Complexity and Advanced Algorithms Monsoon 2011

Parallel Algorithms

Lecture 3

The Power of CRCW - Minima

- Two points of interest
> Illustrate the power of CRCW models
> Illustrate another optimality technique.
- Find minima of n elements.
, Input: An array A of n elements
» Output: The minimum element in A.
- From what we already know:
> Standard sequential algorithm not good enough
> Can use an upward traversal, with min as the operator at each internal node. Time = O(log n), work $=\mathrm{O}(\mathrm{n})$.

The Power of CRCW - Minima

- Our solution steps:
, Design a $O\left(n^{2}\right)$ work, $O(1)$ time algorithm.
, Gain optimality by sacrificing runtime to O(log $\log \mathrm{n}$).

An O(1) Time Algorithm

	12	17	8	18	26
12	--	1	0	1	1
17	0	--	0	1	1
8	1	1	--	1	1
18	0	0	0	--	1
26	0	0	0	0	--

- Use n² processors.
- Compare $A[i]$ with $A[j]$ for each i and j.
- Now can identify the minimum.

An O(1) Time Algorithm

	12	17	8	18	26
12	--	1	0	1	1
17	0	--	0	1	1
8	1	1	--	1	1
18	0	0	0	--	1
26	0	0	0	0	--

- Use n ${ }^{2}$ processors.
- Compare $A[i]$ with $A[j]$ for each i and j.
- Now can identify the minimum.
> How?

An O(1) Time Algorithm

	12	17	8	18	26
12	--	1	0	1	1
17	0	--	0	1	1
8	1	1	--	1	1
18	0	0	0	--	1
26	0	0	0	0	--

- Use n^{2} processors.
- Compare $A[i]$ with $A[j]$ for each i and j.
- Now can identify the minimum.
> How?
- Where did we need the CRCW model?

Towards Optimality

- The earlier algorithm is heavy on work.
- To reduce the work, we proceed as follows.
- We derive an $O(n \log \log n)$ work algorithm running in $\mathrm{O}(\log \log \mathrm{n})$ time.
- For this, use a doubly logarithmic tree. , Defined in the following.

Doubly Logarithmic Tree

- Let there be $\mathrm{n}=2^{2^{\mathrm{k}}}$ leaves, the root is level 0 . The root has $\sqrt{ } n=2^{2^{k-1}}$ children.
- In general, a node at level i has $\mathrm{n} / 2^{\mathrm{i}-1}=2^{2^{k-i-1}}$ children, for $0 \leq i \leq k-1$.
- Each node at level k has two leaf nodes as children.

Doubly Logarithmic Tree

- Some claims:
, Number of nodes at level i is $2^{2^{k}-2^{k-i}}$.
> Number of nodes at the kth level is $\mathrm{n} / 2$.
» Depth of a doubly logarithmic tree of n nodes is $\mathrm{k}+1=\log \log \mathrm{n}+1$.
- To compute the minimum using a doubly logarithmic tree:
> Each internal node performs the min operation does not suffice.
' Why?

Minima Using the Doubly Logarithmic Tree

- Intuition:
, Should spend only O(1) time at each internal node.
» Use the $O(1)$ time algorithm at each internal node.
- At each internal node of level i, if there are c_{i} children, use $\mathrm{c}_{\mathrm{i}}^{2}$ processors.
- Minima takes O(1) time at each level.
- Also, No. of nodes at level i x No. of processors

$$
\text { used }=2^{2^{k}-2^{k-i}} \cdot\left(2^{2^{k-i-1}}\right)^{2}=2^{2^{k}}=n .
$$

Minima Using a Doubly Logarithmic Tree

- Second, slightly improved result:
, With n processors, can find the minima of n numbers in $\mathrm{O}(\log \log n)$ time.
, Total work $=\mathrm{O}(\mathrm{n} \log \log \mathrm{n})$.
- Still suboptimal by a factor of $O(\log \log n)$.
- We now introduce a technique to achieve optimality.

