

Complexity and Advanced Algorithms
Monsoon 2011

Parallel Algorithms
Lecture 3

The Power of CRCW – Minima
● Two points of interest

➢ Illustrate the power of CRCW models
➢ Illustrate another optimality technique.

● Find minima of n elements.
➢ Input: An array A of n elements
➢ Output: The minimum element in A.

● From what we already know:
➢ Standard sequential algorithm not good enough
➢ Can use an upward traversal, with min as the

operator at each internal node. Time = O(log n),
work = O(n).

The Power of CRCW – Minima
● Our solution steps:

➢ Design a O(n2) work, O(1) time algorithm.
➢ Gain optimality by sacrificing runtime to O(log

log n).

An O(1) Time Algorithm

12 17 8 18 26

12 -- 1 0 1 1

17 0 -- 0 1 1

8 1 1 -- 1 1

18 0 0 0 -- 1

26 0 0 0 0 --

● Use n2 processors.
● Compare A[i] with A[j] for each i and j.
● Now can identify the minimum.

An O(1) Time Algorithm

12 17 8 18 26

12 -- 1 0 1 1

17 0 -- 0 1 1

8 1 1 -- 1 1

18 0 0 0 -- 1

26 0 0 0 0 --

● Use n2 processors.
● Compare A[i] with A[j] for each i and j.
● Now can identify the minimum.

➢ How?

An O(1) Time Algorithm

12 17 8 18 26

12 -- 1 0 1 1

17 0 -- 0 1 1

8 1 1 -- 1 1

18 0 0 0 -- 1

26 0 0 0 0 --

● Use n2 processors.
● Compare A[i] with A[j] for each i and j.
● Now can identify the minimum.

➢ How?
● Where did we need the CRCW model?

Towards Optimality
● The earlier algorithm is heavy on work.
● To reduce the work, we proceed as follows.
● We derive an O(nlog log n) work algorithm

running in O(log log n) time.
● For this, use a doubly logarithmic tree.

➢ Defined in the following.

Doubly Logarithmic Tree

● Let there be n = 22k
 leaves, the root is level 0. The

root has √n = 22k-1
children.

● In general, a node at level i has n/2i-1 = 22k-i-1
children,

for 0≤ i ≤ k-1.
● Each node at level k has two leaf nodes as children.

Doubly Logarithmic Tree
● Some claims:

➢ Number of nodes at level i is 22k - 2k-i
.

➢ Number of nodes at the kth level is n/2.
➢ Depth of a doubly logarithmic tree of n nodes is

k+1 = log log n + 1.
● To compute the minimum using a doubly

logarithmic tree:
➢ Each internal node performs the min operation

does not suffice.
➢

Why?

Minima Using the Doubly Logarithmic Tree
● Intuition:

➢ Should spend only O(1) time at each internal
node.

➢ Use the O(1) time algorithm at each internal
node.

● At each internal node of level i, if there are c
i

children, use c
i

2 processors.
➢ Minima takes O(1) time at each level.
➢ Also, No. of nodes at level i x No. of processors

used =22k - 2k-i
 . (22k-i-1

)2 = 22k
 = n.

Minima Using a Doubly Logarithmic Tree
● Second, slightly improved result:

➢ With n processors, can find the minima of n
numbers in O(log log n) time.

➢ Total work = O(n log log n).
● Still suboptimal by a factor of O(log log n).
● We now introduce a technique to achieve

optimality.

Accelerated Cascading
● Our two algorithms:

➢ Algorithm 1: A slow but optimal algorithm.
 Binary tree based: O(log n) time, O(n) work.

➢ Algorithm 2: A fast but non-optimal algorithm
 Doubly Logarithmic tree based: O(log log n) time,

O(nlog log n) work.
● The accelerated cascading technique suggests

one to combine two such algorithms to arrive at
an optimal algorithm
➢ Start with the optimal algorithm till the problem is

small enough
➢ Switch over to the fast but non-optimal algorithm.

Accelerated Cascading
● The binary tree based algorithm starts with an

input of size n.
● Each level up the tree reduces the size of the

input by a factor of 2.
● In log log log n levels, the size of the input

reduces to n/2logloglog n = n/loglog n.

● Now switch over to the fast algorithm with
n/loglog n processors, needing O(log log (n/log
log n)) time.

Final Result
● Total time = O(log log log n) + O(log log n).
● Total work = O(n).
● Need CRCW model.
● Where did we need the CRCW model?

Parallel Search
● Search for an item in a sorted array

➢ Input: A sorted array of n elements, and an item x.
➢ Output: 1 if x is in A, 0 otherwise.

● Other output models possible,
➢ Return the index at which x is found in A
➢ Return the index of the largest (resp. smallest)

element smaller (greater) than x.
● Binary search in the sequential setting takes

O(log n) time.
● What is the scope for parallelism?

Parallel Search

● p-way search for a given p.
● Compare x with A[i.n/p] for 1≤ i ≤ p.
● Record the phase change and recurse, if more

than n/p elements.

