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Advanced Optimal Solutions

• General technique suggests that we solve a 
smaller problem and extend the solution to the 
larger problem.

• To apply our technique we should use the pointer 
jumping based solution on a sub-list of size n/log n.

• How to identify such a sublist?
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Advanced Solutions

● Cannot pick equidistant as earlier.
● However, can pick independent nodes.

➢ Removing independent nodes is easy!
➢ Formally, an independent set of nodes.
➢ Can extend the solution easily in such a case.
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Advanced Solutions

● Formally, in a graph G = (V, E), a subset of 
nodes U ⊆V is called an independent set if for 
ever pair of vertices u,v in U, (u,v) ∉ E.

● Linked lists (viewed as a graph) have the 
property that they have large independent sets.



Advanced Solutions

• Transfer current rank along with successor 

during removal.
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Advanced Optimal Solutions

• Algorithm outline:
– Remove an independent set of nodes in the linked list. 
– Rank the remaining list, and then 
– Rank the removed elements.

• Several algorithms use this technique with variations: 
Anderson-Miller, Hellman-JaJa, Reid-Miller,...
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Advanced Solutions

• Issue 1: How to find a large independent set of 

nodes in parallel?

• Issue 2: How many iterations needed to reduce 

the size of the list?

• Issue 3: How to rank the removed elements?



Advanced Solutions

• Issue 1: 
– Use techniques from parallel symmetry breaking.
– Can obtain an independent set of size ≥ n/3.

• Issue 2:
– The naïve algorithm is slightly non-optimal (by a 

factor of O(log n)
– Hence, reduce the size of the list from n to n/log n.

• Issue 3:
– Bookkeep enough details during removal
– Reintroduce in the reverse order.



Symmetry Breaking

• A way to induce differences between like 

(symmetric) participants.

• Useful in applications such as graph coloring

– Generally, difficult using deterministic techniques.

• Need randomization
• Special cases where fast, deterministic symmetry 

breaking can be achieved.
• Linked lists and directed cycles are an example.



Coloring by Symmetry Breaking

• Consider a directed cycle of n nodes numbered 1 to n.
• Treat the number of the node as its initial color.
• Can reduce colors to log n in one step.

–Compare color with parent, Newcolor(u) = 2k + color(u)
k

– 
k is the index of the first bit position that u and v differ from LSB
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Coloring by Symmetry Breaking

● Claim: New colors are valid.
● Proof: Suppose that for u and v such that 

u  v, NewColor(u) = NewColor(v). 
● Let NewColor(u) = 2k + color(u)

k
, and 

NewColor(v) = 2r + color(v)
r
. 

● Let k = r. However, color(u)
k
 = color(v)

k
. 

Why?
● Let k = r. Then, color(u)

k
 – color(v)

r
 =     

2(r – k). 
➢ The LHS has an absolute value of 1 and 

the RHS has an absolute value of 2.
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Coloring by Symmetry Breaking
● In one iteration, can reduce the number of colors 

from n to 2log n.
➢ Initial colors are log n bits
➢ New colors are only 1+ ⌈loglog n⌉ bits.

● Can we repeat again?
➢ Yes. 
➢ Reduces number of bits from t to 1+⌈log t⌉.
➢ But, at some point t < 1 + ⌈log t⌉. No advantage 

any further.
➢ Happens at t = 3.

● So, repeat till only 8 colors are used.



Coloring by Symmetry Breaking
● At that point, can still reduce the number of 

colors as follows:
● For i = 8 downto 3 in sequence

➢ If node u is colored i, then u chooses a color 
among {1,2,3} that is not same as the colors of its 
neighbors.

● Possible to do so. Why?



Coloring by Symmetry Breaking
● At that point, can still reduce the number of 

colors as follows:
● For i = 8 downto 3 in sequence

➢ If node u is colored i, then u chooses a color 
among {1,2,3} that is not same as the colors of its 
neighbors.

● Possible to do so. Why?
➢ Each node has only two neighbors. 
➢ So, only two colors amongst {1,2,3} can be used 

up already.



