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Trivia

● ISRO has a new supercomputer rated at 220 
Tflops
➢ Can be extended to Pflops.
➢ Consumes only 150 KW of power.

● LINPACK is the standard benchmark used for 
these ratings.
➢ Can get your computer rated too.
➢ Visit http://www.netlib.org/benchmark/linpackjava/



Balanced Binary Tree – Prefix Sums

• Two traversals of a complete 
binary tree.

• The tree is only a visual aid.
– Map processors to locations in 

the tree

– Perform equivalent computations.

– Algorithm designed in the PRAM 
model.

– Works in logarithmic time, and 
optimal number of operations.

//upward traversal
1. for i = 1 to n/2 do in 
parallel 
 bi = a2i-2 o a2i

2. Recursively compute the 
prefix sums of B= (b1, b2, ..., 

bn/2) and store them in C = (c1, 

c2, ..., cn/2)

//downward traversal
3. for i = 1 to n do in 
parallel 
   i is even : si = ci 

   i= 1 : s1 = c1 

   i is odd : si = c(i-1)/2 o ai



Analysis of Parallel Algorithms
• To analyze parallel algorithms, we rely on 

asymptotics and recurrences.
• Each operation costs 1 unit, only sequential time 

needs to be counted. We assume as many 
processors as can be used are available.

• In the prefix sum example, let T(n) be the time in 
parallel for an input of size n.

– Step 1 can use n/2 processors in parallel each taking 
1 unit of time.

– Step 2 is a recursive call and takes T(n/2) time.

– Step 3 uses n processors each taking 1 unit of time.



Analysis of Parallel Algorithms
• The recurrence relation is:

– T(n) = T(n/2) + O(1)

– Can ignore effects due to constant factors, 
such as the difference in the number of 
processors between steps 1 and 3.

• The solution to the above recurrence is T(n) = 
O(log n).

• Another parameter of interest in parallel 
algorithms is the work done.

• Can be stated as the sum of the works done 
by each of the processors.



Analysis of Parallel Algorithms
• The work done by the prefix algorithm can be 

expressed by the recurrence
– W(n) = W(n/2) + O(n).

– The O(n) accounts for the work in the first and 
the third steps.

– Solution: W(n) = O(n).
• Work done can indicate if the algorithm is 

doing about the same amount of operations 
as the best known sequential algorithm.



The PRAM Model

• An extension of the von Neumann model.

P1 P2 P3 Pn

Global Shared Memory



The PRAM Model

• A set of n identical processors
• A common access shared memory
• Synchronous time steps 
• Access to the shared memory costs the same as a 

unit of computation.
• Different models to provide semantics for 

concurrent access to the shared memory
– EREW, CREW, CRCW(Common, Aribitrary, 

Priority, ...)



The Semantics 

• In all cases, it is the programmer to ensure that 
his program meets the required semantics.

• EREW : Exclusive Read, Exclusive Write
– No scope for memory contention.
– Usually the weakest model, and hence algorithm 

design is tough.
• CREW : Concurrent Read, Exclusive Write

– Allow processors to read simultaneously from 
the same memory location at the same instant.

– Can be made practically feasible with additional 
hardware



The Semantics 

• CRCW : Concurrent Read, Concurrent Write
– Allow processors to read/write simultaneously 

from/to the same memory location at the 
same instant.

– Requires further specification of semantics for 
concurrent write. Popular variants include



Concurrent Read/Write Models

● COMMON : Concurrent write is allowed so long as the all the 
values being attempted are equal.

● Example: Consider finding the Boolean OR of n bits.
● Each Boolean bit with a processor.
● Reserve a common cell in the memory
● Every processor that holds a 1 writes 1 in the common cell.

P1 P2 P3 Pn

Global Shared Memory

1 110 1 0

1



Concurrent Read/Write Models
● ARBITRARY : In case of a concurrent write, it is guaranteed 

that some processor succeeds and its write takes effect.
● Similar algorithms for Boolean AND can be designed.
● Turns out that ARBITRARY is at least as powerful as 

COMMON. 
● If all values are equal, both match the semantics.
● Otherwise, ARBITRARY may be more useful.

● PRIORITY : Assumes that processors have numbers that can 
be used to decide which write succeeds.
● Difficult to place wrt ARBITRARY and COMMON.

● Other models: TOLERANT, COLLISION, ...



Revisiting our Prefix Sum Algorithm
● What model of PRAM does our algorithm 

require?
➢ No concurrent writes.
➢ May be concurrent reads.
➢ Can however convert to an exclusive read 

algorithm. How?
➢ Can this be done in all cases?



Other Design Paradigms

• Partitioning

– Similar to divide and conquer

– But no need to combine solutions

– Can treat problems independently and solve in 

parallel.

– Example: Parallel merging, searching.



Coming Up...
● From now on, we will also care about the model 

of the PRAM when designing algorithms.
● Aim for EREW algorithms because of their 

applicability.
● We will design algorithms for

➢ Merging
➢ Sorting
➢ List ranking
➢ Tree algorithms
➢ Graph algorithms
➢ ...