Accelerated Cascading

- Our two algorithms:
, Algorithm 1: A slow but optimal algorithm.
- Binary tree based: O(log n) time, O(n) work.
- Algorithm 2: A fast but non-optimal algorithm
- Doubly Logarithmic tree based: O(log log n) time, O(nlog $\log n$) work.
- The accelerated cascading technique suggests one to combine two such algorithms to arrive at an optimal algorithm
> Start with the optimal algorithm till the problem is small enough
> Switch over to the fast but non-optimal algorithm.

Accelerated Cascading

- The binary tree based algorithm starts with an input of size n.
- Each level up the tree reduces the size of the input by a factor of 2.
- In log log log n levels, the size of the input reduces to $n / 2^{\log \log \log n}=n / \log \log n$.
- Now switch over to the fast algorithm with $\mathrm{n} / \log \log \mathrm{n}$ processors, needing $\mathrm{O}(\log \log (\mathrm{n} / \log$ $\log n)$) time.

Final Result

- Total time $=\mathrm{O}(\log \log \log \mathrm{n})+\mathrm{O}(\log \log \mathrm{n})$.
- Total work = O(n).
- Need CRCW model.
- Where did we need the CRCW model?

Parallel Search

- Search for an item in a sorted array
> Input: A sorted array of n elements, and an item x.
, Output: 1 if x is in A, 0 otherwise.
- Other output models possible,
, Return the index at which x is found in A
> Return the index of the largest (resp. smallest) element smaller (greater) than x.
- Binary search in the sequential setting takes O(log n) time.
-What is the scope for parallelism?

Parallel Search

- p-way search for a given p.
- Compare x with $A[i . n / p]$ for $1 \leq i \leq p$.
- Record the phase change and recurse, if more than n / p elements.

Parallel Search

- Time taken:
> $T(n)=T(n / p)+O(1)$
, Solution: $T(n)=O\left(\log _{p} n\right)$.
, Work $=O\left(p \log _{p} n\right)$.
> Model: CREW.
- Optimal only when $p=O(1)$!
- But we will see that this has some applications for non-bounded p.

List Ranking

- List ranking is a fundamental problem in parallel computing.
- Given a list of elements, find the distance of the elements from one end of the list.
- In sequential computation, not a serious problem.
- Can simply traverse the list from one end.
- But this approach does not scale well for parallel architectures.

List Ranking

List
$1 \rightarrow 8 \longrightarrow 5 \longrightarrow 11 \longrightarrow 2 \longrightarrow 6 \longrightarrow 10 \longrightarrow 4 \longrightarrow 3 \longrightarrow 7 \longrightarrow 12 \longrightarrow 9$

| 8 | 6 | 7 | 3 | 11 | 10 | 12 | 5 | -- | 4 | 2 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 8 8 9 8 3 6 10 2 12 7 4 11 | | | | | | | | | | |

- Representation via an array of successor pointers.

Pointer Jumping Solution

- Each node updating its parent to be its grandparent.

Pointer Jumping Solution

```
Algorithm FindRoot
    for l \leq i s n do in parallel
    R(i) = 1;
    while P(i) \not= P(P(i)) do
        R(i) = R(i) + R(P(i))
        P(i) = P(P(i))
end.
```

- The pseudo code above computes the rank of every element in parallel.
> R() refers to the rank, P() refers to the parent.

Pointer Jumping Solution

```
Algorithm FindRoot
    for \(1 \leq i \leq n\) do in parallel
    \(R(i)=1\)
    while \(R(i) \neq R(R(i)) d o\)
    \(R(i)=R(i)+R(P(i))\)
    \(P(i)=P(P(i))\)
end.
```

- Claim: The above algorithm can finish in $\mathrm{O}(\log \mathrm{n})$ time.
- Proof: Show that the distance between a node and its parent doubles every iteration of the while loop.
> Maximum distance is n.

