

Complexity and Advanced Algorithms
Monsoon 2011

Parallel Algorithms
Lecture 2

Trivia

● ISRO has a new supercomputer rated at 220
Tflops
➢ Can be extended to Pflops.
➢ Consumes only 150 KW of power.

● LINPACK is the standard benchmark used for
these ratings.
➢ Can get your computer rated too.
➢ Visit http://www.netlib.org/benchmark/linpackjava/

Balanced Binary Tree – Prefix Sums

• Two traversals of a complete
binary tree.

• The tree is only a visual aid.
– Map processors to locations in

the tree

– Perform equivalent computations.

– Algorithm designed in the PRAM
model.

– Works in logarithmic time, and
optimal number of operations.

//upward traversal
1. for i = 1 to n/2 do in
parallel
 bi = a2i-2 o a2i

2. Recursively compute the
prefix sums of B= (b1, b2, ...,

bn/2) and store them in C = (c1,

c2, ..., cn/2)

//downward traversal
3. for i = 1 to n do in
parallel
 i is even : si = ci

 i= 1 : s1 = c1

 i is odd : si = c(i-1)/2 o ai

Analysis of Parallel Algorithms
• To analyze parallel algorithms, we rely on

asymptotics and recurrences.
• Each operation costs 1 unit, only sequential time

needs to be counted. We assume as many
processors as can be used are available.

• In the prefix sum example, let T(n) be the time in
parallel for an input of size n.

– Step 1 can use n/2 processors in parallel each taking
1 unit of time.

– Step 2 is a recursive call and takes T(n/2) time.

– Step 3 uses n processors each taking 1 unit of time.

Analysis of Parallel Algorithms
• The recurrence relation is:

– T(n) = T(n/2) + O(1)

– Can ignore effects due to constant factors,
such as the difference in the number of
processors between steps 1 and 3.

• The solution to the above recurrence is T(n) =
O(log n).

• Another parameter of interest in parallel
algorithms is the work done.

• Can be stated as the sum of the works done
by each of the processors.

Analysis of Parallel Algorithms
• The work done by the prefix algorithm can be

expressed by the recurrence
– W(n) = W(n/2) + O(n).

– The O(n) accounts for the work in the first and
the third steps.

– Solution: W(n) = O(n).
• Work done can indicate if the algorithm is

doing about the same amount of operations
as the best known sequential algorithm.

The PRAM Model

• An extension of the von Neumann model.

P1 P2 P3 Pn

Global Shared Memory

The PRAM Model

• A set of n identical processors
• A common access shared memory
• Synchronous time steps
• Access to the shared memory costs the same as a

unit of computation.
• Different models to provide semantics for

concurrent access to the shared memory
– EREW, CREW, CRCW(Common, Aribitrary,

Priority, ...)

The Semantics

• In all cases, it is the programmer to ensure that
his program meets the required semantics.

• EREW : Exclusive Read, Exclusive Write
– No scope for memory contention.
– Usually the weakest model, and hence algorithm

design is tough.
• CREW : Concurrent Read, Exclusive Write

– Allow processors to read simultaneously from
the same memory location at the same instant.

– Can be made practically feasible with additional
hardware

The Semantics

• CRCW : Concurrent Read, Concurrent Write
– Allow processors to read/write simultaneously

from/to the same memory location at the
same instant.

– Requires further specification of semantics for
concurrent write. Popular variants include

Concurrent Read/Write Models

● COMMON : Concurrent write is allowed so long as the all the
values being attempted are equal.

● Example: Consider finding the Boolean OR of n bits.
● Each Boolean bit with a processor.
● Reserve a common cell in the memory
● Every processor that holds a 1 writes 1 in the common cell.

P1 P2 P3 Pn

Global Shared Memory

1 110 1 0

1

Concurrent Read/Write Models
● ARBITRARY : In case of a concurrent write, it is guaranteed

that some processor succeeds and its write takes effect.
● Similar algorithms for Boolean AND can be designed.
● Turns out that ARBITRARY is at least as powerful as

COMMON.
● If all values are equal, both match the semantics.
● Otherwise, ARBITRARY may be more useful.

● PRIORITY : Assumes that processors have numbers that can
be used to decide which write succeeds.
● Difficult to place wrt ARBITRARY and COMMON.

● Other models: TOLERANT, COLLISION, ...

Revisiting our Prefix Sum Algorithm
● What model of PRAM does our algorithm

require?
➢ No concurrent writes.
➢ May be concurrent reads.
➢ Can however convert to an exclusive read

algorithm. How?
➢ Can this be done in all cases?

Other Design Paradigms

• Partitioning

– Similar to divide and conquer

– But no need to combine solutions

– Can treat problems independently and solve in

parallel.

– Example: Parallel merging, searching.

Coming Up...
● From now on, we will also care about the model

of the PRAM when designing algorithms.
● Aim for EREW algorithms because of their

applicability.
● We will design algorithms for

➢ Merging
➢ Sorting
➢ List ranking
➢ Tree algorithms
➢ Graph algorithms
➢ ...