Parallel Algorithm for Merging

● The problem:
➢ Input:  Two sorted arrays A and B of size n each.
➢ Output: A sorted array C that contains all the 

elements of A and B.
➢ Assume that all elements are distinct. Can be 

done away easily. (HW)

15  22  42  55  89

12   15   22   34   38   42  55  67  89  92

12   38   42   67   92  

MERGE



The Sequential Algorithm

Procedure Merge(L, R, A)
   i = 1, j = 1
   for k = 1 to l + r do
     if L[i] < R[j] then
        A[k] = L[i]; 
        i = i + 1
    else
      A[k] = R[j]; 
      j = j + 1;
End.

8 10  12  24  15 17  27  32  

8

8 10

8 10 12

8 10 12 158 10 12 15

8 10 12 15 17

8 10 12 15 17 24

8 10 12 15 17 24 27

8 10 12 15 17 24 27 32



Sequential Algorithm
● In the sequential algorithm, any element x waits 

for the positions of all lesser elements to be 
determined.

● The position of x is one plus the position of the 
largest element smaller than x.

● Looks inherently sequential.



Towards a First Parallel Algorithm
● Define Rank(x,A) to be the number of elements 

of A that are smaller than x in a sorted array A.
➢ Example: A = (14, 18, 43, 58), Rank(49, A) = 3.
➢ Notice that x need not be an element of A.

● Claim: Rank(x, C) = Rank(x, A) + Rank(x, B)
➢ Proof immediate.

● Consider x in A.
➢  Rank(x,A) = index(x) – 1. 
➢ Rank(x,B) can be found using binary search.

● This can be done in parallel for each x in A, and 
also each x in B.



Quick Example

A = [8 10  12  24 ] B = [15 17  27  32]

Element 8 10 12 24 15 17 27 32

Rank in A 0 1 2 3 3 3 4 4

Rank in B 0 0 0 2 0 1 2 3

Rank in C 0 1 2 5 3 4 6 7

C = [ 8 10  12   15   17  24   27  32 ]



Analysis: Time and Work
● For each element of A and each element of B:

➢ One binary search on n elements
➢ Takes O(log n) time
➢ Total time = O(log n) with O(n) processors.

● Total work done = O(n log n).
➢ Higher than the sequential time taken.
➢ Such a parallel algorithm is called non-optimal.
➢ Optimal means that the work done by the parallel 

algorithm is asymptotically equal to the time 
complexity of the best known sequential 
algorithm.

 In essence, can simulate the parallel algorithm as a 
sequential algorithm. 



An Improved Optimal Algorithm
● General technique

➢ Solve a smaller problem in parallel
➢ Extend the solution to the entire problem.

● For the first step, the problem size to be solved is 
guided by the factor of non-optimality factor of an 
existing parallel algorithm.



An Improved Parallel Algorithm
● Our simple parallel algorithm is away from 

optimality by a factor of O(log n).
● So, we should solve a problem of size O(n/log n).
● For this purpose, we pick every log nth element of 

A, and similarly in B.
● Use the simple parallel algorithm on these 

elements of A and B.
➢ Binary search however in the entire A and B.



An Improved Parallel Algorithm

● Let A
1
, A

2
,...,A

n/log n
 be the elements of A ranked in B.

● These ranks induce partitions in B.
➢ Define [B

r(i)
...B

r(i+1)
] as the portion of B so that 

[A(i)...A(i+1)] have ranks in.
● Can therefore merge [A(i)...A(i+1)] with  [B

r(i)
...B

r(i+1)
] 

sequentially.

A
i

B
r(i)

B
r(i+1)



An Improved Parallel Algorithm
● Such sequential merges can happen in parallel, 

at each index of A[i].
● Time taken for the sequential merge is O(log n + 

B
r(i+1)

–  B
r(i)

).
● Time:

➢ Binary search: O(log n), with n/log n processors.
➢ Sequential merge: O(log n), subject to certain 

conditions. There are also n/log n such merges in 
parallel.

● Work:
➢ There are n/log n binary searches in parallel. 

Work = O(n).
➢ For the sequential merges too, work = O(n).



An Improved Parallel Algorithm

● What if [B
r(i)

...B
r(i+1)

] has a size of more than log n?
● The situation can be addressed

➢ Pick equally spaced, no more than log n, spaced 
items in [B

r(i)
...B

r(i+1)
].

➢ Rank these in [A
i
...A

i+1
].

A
i

A
i+1



An Improved Parallel Algorithm

● What if [B
r(i)

...B
r(i+1)

] has a size of more than log n?
● The situation can be addressed

➢ Pick equally spaced, no more than log n, spaced 
items in [B

r(i)
...B

r(i+1)
].

➢ Rank these in [A
i
...A

i+1
].

A
i

A
i+1



Final Result
● Can merge two sorted arrays of size n in time 

O(log n) with work O(n).
➢ Need CREW model, for binary searches.

● Can improve further, we will see later.
● The technique to achieve optimality is a general 

technique, with several applications. We will see 
more applications of this later.



Some Administrative Issues
● HW 5 posted on the web today. Due in a week's

time.
● HW4 grading will be returned by then.
● Revised mid1 scripts also will be returned by 

then.
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