0 0 0 0 0 1 1 1 1

Phase Change

Parallel Search
● Time taken:

➢ T(n) = T(n/p) + O(1)
➢ Solution: T(n) = O(log

p
 n).

➢ Work = O(p log
p
 n).

➢ Model: CREW.
● Optimal only when p = O(1)!
● But we will see that this has some applications

for non-bounded p.

List Ranking

• List ranking is a fundamental problem in parallel

computing.

• Given a list of elements, find the distance of the

elements from one end of the list.

• In sequential computation, not a serious problem.

– Can simply traverse the list from one end.

• But this approach does not scale well for parallel

architectures.

List Ranking

 Representation via an array of successor pointers.

1 8 5 11 2 6 10 4 3 7 12 9

1 2 45 3 6 789 10 1112Rank

8 511 26 11 10 437 12 9--Succ

List

Pointer Jumping Solution

• Each node updating its parent to be its grandparent.

2 5 6 8 3 1 7 4

2 63

5

8

1

7 4

1

7 4

8

3

6

2

5

1

7 4

3

8
2

5

6

Pointer Jumping Solution

● The pseudo code above computes the rank of
every element in parallel.
➢ R() refers to the rank, P() refers to the parent.

Algorithm FindRoot
for 1 ≤ i ≤ n do in parallel

R(i) = 1;
while P(i) ≠ P(P(i)) do

R(i) = R(i) + R(P(i))
 P(i) = P(P(i))
end.

Pointer Jumping Solution

● Claim: The above algorithm can finish in O(log n)
time.

● Proof: Show that the distance between a node
and its parent doubles every iteration of the while
loop.
➢ Maximum distance is n.

Algorithm FindRoot
for 1 ≤ i ≤ n do in parallel

R(i) = 1
while R(i) ≠ R(R(i)) do

R(i) = R(i) + R(P(i))
 P(i) = P(P(i))
end.

Pointer Jumping Solution

● Claim: The above algorithm has a work complexity
of O(n log n).

● Proof: Each processor needs at most O(log n)
work.

● Therefore, our algorithm is sub-optimal.
➢ Can be made optimal using Technique 1. Details

follow.

Algorithm FindRoot
for 1 ≤ i ≤ n do in parallel

R(i) = 1
while R(i) ≠ R(R(i)) do

R(i) = R(R(i))
end.

Pointer Jumping Solution

● Few implementation issues
➢ In the PRAM model, synchronous execution

means that all n processors execute each step in
the while loop at the same time.

➢ Any problems otherwise?

Algorithm FindRoot
for 1 ≤ i ≤ n do in parallel

R(i) = 1
while R(i) ≠ R(R(i)) do

R(i) = R(i) + R(P(i))
 P(i) = P(P(i))
end.

Pointer Jumping Solution

● Few implementation issues
➢ In the PRAM model, synchronous execution

means that all n processors execute each step in
the while loop at the same time.

● Any problems otherwise?
➢ Inconsistent results!

Algorithm FindRoot
for 1 ≤ i ≤ n do in parallel

R(i) = 1
while R(i) ≠ R(R(i)) do

R(i) = R(i) + R(P(i))
 P(i) = P(P(i))
end.

Pointer Jumping Solution

● To get around, one can consider packing R and
P values of a node into a single word.

● If list has no more than 232 elements, can use 64
bit architectures with each word packing two 32
bit numbers.

Algorithm FindRoot
for 1 ≤ i ≤ n do in parallel

R(i) = 1
while R(i) ≠ R(R(i)) do

R(i) = R(i) + R(P(i))
 P(i) = P(P(i))
end.

Advanced Optimal Solutions

• General technique suggests that we solve a
smaller problem and extend the solution to the
larger problem.

• To apply our technique we should use the pointer
jumping based solution on a sub-list of size n/log n.

• How to identify such a sublist?

1 8 5 11 2 6 10 4 3 7 12 9

Advanced Solutions

● Cannot pick equidistant as earlier.
● However, can pick independent nodes.

➢ Removing independent nodes is easy!
➢ Formally, an independent set of nodes.
➢ Can extend the solution easily in such a case.

1 8 5 11 2 6 10 4 3 7 12 9

1 5 11 6 4 3 12 9

Advanced Solutions

● Formally, in a graph G = (V, E), a subset of
nodes U ⊆V is called an independent set if for
ever pair of vertices u,v in U, (u,v) ∉ E.

● Linked lists (viewed as a graph) have the
property that they have large independent sets.

Advanced Solutions

• Transfer current rank along with successor

during removal.

1 8 5 11 2 6 10 4 3 7 12 9

1 5 11 6 4 3 12 9

(1) (2) 1) (2) (2) (1) (2) (1)

1 5 11 6 4 3 12 9

(1) (3) (4) (6) (8) (9) (11) (12)

8
(2)

List with

elements

removed Ranked

short list

reintroduce element 8

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

