,d)  (d,a)  (a,d)  (d,f)  (f,g)  (g,f)  (f,d)
 (d,c)  (c,b)  (b,j)  (j,b)  (b,h)  (h,b)  (b,c)  NIL

i

Rooting a Tree

● So, if u precedes v, then u = p(v). Orient the edge uv from v to u.
● To know the above, use list ranking on the Euler path.

a
c

b

d

e g

f

T:

h j

a
c

b

d

e g

f

T:

h j

i

Euler Tour:
 (c,i)  (i,c)  (c,d)  (d,a)  (a,d)  (d,f)  (f,g)  (g,f)  (f,d)
 (d,c)  (c,b)  (b,j)  (j,b)  (b,h)  (h,b)  (b,c)  NIL

i

Preorder Traversal

● Euler tour can be used to get a preoder number
for every node.

● Associate meaning to the Euler tour.

a
c

b

d

e g

f

T:

h j

ci-ic-cd-da-ad-df-fe-ef-fg-gf-fd-dc-cb-bj-jb-bh-hb-bc

Euler path
at node b and
its subtree

Euler path Entering node d
and its subtree

i

Preorder Traversal
● In preorder traversal, a node is listed before any

of the nodes in its subtree.
● In an Euler tour, nodes in a subtree are visited by

entering those subtrees, and finally exiting to the
parent.

● If we can therefore track the first occurrence of a
node in the Euler path, then we can get the
preorder traversal of the tree.

Postorder Traversal
● Similar rules can be designed for also postorder

and inorder traversals.
● Inorder for binary trees only makes sense.
● Next we see how to process expression trees.

Expression Trees

● Expression trees are trees with
operands at the leaf nodes, and
operators at the internal nodes.

● Our interest is to evaluate the result of
an expression represented by its
expression tree.

● We would limit ourselves to binary
operators.
➢ Can also convert non-binary cases

to the case of binary operators.
● However, the expression tree need not

be balanced, or height in (log n).

Expression Tree Evaluation
● Cannot directly apply the standard technique of

➢ All the penultimate level nodes, then the next
level etc.

 Tree may not be balanced, and could have very few
nodes at the penultimate level.

➢ All leaves first cannot be processed at once
 At an internal node, both operands may not be

evaluated yet.

Two Steps
● A RAKE technique that contracts a tree

➢ rake: 1.an agricultural implement with
teeth or tines for gathering cut grass,
hay, or the like or for smoothing the
surface of the ground.

 2. any of various implements having a
 similar form, as a croupier's implement
 for gathering in money on a gaming table.
● Applying the rake technique to evaluate

subexpressions.

The Rake Technique

● T = (V, E) be a rooted tree with r as the root and
p() be the parent function

● One step of the rake operation at a leaf u with
p(u) ≠ r involves:
➢ Remove nodes u and p(u) from the tree.
➢ Make the sibling of v as the child of p(p(u)).

u

p(u)

p(p(u))
Rake(u)

T:

p(p(u))

T:

v

v

The Rake Technique

● Why is this good?
● Can be applied

simultaneously at
several leaf nodes
in parallel.

● Which ones?
➢ All leaves which

do not share the
same parent,
essentially non-
siblings.

The Rake Technique

● So, we apply the Rake technique on all non-
adjacent sibling nodes.

● The algorithm is as shown.

Algorithm ShrinkTree(T)
Step 1. Compute labels for the leaf nodes consecutively,

 excluding the leftmost and the rightmost leaf
 nodes into an array A.

Step 2. for k iterations do
 2.1 Apply the rake operation to all the odd

 numbered leaves that are left children
 2.2 Apply the rake operation to all the odd
 numbered leaves that are right children
 2.3 Update A to be the remaining (even) leaf

 nodes.
end­for
End Algorithm.

Time Analysis
● Observation: Each application of the rake at all

the leaves as given in the algorithm reduces the
number of leaves by a half.

● Each application of Rake at a leaf node is an
O(1) operation.

● So the total time is O(log n).
● The number of operations is O(n).

➢ Similar observations hold.

Applying Rake to Expression Evaluation

● Applying Rake means that we can process more than
one leaf node at the same time.

