Complexity and Advanced Algorithms Monsoon 2011

Parallel Algorithms Lecture 3

The Power of CRCW – Minima

- Two points of interest
 - Illustrate the power of CRCW models
 - > Illustrate another optimality technique.
- Find minima of n elements.
 - Input: An array A of n elements
 - > Output: The minimum element in A.
- From what we already know:
 - Standard sequential algorithm not good enough
 - Can use an upward traversal, with min as the operator at each internal node. Time = O(log n), work = O(n).

The Power of CRCW – Minima

- Our solution steps:
 - > Design a $O(n^2)$ work, O(1) time algorithm.
 - Gain optimality by sacrificing runtime to O(log log n).

	12	17	8	18	26
12		1	0	1	1
17	0		0	1	1
8	1	1		1	1
18	0	0	0		1
26	0	0	0	0	

- Use n² processors.
- Compare A[i] with A[j] for each i and j.
- Now can identify the minimum.

	12	17	8	18	26
12		1	0	1	1
17	0		0	1	1
8	1	1		1	1
18	0	0	0		1
26	0	0	0	0	

- Use n² processors.
- Compare A[i] with A[j] for each i and j.
- Now can identify the minimum.
 - How?

	12	17	8	18	26
12		1	0	1	1
17	0		0	1	1
8	1	1		1	1
18	0	0	0		1
26	0	0	0	0	

- Use n² processors.
- Compare A[i] with A[j] for each i and j.
- Now can identify the minimum.
 - How?
- Where did we need the CRCW model?

Towards Optimality

- The earlier algorithm is heavy on work.
- To reduce the work, we proceed as follows.
- We derive an O(nlog log n) work algorithm running in O(log log n) time.
- For this, use a doubly logarithmic tree.
 - Defined in the following.

Doubly Logarithmic Tree

- Let there be $n = 2^{2^k}$ leaves, the root is level 0. The root has $\sqrt{n} = 2^{2^{k-1}}$ children.
- In general, a node at level i has $n/2^{i-1} = 2^{2^{k-i-1}}$ children, for $0 \le i \le k-1$.
- Each node at level k has two leaf nodes as children.

Doubly Logarithmic Tree

- Some claims:
 - > Number of nodes at level i is $2^{2^{k} 2^{k-i}}$.
 - Number of nodes at the kth level is n/2.
 - Depth of a doubly logarithmic tree of n nodes is
 k+1 = log log n + 1.
- To compute the minimum using a doubly logarithmic tree:
 - Each internal node performs the min operation does not suffice.
 - Why?

Minima Using the Doubly Logarithmic Tree

- Intuition:
 - Should spend only O(1) time at each internal node.
 - Use the O(1) time algorithm at each internal node.
- At each internal node of level i, if there are c_i children, use c_i² processors.
 - Minima takes O(1) time at each level.
 - > Also, No. of nodes at level i x No. of processors used $=2^{2^{k}-2^{k-i}} \cdot (2^{2^{k-i-1}})^2 = 2^{2^k} = n$.

Minima Using a Doubly Logarithmic Tree

- Second, slightly improved result:
 - With n processors, can find the minima of n numbers in O(log log n) time.
 - > Total work = $O(n \log \log n)$.
- Still suboptimal by a factor of O(log log n).
- We now introduce a technique to achieve optimality.

Accelerated Cascading

- Our two algorithms:
 - Algorithm 1: A slow but optimal algorithm.
 - Binary tree based: O(log n) time, O(n) work.
 - Algorithm 2: A fast but non-optimal algorithm
 - Doubly Logarithmic tree based: O(log log n) time, O(nlog log n) work.
- The accelerated cascading technique suggests one to combine two such algorithms to arrive at an optimal algorithm
 - Start with the optimal algorithm till the problem is small enough
 - Switch over to the fast but non-optimal algorithm.

Accelerated Cascading

- The binary tree based algorithm starts with an input of size n.
- Each level up the tree reduces the size of the input by a factor of 2.
- In log log log n levels, the size of the input reduces to n/2^{logloglog n} = n/loglog n.
- Now switch over to the fast algorithm with n/loglog n processors, needing O(log log (n/log log n)) time.

Final Result

- Total time = $O(\log \log \log n) + O(\log \log n)$.
- Total work = O(n).
- Need CRCW model.
- Where did we need the CRCW model?

Parallel Search

- Search for an item in a sorted array
 - Input: A sorted array of n elements, and an item x.
 - > Output: 1 if x is in A, 0 otherwise.
- Other output models possible,
 - Return the index at which x is found in A
 - Return the index of the largest (resp. smallest) element smaller (greater) than x.
- Binary search in the sequential setting takes O(log n) time.
- What is the scope for parallelism?

