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The Power of CRCW – Minima
● Two points of interest

➢ Illustrate the power of CRCW models
➢ Illustrate another optimality technique.

● Find minima of n elements.
➢ Input: An array A of n elements
➢ Output: The minimum element in A.

● From what we already know:
➢ Standard sequential algorithm not good enough
➢ Can use an upward traversal, with min as the 

operator at each internal node. Time = O(log n), 
work = O(n).



The Power of CRCW – Minima 
● Our solution steps:

➢ Design a O(n2) work, O(1) time algorithm.
➢ Gain optimality by sacrificing runtime to O(log 

log n).



An O(1) Time Algorithm

12 17 8 18 26

12 -- 1 0 1 1

17 0 -- 0 1 1

8 1 1 -- 1 1

18 0 0 0 -- 1

26 0 0 0 0 --

● Use n2 processors.
● Compare A[i] with A[j] for each i and j.
● Now can identify the minimum.
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Towards Optimality
● The earlier algorithm is heavy on work.
● To reduce the work, we proceed as follows.
● We derive an O(nlog log n) work algorithm 

running in O(log log n) time.
● For this, use a doubly logarithmic tree.

➢ Defined in the following.



Doubly Logarithmic Tree

●  Let there be n = 22k
 leaves, the root is level 0. The 

root has √n  = 22k-1 
children.

● In general, a node at level i has n/2i-1 = 22k-i-1
children, 

for 0≤ i ≤ k-1. 
● Each node at level k has two leaf nodes as children.



Doubly Logarithmic Tree
● Some claims:

➢ Number of nodes at level i is 22k  - 2k-i
.

➢ Number of nodes at the kth level is n/2.
➢ Depth of a doubly logarithmic tree of n nodes is 

k+1 = log log n + 1.
● To compute the minimum using a doubly 

logarithmic tree:
➢ Each internal node performs the min operation 

does not suffice.
➢

 
Why?



Minima Using the Doubly Logarithmic Tree
● Intuition:

➢ Should spend only O(1) time at each internal 
node.

➢ Use the O(1) time algorithm at each internal 
node.

● At each internal node of level i, if there are c
i
 

children, use c
i

2 processors.
➢ Minima takes O(1) time at each level.
➢ Also, No. of nodes at level i x No. of processors 

used =22k  - 2k-i
 . (22k-i-1

 )2  = 22k 
 = n.



Minima Using a Doubly Logarithmic Tree
● Second, slightly improved result:

➢ With n processors, can find the minima of n 
numbers in O(log log n) time.

➢ Total work = O(n log log n).
● Still suboptimal by a factor of O(log log n).
● We now introduce a technique to achieve 

optimality.



Accelerated Cascading
● Our two algorithms:

➢ Algorithm 1: A slow but optimal algorithm.
 Binary tree based: O(log n) time, O(n) work.

➢ Algorithm 2: A fast but non-optimal algorithm
 Doubly Logarithmic tree based: O(log log n) time, 

O(nlog log n) work.
● The accelerated cascading technique suggests 

one to combine two such algorithms to arrive at 
an optimal algorithm
➢ Start with the optimal algorithm till the problem is 

small enough
➢ Switch over to the fast but non-optimal algorithm.



Accelerated Cascading
● The binary tree based algorithm starts with an 

input of size n.
● Each level up the tree reduces the size of the 

input by a factor of 2.
● In log log log n levels, the size of the input 

reduces to n/2logloglog n = n/loglog n.

● Now switch over to the fast algorithm with 
n/loglog n processors, needing O(log log (n/log 
log n)) time.



Final Result
● Total time = O(log log log n) + O(log log n).
● Total work = O(n).
● Need CRCW model.
● Where did we need the CRCW model?



Parallel Search
● Search for an item in a sorted array

➢ Input: A sorted array of n elements, and an item x.
➢ Output: 1 if x is in A, 0 otherwise.

● Other output models possible,
➢ Return the index at which x is found in A
➢ Return the index of the largest (resp. smallest) 

element smaller (greater) than x.
● Binary search in the sequential setting takes 

O(log n) time.
● What is the scope for parallelism?



Parallel Search

● p-way search for a given p.
● Compare x with A[i.n/p] for 1≤ i ≤ p.
● Record the phase change and recurse, if more 

than n/p elements.

0 0 0 0 0 1 1 1 1

Phase Change



Parallel Search
● Time taken:

➢ T(n) = T(n/p) + O(1)
➢ Solution: T(n) = O(log

p
 n).