● For expression evaluation, this may mean that an
internal node with only one operand evaluated, also
needs to be deleted.
➢ Need to partially evaluate internal nodes.

+

5 u

p(u)

g(u) g(u)

Rake at u

Partial Evaluation

● Transfer the impact of applying the operator at
p(u) to the sibling of u.

● Associate with each node u labels a
u
 and b

u
 so

that R
u
 = a

u
X

u
 + b

u
.

➢ X
u
 is the result of the subexpression, possibly

unknown, at node u.
● Adjust the labels a

u
 and b

u
 during any rake

operation appropriately.
● Initially, at each leaf node u, X

u
 equals the

operand, a
u
 = 1, and b

u
 = 0.

Adjusting Labels

● Prior to rake at u, contribution of p(u) to g(u) is a
w
X

w
 + b

w
.

● X
w
 = (a

u
X

u
+b

u
) + (a

v
X

v
+b

v
) = a

v
X

v
 + (a

u
X

u
+b

u
+b

v
)

● Therefore, adjust a
v
 and b

v
 as a

w
a

v
 and a

w
(a

u
X

u
+b

u
+b

v
).

+

5 u

p(u)

g(u) g(u)

Rake at u

v

X
v
, a

v
, b

v
5, 1, 0

X
w
, a

w
, b

w

Adjusting Labels

● Prior to rake at u, contribution of p(u) to g(u) is a
w
X

w
 + b

w
.

➢ X
w
 = (a

u
X

u
+b

u
) x (a

v
X

v
+b

v
)

● Therefore, adjust a
v
 and b

v
 as:

➢ a
v
 = a

w
a

v
(a

u
X

u
+b

u
), b

v
= b

w
 + a

w
b

v
(a

u
X

u
+b

u
).

x

5 u

p(u)

g(u) g(u)

Rake at u

v

X
v
, a

v
, b

v
5, 1, 0

X
w
, a

w
, b

w

Adjusting Labels
● For other operators, proceed in a similar fashion.
● HW Problem.

Expression Evaluation
● Parallel algorithm has the following main steps:

➢ Rake the expression tree
➢ Set up and adjust labels while raking
➢ Stop when the tree has only three nodes, one

operator and two operands as children.
➢ Evaluate this three node tree.

● Theorem: Expression evaluation of an n-node
expression tree can be done in parallel on an
EREW PRAM using O(log n) time and O(n)
operations.

Example

x

+

x

+ 12

1

x4 2

x

2

3

Range Minima

● Several geometric problems take the following
flavor.

● Given a set of points S in a one dimensional
space, preprocess S into a data structure D(S)
so that:
➢ Given a range of indices [i,j], report the element of

S of least value between indices i and j.

11 9 6 7 4 10 5 3 2 8

i j

Applications of Range Minima

● Range minima can be used to solve the problem
of finding the least common ancestor of two
nodes in a tree.
➢ Called as an LCA query, and is useful in several

other settings.

u

v

Range Minima – Preprocessing

● Let n be the number of elements, and n = 2k.
● Consider a full binary tree on the n elements.

3 5 1 6 8 4 7 2

Range Minima – Preprocessing

● Given two indices i and j, let v be the node in the
tree that corresponds to the LCA of i and j.
➢ No circular reasoning here. On a full binary tree,

LCA is easy to find.

3 5 1 6 8 4 7 2

Range Minima – Preprocessing

● Does not suffice if at every internal node, we just
store the minima of the elements in that subtree.

1

1

3 1

3 5 1 6

2

4 2

8 4 7 2

Range Minima – Preprocessing

● Let u and w be the left and right child of v.
➢ Also, let A

v
 = (a

l
, a

l+1
,...,a

i
, a

i+1
,...a

j
, a

j+1
,...a

r
).

● The required minima is the minimum of min{a
i
, a

i+1
,..., a

p
}

and min{a
p+1

, a
p+2

, ..., a
j
}.

u

v

a
l

a
i

a
p

w

a
p+1

a
j

a
r

Range Minima – Preprocessing

● For each node u, suppose we store the suffix
and prefix minima of nodes in A

u
.