Coloring by Symmetry Breaking

● Total time analyzed as follows:
➢ Each iteration of symmetry breaking reduces 

number of bits from to 1+⌈log t⌉. 
➢ The recurrence relation is  T(n) = T(log n) + 1
➢ Solution: T(n) = O(log* n).
➢ In the next phase, only 5 iterations.
➢ So, overall time = O(log* n)

● Work however is O(nlog* n).
● Log* n = i such that 

                  log(log(......(log n))) = 1;

● The algorithm extends to lists and trees also.
i



Coloring to Independent Sets
● For bounded degree graphs colored with O(1) 

colors, a coloring is equivalent to finding a large  
independent set.

● Iterate on each color and count the number of 
nodes with a given color.

● Pick the subset of like colored nodes of the 
largest size.
➢ Clearly, an independent set.
➢ Has a size of at least a fraction of n.



Back to List Ranking

● Our algorithm outline:

● Question: How many iterations required?

Algorithm Rank(L)
L
1
 = L;

For r iterations do
     Color the list L with 3 colors
     Pick an independent set U

i
 of nodes of size ≥ n/3

     L
i
 = Remove nodes in U

i
 from L

i-1
;

End-for

Rank the list L
r
 using pointer jumping.

For i = r down to 1 do
     Reinsert the nodes in U

i
 into L

i

End-for
End.



Back to List Ranking
● Each iteration of coloring the list can give an MIS 

of size at least n/3.
● We require that only n/log n nodes remain at the 

end.
● Hence, O(log log n) iterations are required.

➢ (n/3)r = n/log n at r = O(log log n).



Back to List Ranking
● Time taken:

➢ To shrink the list: Each iteration is O(log* n). At 
O(log log n) iterations, this takes O(log *n . log log 
n) time.

➢ To rank the remaining list using pointer jumping: 
O(log n) time

➢ To reintroduce the removed elements: Over r  = 
O(log log n) iterations, O(log log n) time.

➢ Total = O(log n).
● Work: O(nlog log n)

➢ Dominated by the work done in reintroducing the 
removed elements



Back to List Ranking
● A different way:

➢ Reintroducing can be slowed down to make it 
optimal.

➢ Use only n/log n processors, with each iteration 
taking O(log n) time.

➢ Total time = O(log n log log n).
➢ Total work = O(nlog* n).

 Dominated by the time taken to find an independent 
set.



Back to List Ranking
● Yet another way:

➢ Use an optimal approach to finding an 
independent set.

➢ Takes O(log n) time and O(n) work.
● Overall time and work:

➢ Time = O(log n log log n)
➢ Work = O(n)
➢ Optimal!



Back to List Ranking
● In general, if one can spend O(t) time and O(n) 

work in each iteration of removing nodes, then
➢ Time = O(t log log n + log n)
➢ Work = O(n).

● Have to lower t to get O(log n) optimal list 
ranking.

● There are such algorithms.
➢ Anderson-Miller is one such example.

● Further reading
➢ Anderson Miller described in JaJa's book
➢ Hellman-JaJa is another popular approach

 Used by most practical papers in recent times.



After a long break, welcome again.

Have to make up two lectures and one exam.

Lectures: What if we continue our classes till 4 PM 
for the next 6 lectures? With a small break after 1 
hour.

Exam: Will hold it some day after possibly 2 weeks 
from now. May be one hour exam, with only 15% 
weightage.



Tree Processing
● Now that we know how to process linked lists, let 

us consider tree algorithms.
● Problems we will consider:

➢ Traversal
➢ Expression evaluation
➢ Least common ancestor, range minima



Traversal via Euler Tour

● Given a tree T = (V, E), we use an Euler tour as a 
primitive for tree traversal algorithms.

● Euler tour: Given a graph, an Euler tour is a cycle 
that includes every edge exactly once.
➢ A directed graph G has an Euler tour if and only if 

for every vertex, its in-degree equals its out-degree.
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Euler Tour of a Tree

● For a tree T = (V,E) to define an Euler tour, we 
make it a directed tree:
➢ Define T

e
 = (V

e
, E

e
) with V

e
 = V.

➢ For each edge uv in E, add two directed edges 
(u,v) and (v,u) to E

e
.