Parallel Search

- p-way search for a given p.
- Compare x with A[i.n/p] for $1 \le i \le p$.
- Record the phase change and recurse, if more than n/p elements.

Parallel Search

- Time taken:
 - > T(n) = T(n/p) + O(1)
 - > Solution: $T(n) = O(\log_{p} n)$.
 - > Work = $O(p \log_p n)$.
 - Model: CREW.
- Optimal only when p = O(1)!
- But we will see that this has some applications for non-bounded p.

List Ranking

- List ranking is a fundamental problem in parallel computing.
- Given a list of elements, find the distance of the elements from one end of the list.
- · In sequential computation, not a serious problem.
 - Can simply traverse the list from one end.
- But this approach does not scale well for parallel architectures.

List Ranking

• Representation via an array of successor pointers.

•

Each node updating its parent to be its grandparent.

```
Algorithm FindRoot
for 1 \le i \le n do in parallel
R(i) = 1;
while P(i) \ne P(P(i)) do
R(i) = R(i) + R(P(i))
P(i) = P(P(i))
end.
```

- The pseudo code above computes the rank of every element in parallel.
 - R() refers to the rank, P() refers to the parent.

```
Algorithm FindRoot

for 1 \le i \le n do in parallel

R(i) = 1

while R(i) \ne R(R(i)) do

R(i) = R(i) + R(P(i))

P(i) = P(P(i))

end.
```

- Claim: The above algorithm can finish in O(log n) time.
- Proof: Show that the distance between a node and its parent doubles every iteration of the while loop.
 - Maximum distance is n.

```
Algorithm FindRoot

for 1 \le i \le n do in parallel

R(i) = 1

while R(i) \ne R(R(i)) do

R(i) = R(R(i))

end.
```

- Claim: The above algorithm has a work complexity of O(n log n).
- Proof: Each processor needs at most O(log n) work.
- Therefore, our algorithm is sub-optimal.
 - Can be made optimal using Technique 1. Details follow.

```
Algorithm FindRoot

for 1 \le i \le n do in parallel

R(i) = 1

while R(i) \ne R(R(i)) do

R(i) = R(i) + R(P(i))

P(i) = P(P(i))

end.
```

- Few implementation issues
 - In the PRAM model, synchronous execution means that all n processors execute each step in the while loop at the same time.
 - > Any problems otherwise?

```
Algorithm FindRoot

for 1 \le i \le n do in parallel

R(i) = 1

while R(i) \ne R(R(i)) do

R(i) = R(i) + R(P(i))

P(i) = P(P(i))

end.
```

- Few implementation issues
 - In the PRAM model, synchronous execution means that all n processors execute each step in the while loop at the same time.
- Any problems otherwise?
 - Inconsistent results!

```
Algorithm FindRoot

for 1 \le i \le n do in parallel

R(i) = 1

while R(i) \ne R(R(i)) do

R(i) = R(i) + R(P(i))

P(i) = P(P(i))

end.
```

- To get around, one can consider packing R and P values of a node into a single word.
- If list has no more than 2³² elements, can use 64 bit architectures with each word packing two 32 bit numbers.

Advanced Optimal Solutions

- General technique suggests that we solve a smaller problem and extend the solution to the larger problem.
- To apply our technique we should use the pointer jumping based solution on a sub-list of size n/log n.
- How to identify such a sublist?

Advanced Solutions

- Cannot pick equidistant as earlier.
- However, can pick independent nodes.
 - Removing independent nodes is easy!
 - Formally, an independent set of nodes.
 - Can extend the solution easily in such a case.

Advanced Solutions

- Formally, in a graph G = (V, E), a subset of nodes U ⊆V is called an independent set if for ever pair of vertices u,v in U, (u,v) ∉ E.
- Linked lists (viewed as a graph) have the property that they have large independent sets.

Advanced Solutions $1 \rightarrow 8 \rightarrow 5 \rightarrow 11 \rightarrow 2 \rightarrow 6 \rightarrow 10 \rightarrow 4 \rightarrow 3 \rightarrow 7 \rightarrow 12 \rightarrow 9$ $1 \longrightarrow 5 \longrightarrow 11 \longrightarrow 6 \longrightarrow 4 \longrightarrow 3 \longrightarrow 12 \longrightarrow 9$ List with elements (1) (2) 1) (2) (2) (1) (2) (1) removed $\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet$ Ranked short list 8 reintroduce element 8 (2)

 Transfer current rank along with successor during removal.