● The required answer can be computed quickly.

3 5 1 6 8 4 7 2

P: 3 3
S: 3 5

P: 1 1
S: 1 6

P: 7 2
S: 2 2

P: 8 4
S: 4 4

P: 3 3 1 1
S: 1 1 1 6

P: 8 4 4 2
S: 2 2 2 2

P: 3 3 1 1 1 1 1 1 S: 1 1 1 2 2 2 2 2

Range Minima – Preprocessing

● For each node u, let P
u
 and S

u
 be the prefix and

suffix minima arrays of elements in the subtree at
node u.

Range Minima – Preprocessing

● Given a node v with children u and w, can
actually compute P

v
 and S

v
 from P

u
, P

w
, and S

u
,

S
w
 respectively quickly.

➢ How?

u

v

w
P: 3 3 1 1
S: 1 1 1 6

P: 8 4 4 2
S: 2 2 2 2

Range Minima – Preprocessing
● Given a node v with children u and w, can

actually compute P
v
 and S

v
 from P

u
, P

w
, and S

u
,

S
w
 respectively quickly.

➢ Let P
v
 be the concatenation of P

u
 and P

w
.

➢ The P
w
 part of P

v
 may change depending on the

last element in P
u
.

➢ Similar rules apply for S
v
 = S

u
o S

w

Range Minima – Preprocessing
● Theorem: Given n elements in an array A, the

array can be preprocessed in O(log n) parallel
time and O(nlog n) operations so that range
minima queries can be answered in O(1) time.
➢ Requires CREW model.

 Where do we require concurrent read?
➢ Can be made to use O(n) operations. Use

standard technique 1.
➢ On the CRCW model, can actually reduce the

parallel time to O(log log n) in O(n) operations.

From Range Minima to LCA
● For a tree T rooted at r, let P be its Euler path with

the edge (u,v) replaced by v.
● Compute the level of every node in the tree, with

root at level 0.
➢ Call this as the array Level[].

● Compute the leftmost and the rightmost occurrence
of each node in P.
➢ Call them as L(v) and R(v) for a node v.

From Range Minima to LCA
● Theorem: Let u and v be two vertices in T and L

and R are given. Then,
➢ L(u) < L(v) < R(u) if and only if u is an ancestor of

v.
➢ u and v do not share an ancestor-descendant

relationship iff R(u) < L(v) or R(v) < L(u).
➢ If R(u) < L(v) then the vertex with the minimum

Level in the range [R(u), L(v)] is the LCA of u and
v.

 Therefore preprocess the Level array for range
minima.

Example

i

a

c

f gh

b d

e

j

(a,i) →(i,f) →(f,b)→ (b,f)→ (f,d)→ (d,f)→ (f,i)→ (i,h)→ (h,i)→ (i,a)→ (a,c)→ (c,g)→ (g,c)→
(c,e)→ (e,j)→ (j,e)→ (e,c)→ (c,a)

i →f →b→ f→ d→ f→ i→ h→ i→ a→ c→ g→c→ e→ j→ e→ c→ aP:

Example

i

a

c

f gh

b d

e

j

a →i →f →b→ f→ d→ f→ i→ h→ i→ a→ c→ g→c→ e→ j→ e→ c→ a

0 1 2 3 2 3 2 1 2 1 0 1 2 1 2 3 2 1 0Level

Node L R

a 0 18

b 3 3

c 11 17

d 5 5

e 14 16

f 2 6

g 12 12

h 8 8

i 1 9

j 15 15

P:

Example

i

a

c

f gh

b d

e

j

a →i →f →b→ f→ d→ f→ i→ h→ i→ a→ c→ g→c→ e→ j→ e→ c→ a

0 1 2 3 2 3 2 1 2 1 0 1 2 1 2 3 2 1 0Level

Node L R

a 0 18

b 3 3

c 11 17

d 5 5

e 14 16

f 2 6

g 12 12

h 8 8

i 1 9

j 15 15

LCA of nodes g and j : R(g) = 12,
L(j) = 15, RM

12,15
(Level) = 1,

LCA(g,j) = c

P:

Graph Algorithms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