➢ T
e
 has an Euler tour.

a
c

b

d

e g

f

b
e g

a c

f

dT: T
e
:



Defining an Euler Tour on a Tree
● Just have to define a successor. Here, successor 

for an edge.
● For a node u in T

e
 order its neighbors v

1
, v

2
, ..., 

v
d
. 

➢ Can be done independently at each node.
➢ For e = (v

i
, u), set s(e) = e' where e' = (u, v

i+1
).

 Compute indices modulo the degree of u.



Euler Tour on a Tree
● Claim: The above definition of s: E → E is a tour.
● Proof: By induction. Let n = 1. Obviously true.
● For n = 2, at most one edge present. The tour is 

well defined according to s().
● Let the tour be well defined for n = k. 
● Step: n = k+1. 

➢ Every tree has at least one leaf, say v.
➢ T' = T \ {v} has an Euler tour defined by s':E(T') → 

E(T') as |V(T')| = k.
➢ We now extend this definition of s' to define a 

function s: E(T) →E(T).



Euler Tour on a Tree

● Let u be the neighbor of v in T.
➢ Let N(u) = {v

0
, ..., v

i-1
, v

i
=v, v

i+1
, ... v

d
}.

● Set s(u, v) := (v,u). Set s(v
i-1

,u) := (u,v). 
● At all other edges eT, s(e):=s'(e).

u

v
l

v
r

u

v
v

l
v

r



Example
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Example

a d

b j

c i

d

e f

f g

h b

h c

d b

c a f

i c

j b

g f

s(b,c) = (c,i) 

s(c,i) = (i,c)

s(i,c) = (c,d)

s(c,d) = (d,a)

s(d,a) = (a,d)

s(d,f) = (f,g)
s(f,g) = (g,f)

s(g,f) = (f,d)

s(a,d) = (d,f)d

s(f,d) = (d,c)

s(d,c) = (c,b) 

s(c,b) = (b,j)

s(b,j) = (j,b)

s(j,b) = (b,h)

s(b,h) = (h,b)

s(b,c) = (c,i)
s(h,b) = (b,c)

Euler Tour:
(b,c)  (c,i)   (i,c)   (c,d)   (d,a)    (a,d)   (d,f)   (f,g)   (g,f)  
 (f,d)   (d,c)   (c,b)   (b,j)   (j,b)   (b,h)   (h,b)   (b,c)   



Applications of Euler Tour to Traversal
● We now show why the Euler tour is an important 

construct for trees.
● Operations on a tree such as rooting, perorder 

and postorder traversal can be converted to 
routines on an Euler tour.



Rooting a Tree

● Designate a node in a tree as the root.
● All edges are directed towards the root.

a
c

b

d

e g

f

T:

h j

a
c

b

d

e g

f

T:

h j

Euler Tour:
(b,c)  (c,i)   (i,c)   (c,d)   (d,a)    (a,d)   (d,f)   (f,g)   (g,f) 
  (f,d)   (d,c)   (c,b)   (b,j)   (j,b)   (b,h)   (h,b)   (b,c)   

i i



Rooting a Tree

● Let (v
1
, v

2
, ..., v

d
) be the neighbors of the root node r. In this case, 

say (i, d, b)
● Set s(e) = NULL for e = (v

d
, r). In this case, s((b,c)).

a
c

b

d

e g

f

T:

h j

a
c

b

d

e g

f

T:

h j

ii

Euler Tour:
(b,c)  (c,i)   (i,c)   (c,d)   (d,a)    (a,d)   (d,f)   (f,g)   (g,f) 
  (f,d)   (d,c)   (c,b)   (b,j)   (j,b)   (b,h)   (h,b)   (b,c)   



Rooting a Tree

● The edge (r,v
i
) appears before (v

i
,r). 