Parallel Algorithm for Merging

● The problem:
➢ Input: Two sorted arrays A and B of size n each.
➢ Output: A sorted array C that contains all the

elements of A and B.
➢ Assume that all elements are distinct. Can be

done away easily. (HW)

15 22 42 55 89

12 15 22 34 38 42 55 67 89 92

12 38 42 67 92

MERGE

The Sequential Algorithm

Procedure Merge(L, R, A)
 i = 1, j = 1
 for k = 1 to l + r do
 if L[i] < R[j] then
 A[k] = L[i];
 i = i + 1
 else
 A[k] = R[j];
 j = j + 1;
End.

8 10 12 24 15 17 27 32

8

8 10

8 10 12

8 10 12 158 10 12 15

8 10 12 15 17

8 10 12 15 17 24

8 10 12 15 17 24 27

8 10 12 15 17 24 27 32

Sequential Algorithm
● In the sequential algorithm, any element x waits

for the positions of all lesser elements to be
determined.

● The position of x is one plus the position of the
largest element smaller than x.

● Looks inherently sequential.

Towards a First Parallel Algorithm
● Define Rank(x,A) to be the number of elements

of A that are smaller than x in a sorted array A.
➢ Example: A = (14, 18, 43, 58), Rank(49, A) = 3.
➢ Notice that x need not be an element of A.

● Claim: Rank(x, C) = Rank(x, A) + Rank(x, B)
➢ Proof immediate.

● Consider x in A.
➢ Rank(x,A) = index(x) – 1.
➢ Rank(x,B) can be found using binary search.

● This can be done in parallel for each x in A, and
also each x in B.

Quick Example

A = [8 10 12 24] B = [15 17 27 32]

Element 8 10 12 24 15 17 27 32

Rank in A 0 1 2 3 3 3 4 4

Rank in B 0 0 0 2 0 1 2 3

Rank in C 0 1 2 5 3 4 6 7

C = [8 10 12 15 17 24 27 32]

Analysis: Time and Work
● For each element of A and each element of B:

➢ One binary search on n elements
➢ Takes O(log n) time
➢ Total time = O(log n) with O(n) processors.

● Total work done = O(n log n).
➢ Higher than the sequential time taken.
➢ Such a parallel algorithm is called non-optimal.
➢ Optimal means that the work done by the parallel

algorithm is asymptotically equal to the time
complexity of the best known sequential
algorithm.

 In essence, can simulate the parallel algorithm as a
sequential algorithm.

An Improved Optimal Algorithm
● General technique

➢ Solve a smaller problem in parallel
➢ Extend the solution to the entire problem.

● For the first step, the problem size to be solved is
guided by the factor of non-optimality factor of an
existing parallel algorithm.

An Improved Parallel Algorithm
● Our simple parallel algorithm is away from

optimality by a factor of O(log n).
● So, we should solve a problem of size O(n/log n).
● For this purpose, we pick every log nth element of

A, and similarly in B.
● Use the simple parallel algorithm on these

elements of A and B.
➢ Binary search however in the entire A and B.

An Improved Parallel Algorithm

● Let A
1
, A

2
,...,A

n/log n
 be the elements of A ranked in B.

● These ranks induce partitions in B.
➢ Define [B

r(i)
...B

r(i+1)
] as the portion of B so that

[A(i)...A(i+1)] have ranks in.
● Can therefore merge [A(i)...A(i+1)] with [B

r(i)
...B

r(i+1)
]

sequentially.

A
i

B
r(i)

B
r(i+1)

An Improved Parallel Algorithm
● Such sequential merges can happen in parallel,

at each index of A[i].
● Time taken for the sequential merge is O(log n +

B
r(i+1)

– B
r(i)

).
● Time:

➢ Binary search: O(log n), with n/log n processors.
➢ Sequential merge: O(log n), subject to certain

conditions. There are also n/log n such merges in
parallel.

● Work:
➢ There are n/log n binary searches in parallel.

Work = O(n).
➢ For the sequential merges too, work = O(n).

An Improved Parallel Algorithm

● What if [B
r(i)

...B
r(i+1)

] has a size of more than log n?
● The situation can be addressed

➢ Pick equally spaced, no more than log n, spaced
items in [B

r(i)
...B

r(i+1)
].

➢ Rank these in [A
i
...A

i+1
].

A
i

A
i+1

An Improved Parallel Algorithm

● What if [B
r(i)

...B
r(i+1)

] has a size of more than log n?
● The situation can be addressed

➢ Pick equally spaced, no more than log n, spaced
items in [B

r(i)
...B

r(i+1)
].

➢ Rank these in [A
i
...A

i+1
].

A
i

A
i+1

Final Result
● Can merge two sorted arrays of size n in time

O(log n) with work O(n).
➢ Need CREW model, for binary searches.

● Can improve further, we will see later.
● The technique to achieve optimality is a general

technique, with several applications. We will see
more applications of this later.

Some Administrative Issues
● HW 5 posted on the web today. Due in a week's

time.
● HW4 grading will be returned by then.
● Revised mid1 scripts also will be returned by

then.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