➢ Work = O(p log
p
 n).

➢ Model: CREW.
● Optimal only when p = O(1)!
● But we will see that this has some applications 

for non-bounded p.



List Ranking

• List ranking is a fundamental problem in parallel 

computing. 

• Given a list of elements, find the distance of the 

elements from one end of the list.

• In sequential computation, not a serious problem.

– Can simply traverse the list from one end.

• But this approach does not scale well for parallel 

architectures.



List Ranking

 Representation via an array of successor pointers.

1 8 5 11 2 6 10 4 3 7 12 9

1 2 45 3 6 789 10 1112Rank

8 511 26 11 10 437 12 9--Succ

List



Pointer Jumping Solution

• Each node updating its parent to be its grandparent.
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Pointer Jumping Solution

● The pseudo code above computes the rank of 
every element in parallel.
➢ R() refers to the rank, P() refers to the parent.

Algorithm FindRoot 
for 1 ≤ i ≤  n do in parallel 

R(i) = 1;
while P(i) ≠ P(P(i)) do

R(i) = R(i) + R(P(i)) 
         P(i) = P(P(i))
end.



Pointer Jumping Solution

● Claim: The above algorithm can finish in O(log n) 
time.

● Proof: Show that the distance between a node 
and its parent doubles every iteration of the while 
loop.
➢ Maximum distance is n.

Algorithm FindRoot 
for 1 ≤ i ≤  n do in parallel 

R(i) = 1
while R(i) ≠ R(R(i)) do

R(i) = R(i) + R(P(i)) 
         P(i) = P(P(i))
end.



Pointer Jumping Solution

● Claim: The above algorithm has a work complexity 
of  O(n log n).

● Proof: Each processor needs at most O(log n) 
work.

● Therefore, our algorithm is sub-optimal.
➢ Can be made optimal using Technique 1. Details 

follow.

Algorithm FindRoot 
for 1 ≤ i ≤  n do in parallel 

R(i) = 1
while R(i) ≠ R(R(i)) do

R(i) = R(R(i))
end.



Pointer Jumping Solution

● Few implementation issues
➢ In the PRAM model, synchronous execution 

means that all n processors execute each step in 
the while loop at the same time.

➢ Any problems otherwise?
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         P(i) = P(P(i))
end.



Pointer Jumping Solution

● Few implementation issues
➢ In the PRAM model, synchronous execution 

means that all n processors execute each step in 
the while loop at the same time.

● Any problems otherwise?
➢ Inconsistent results!

Algorithm FindRoot 
for 1 ≤ i ≤  n do in parallel 

R(i) = 1
while R(i) ≠ R(R(i)) do

R(i) = R(i) + R(P(i)) 
         P(i) = P(P(i))
end.



Pointer Jumping Solution

● To get around, one can consider packing R and 
P values of a node into a single word.

● If list has no more than 232 elements, can use 64 
bit architectures with each word packing two 32 
bit numbers.

Algorithm FindRoot 
for 1 ≤ i ≤  n do in parallel 

R(i) = 1
while R(i) ≠ R(R(i)) do

R(i) = R(i) + R(P(i)) 
         P(i) = P(P(i))
end.



Advanced Optimal Solutions

• General technique suggests that we solve a 
smaller problem and extend the solution to the 
larger problem.

• To apply our technique we should use the pointer 
jumping based solution on a sub-list of size n/log n.

• How to identify such a sublist?

1 8 5 11 2 6 10 4 3 7 12 9



Advanced Solutions

● Cannot pick equidistant as earlier.
● However, can pick independent nodes.

➢ Removing independent nodes is easy!
➢ Formally, an independent set of nodes.
➢ Can extend the solution easily in such a case.

1 8 5 11 2 6 10 4 3 7 12 9

1 5 11 6 4 3 12 9



Advanced Solutions

● Formally, in a graph G = (V, E), a subset of 
nodes U ⊆V is called an independent set if for 
ever pair of vertices u,v in U, (u,v) ∉ E.

● Linked lists (viewed as a graph) have the 
property that they have large independent sets.



Advanced Solutions

• Transfer current rank along with successor 

during removal.

1 8 5 11 2 6 10 4 3 7 12 9

1 5 11 6 4 3 12 9

(1) (2) 1) (2) (2) (1) (2) (1)

1 5 11 6 4 3 12 9

(1) (3) (4) (6) (8) (9) (11) (12)

8
(2)

List with

elements

removed Ranked 

short list

reintroduce element 8
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