● So, if u precedes v, then u = p(v). Orient the edge uv from v to u.

a
c

b

d
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f

T:
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a
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b
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T:

h j

i

Euler Tour:
 (c,i)   (i,c)   (c,d)   (d,a)    (a,d)   (d,f)   (f,g)   (g,f)   (f,d)  
 (d,c)   (c,b)   (b,j)   (j,b)   (b,h)   (h,b)   (b,c)   NIL  

i



Rooting a Tree

● So, if u precedes v, then u = p(v). Orient the edge uv from v to u.
● To know the above, use list ranking on the Euler path.

a
c

b

d

e g

f

T:

h j

a
c

b

d

e g

f

T:

h j

i

Euler Tour:
 (c,i)   (i,c)   (c,d)   (d,a)    (a,d)   (d,f)   (f,g)   (g,f)   (f,d)  
 (d,c)   (c,b)   (b,j)   (j,b)   (b,h)   (h,b)   (b,c)   NIL  

i



Preorder Traversal

● Euler tour can be used to get a preoder number 
for every node.

● Associate meaning to the Euler tour.

a
c

b

d

e g

f

T:

h j

ci-ic-cd-da-ad-df-fe-ef-fg-gf-fd-dc-cb-bj-jb-bh-hb-bc

Euler path 
at node b and 
its subtree

Euler path Entering node d 
and its subtree 

i



Preorder Traversal
● In preorder traversal, a node is listed before any 

of the nodes in its subtree.
● In an Euler tour, nodes in a subtree are visited by 

entering those subtrees, and finally exiting to the 
parent.

● If we can therefore track the first occurrence of a 
node in the Euler path, then we can get the 
preorder traversal of the tree.



Postorder Traversal
● Similar rules can be designed for also postorder 

and inorder traversals.
● Inorder for binary trees only makes sense.
● Next we see how to process expression trees.



Expression Trees

● Expression trees are trees with 
operands at the leaf nodes, and 
operators at the internal nodes.

● Our interest is to evaluate the result of 
an expression represented by its 
expression tree.

● We would limit ourselves to binary 
operators. 
➢ Can also convert non-binary cases 

to the case of binary operators. 
● However, the expression tree need not 

be balanced, or height in (log n).



Expression Tree Evaluation
● Cannot directly apply the standard technique of

➢ All the penultimate level nodes, then the next 
level etc.

 Tree may not be balanced, and could have very few 
nodes at the penultimate level.

➢ All leaves first cannot be processed at once
 At an internal node, both operands may not be  

evaluated yet.



Two Steps 
● A RAKE technique that contracts a tree

➢ rake: 1.an agricultural implement with 
teeth or tines for gathering cut grass, 
hay, or the like or for smoothing the 
surface of the ground.

     2. any of various implements having a      
     similar form, as a croupier's implement    
     for gathering in money on a gaming table.
● Applying the rake technique to evaluate 

subexpressions.



The Rake Technique

● T = (V, E) be a rooted tree with r as the root and  
p() be the  parent function

● One step of the rake operation at a leaf u with 
p(u) ≠ r involves: 
➢ Remove nodes u and p(u) from the tree.
➢ Make the sibling of v as the child of p(p(u)).

u

p(u)

p(p(u))
Rake(u)

T:

p(p(u))

T:

v

v



The Rake Technique

● Why is this good?
● Can be applied 

simultaneously at 
several leaf nodes 
in parallel.

● Which ones?
➢ All leaves which 

do not share the 
same parent, 
essentially non-
siblings.



The Rake Technique

● So, we apply the Rake technique on all non-
adjacent sibling nodes.

● The algorithm is as shown.

Algorithm ShrinkTree(T)
Step 1. Compute labels for the leaf nodes  consecutively, 

     excluding the leftmost and the rightmost leaf 
     nodes into an array A. 

Step 2. for k iterations do 
     2.1 Apply the rake operation to all the odd         

      numbered leaves that are left children 
  2.2 Apply the rake operation to all the odd     
      numbered leaves that are right children
  2.3 Update A to be the remaining (even) leaf      

  nodes. 
end­for
End Algorithm.



Time Analysis
● Observation: Each application of the rake at all 

the leaves as given in the algorithm reduces the 
number of leaves by a half.

● Each application of Rake at a leaf node is an 
O(1) operation.

● So the total time is O(log n).
● The number of operations is O(n). 

➢ Similar observations hold.



Applying Rake to Expression Evaluation

● Applying Rake means that we can process more than 
one leaf node at the same time.