Pointer Jumping Solution

```
Algorithm FindRoot
    for \(1 \leq i \leq n\) do in parallel
        \(R(i)=1\)
        while \(R(i) \neq R(R(i)) d o\)
                        \(R(i)=R(R(i))\)
end.
```

- Claim: The above algorithm has a work complexity of $O(n \log n)$.
- Proof: Each processor needs at most O(log n) work.
- Therefore, our algorithm is sub-optimal.
- Can be made optimal using Technique 1. Details follow.

Pointer Jumping Solution

```
Algorithm FindRoot
    for 1 \leq i \leq n do in parallel
        R(i) = 1
        while R(i) \not= R(R(i)) do
        R(i) = R(i) + R(P(i))
        P(i) = P(P(i))
end.
```

- Few implementation issues
> In the PRAM model, synchronous execution means that all n processors execute each step in the while loop at the same time.
- Any problems otherwise?

Pointer Jumping Solution

```
Algorithm FindRoot
    for l \leq i \leq n do in parallel
        R(i) = 1
        while R(i) \not= R(R(i)) do
        R(i) = R(i) + R(P(i))
        P(i) = P(P(i))
end.
```

- Few implementation issues
> In the PRAM model, synchronous execution means that all n processors execute each step in the while loop at the same time.
- Any problems otherwise?
, Inconsistent results!

Pointer Jumping Solution

```
Algorithm FindRoot
    for \(1 \leq i \leq n d o\) in parallel
    \(R(i)=1\)
    while R(i) \(\neq R(R(i))\) do
        \(R(i)=R(i)+R(P(i))\)
        \(P(i)=P(P(i))\)
end.
```

- To get around, one can consider packing R and P values of a node into a single word.
- If list has no more than 2^{32} elements, can use 64 bit architectures with each word packing two 32 bit numbers.

Advanced Optimal Solutions

${ }_{1} \longrightarrow_{8} \longrightarrow_{5} \longrightarrow_{11} \longrightarrow_{2} \longrightarrow_{6} \longrightarrow_{10} \longrightarrow_{4} \longrightarrow_{3} \longrightarrow_{7} \longrightarrow_{12} \longrightarrow 9$

- General technique suggests that we solve a smaller problem and extend the solution to the larger problem.
- To apply our technique we should use the pointer jumping based solution on a sub-list of size $n / l o g n$.
- How to identify such a sublist?

Advanced Solutions

${ }_{1} \rightarrow_{8} \longrightarrow_{5} \longrightarrow_{11} \longrightarrow_{2} \longrightarrow_{6} \longrightarrow_{10} \longrightarrow_{4} \longrightarrow_{3} \longrightarrow_{7} \longrightarrow_{12} \longrightarrow 9$

$$
{ }_{1} \longrightarrow_{5} \longrightarrow_{11} \longrightarrow_{6} \longrightarrow_{4} \longrightarrow_{3} \longrightarrow_{12} \longrightarrow 9
$$

- Cannot pick equidistant as earlier.
- However, can pick independent nodes.
, Removing independent nodes is easy!
- Formally, an independent set of nodes.
- Can extend the solution easily in such a case.

Advanced Solutions

- Formally, in a graph $G=(V, E)$, a subset of nodes $U \subseteq V$ is called an independent set if for ever pair of vertices u, v in $U,(u, v) \notin E$.
- Linked lists (viewed as a graph) have the property that they have large independent sets.

Advanced Solutions

${ }_{1} \longrightarrow_{8} \longrightarrow_{5} \longrightarrow_{11} \longrightarrow_{2} \longrightarrow_{6} \longrightarrow_{10} \longrightarrow_{4} \longrightarrow_{3} \longrightarrow_{7} \longrightarrow_{12} \longrightarrow 9$

- Transfer current rank along with successor during removal.