● For expression evaluation, this may mean that an 
internal node with only one operand evaluated, also 
needs to be deleted.
➢ Need to partially evaluate internal nodes.

+

5 u

p(u)

g(u) g(u)

Rake at u



Partial Evaluation

● Transfer the impact of applying the operator at 
p(u) to the sibling of u.

● Associate with each node u labels a
u
 and b

u
 so 

that R
u
 = a

u
X

u
 +  b

u
. 

➢ X
u
 is the result of the subexpression, possibly 

unknown, at node u.
● Adjust the labels a

u
 and b

u
 during any rake 

operation appropriately.
● Initially, at each leaf node u, X

u
 equals the 

operand, a
u
 = 1, and b

u
 = 0.



Adjusting Labels

● Prior to rake at u, contribution of p(u) to g(u) is a
w
X

w
 + b

w
.

● X
w
 = (a

u
X

u
+b

u
) + (a

v
X

v
+b

v
) = a

v
X

v
 + (a

u
X

u
+b

u
+b

v
)

● Therefore, adjust a
v
 and b

v
 as a

w
a

v
 and a

w
(a

u
X

u
+b

u
+b

v
). 

+

5 u

p(u)

g(u) g(u)

Rake at u

v

X
v
, a

v
, b

v
5, 1, 0

X
w
, a

w
, b

w



Adjusting Labels

● Prior to rake at u, contribution of p(u) to g(u) is a
w
X

w
 + b

w
.

➢ X
w
 = (a

u
X

u
+b

u
) x (a

v
X

v
+b

v
)

● Therefore, adjust a
v
 and b

v
 as:

➢ a
v
  = a

w
a

v
(a

u
X

u
+b

u
), b

v
= b

w
 + a

w
b

v
(a

u
X

u
+b

u
).

x

5 u

p(u)

g(u) g(u)

Rake at u

v

X
v
, a

v
, b

v
5, 1, 0

X
w
, a

w
, b

w



Adjusting Labels
● For other operators, proceed in a similar fashion.
● HW Problem.



Expression Evaluation
● Parallel algorithm has the following main steps:

➢ Rake the expression tree
➢ Set up and adjust labels while raking
➢ Stop when the tree has only three nodes, one 

operator and two operands as children.
➢ Evaluate this three node tree.

● Theorem: Expression evaluation of an n-node 
expression tree can be done in parallel on an 
EREW PRAM using O(log n) time and O(n) 
operations.



Example
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Range Minima

● Several geometric problems take the following 
flavor.

● Given a set of points S in a one dimensional 
space, preprocess S into a data structure D(S) 
so that:
➢ Given a range of indices [i,j], report the element of 

S of least value between indices i and j.

11 9 6 7 4 10 5 3 2 8

i j



Applications of Range Minima

● Range minima can be used to solve the problem 
of finding the least common ancestor of two 
nodes in a tree.
➢ Called as an LCA query, and is useful in several 

other settings.

u

v



Range Minima – Preprocessing

● Let n be the number of elements, and n = 2k.
● Consider a full binary tree on the n elements.

3 5 1 6 8 4 7 2



Range Minima – Preprocessing 

● Given two indices i and j, let v be the node in the 
tree that corresponds to the LCA of i and j.
➢ No circular reasoning here. On a full binary tree, 

LCA is easy to find.

3 5 1 6 8 4 7 2



Range Minima – Preprocessing

● Does not suffice if at every internal node, we just 
store the minima of the elements in that subtree.

1

1

3 1

3 5 1 6

2

4 2

8 4 7 2



Range Minima – Preprocessing 

● Let u and w be the left and right child of v.
➢ Also, let A

v
 = (a

l
, a

l+1
,...,a

i
, a

i+1
,...a

j
, a

j+1
,...a

r
).

● The required minima is the minimum of min{a
i
, a

i+1
,..., a

p
} 

and min{a
p+1

, a
p+2

, ..., a
j
}.

u

v

a
l

a
i

a
p

w

a
p+1

a
j

a
r



Range Minima – Preprocessing

● For each node u, suppose we store the suffix 
and prefix minima of nodes in A

u
.

● The required answer can be computed quickly.

3 5 1 6 8 4 7 2

P:  3    3
S:  3    5

P:  1   1
S:  1   6

P:  7   2
S:  2   2

P:  8   4
S:  4   4

P:  3    3   1    1
S:  1    1   1    6

P:  8    4   4    2
S:  2    2   2    2

P:  3    3   1    1   1    1   1    1 S:  1    1   1    2   2    2   2    2



Range Minima – Preprocessing

● For each node u, let P
u
 and S

u
 be the prefix and 

suffix minima arrays of elements in the subtree at 
node u.



Range Minima – Preprocessing

● Given a node v with children u and w, can 
actually compute P

v
 and S

v
 from P

u
, P

w
, and S

u
, 

S
w
 respectively quickly.

➢ How?

u

v

w
P:  3    3   1    1
S:  1    1   1    6

P:  8    4   4    2
S:  2    2   2    2



Range Minima – Preprocessing
● Given a node v with children u and w, can 

actually compute P
v
 and S

v
 from P

u
, P

w
, and S

u
, 

S
w
 respectively quickly.

➢ Let P
v
 be the concatenation of P

u
 and P

w
.

➢ The P
w
 part of P

v
 may change depending on the 

last element in P
u
.

➢ Similar rules apply for S
v
 = S

u
o S

w



Range Minima – Preprocessing
● Theorem: Given n elements in an array A, the 

array can be preprocessed in O(log n) parallel 
time and O(nlog n) operations so that range 
minima queries can be answered in O(1) time.
➢ Requires CREW model.

 Where do we require concurrent read?
➢ Can be made to use O(n) operations. Use 

standard technique 1.
➢ On the CRCW model, can actually reduce the 

parallel time to O(log log n) in O(n) operations.



From Range Minima to LCA
● For a  tree T rooted at r, let P be its Euler path with 

the edge (u,v) replaced by v.
● Compute the level of every node in the tree, with 

root at level 0.
➢ Call this as the array Level[ ].

● Compute the leftmost and the rightmost occurrence 
of each node in P. 
➢ Call them as L(v) and R(v) for a node v.



From Range Minima to LCA
● Theorem: Let u and v be two vertices in T and L 

and R are given. Then, 
➢ L(u) < L(v) < R(u) if and only if u is an ancestor of 

v. 
➢ u and v do not share an ancestor-descendant 

relationship iff R(u) < L(v) or R(v) < L(u).
➢ If R(u) < L(v) then the vertex with the minimum 

Level in the range [R(u), L(v)] is the LCA of u and 
v.

 Therefore preprocess the Level array for range 
minima.



Example

i

a

c

f gh

b d

e

j

(a,i) →(i,f) →(f,b)→ (b,f)→ (f,d)→ (d,f)→ (f,i)→ (i,h)→ (h,i)→ (i,a)→ (a,c)→ (c,g)→ (g,c)→  
(c,e)→ (e,j)→  (j,e)→ (e,c)→ (c,a)

i →f →b→ f→ d→ f→ i→ h→ i→ a→ c→ g→c→ e→ j→ e→ c→ aP:



Example

i

a

c

f gh

b d

e

j

a →i →f →b→ f→ d→ f→ i→ h→ i→ a→ c→ g→c→ e→ j→ e→ c→ a

0     1     2    3    2     3    2    1    2     1    0     1     2    1     2    3     2     1    0Level

Node L R

a 0 18

b 3 3

c 11 17

d 5 5

e 14 16

f 2 6

g 12 12

h 8 8

i 1 9

j 15 15

P:



Example

i

a

c

f gh

b d

e

j

a →i →f →b→ f→ d→ f→ i→ h→ i→ a→ c→ g→c→ e→ j→ e→ c→ a

0     1     2    3    2     3    2    1    2     1    0     1     2    1     2    3     2     1    0Level

Node L R

a 0 18

b 3 3

c 11 17

d 5 5

e 14 16

f 2 6

g 12 12

h 8 8

i 1 9

j 15 15

LCA of nodes g and j : R(g) = 12, 
L(j) = 15, RM

12,15
(Level) = 1, 

LCA(g,j) = c

P:



Graph Algorithms
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