Complexity and Advanced Algorithms Monsoon 2011

Parallel Algorithms Lecture 2

Trivia

- ISRO has a new supercomputer rated at 220 Tflops
 - Can be extended to Pflops.
 - Consumes only 150 KW of power.
- LINPACK is the standard benchmark used for these ratings.
 - Can get your computer rated too.
 - > Visit http://www.netlib.org/benchmark/linpackjava/

Balanced Binary Tree – Prefix Sums

- Two traversals of a complete binary tree.
- The tree is only a visual aid.
 - Map processors to locations in the tree
 - Perform equivalent computations.
 - Algorithm designed in the PRAM model.
 - Works in logarithmic time, and optimal number of operations.

//upward traversal 1. for i = 1 to n/2 do in parallel $b_{i} = a_{2i-2} \ o \ a_{2i}$ 2. Recursively compute the prefix sums of $B=(b_1, b_2, \ldots,$ $b_{n/2}$) and store them in C = (c₁, $C_{2}, \ldots, C_{n/2}$ //downward traversal 3. for i = 1 to n do in parallel i is even : $s_i = c_i$ $i = 1 : s_1 = c_1$ i is odd : $s_i = c_{(i-1)/2} \circ a_i$

Analysis of Parallel Algorithms

- To analyze parallel algorithms, we rely on asymptotics and recurrences.
- Each operation costs 1 unit, only sequential time needs to be counted. We assume as many

processors as can be used are available.

- In the prefix sum example, let T(n) be the time in parallel for an input of size n.
 - Step 1 can use n/2 processors in parallel each taking 1 unit of time.
 - Step 2 is a recursive call and takes T(n/2) time.
 - Step 3 uses n processors each taking 1 unit of time.

Analysis of Parallel Algorithms

• The recurrence relation is:

- T(n) = T(n/2) + O(1)
- Can ignore effects due to constant factors, such as the difference in the number of processors between steps 1 and 3.
- The solution to the above recurrence is $T(n) = O(\log n)$.
- Another parameter of interest in parallel algorithms is the work done.
- Can be stated as the sum of the works done by each of the processors.

Analysis of Parallel Algorithms

- The work done by the prefix algorithm can be expressed by the recurrence
 - W(n) = W(n/2) + O(n).
 - The O(n) accounts for the work in the first and the third steps.
 - Solution: W(n) = O(n).
- Work done can indicate if the algorithm is doing about the same amount of operations as the best known sequential algorithm.

The PRAM Model

• An extension of the von Neumann model.

- A set of n identical processors
- A common access shared memory
- Synchronous time steps
- Access to the shared memory costs the same as a unit of computation.
- Different models to provide semantics for concurrent access to the shared memory
 - EREW, CREW, CRCW(Common, Aribitrary, Priority, ...)

The Semantics

- In all cases, it is the programmer to ensure that his program meets the required semantics.
- EREW : Exclusive Read, Exclusive Write
 - No scope for memory contention.
 - Usually the weakest model, and hence algorithm design is tough.
- CREW : Concurrent Read, Exclusive Write
 - Allow processors to read simultaneously from the same memory location at the same instant.
 - Can be made practically feasible with additional hardware

- CRCW : Concurrent Read, Concurrent Write
 - Allow processors to read/write simultaneously from/to the same memory location at the same instant.
 - Requires further specification of semantics for concurrent write. Popular variants include

Concurrent Read/Write Models

- COMMON : Concurrent write is allowed so long as the all the values being attempted are equal.
- Example: Consider finding the Boolean OR of n bits.
 - Each Boolean bit with a processor.
 - Reserve a common cell in the memory
 - Every processor that holds a 1 writes 1 in the common cell.

Concurrent Read/Write Models

- ARBITRARY : In case of a concurrent write, it is guaranteed that some processor succeeds and its write takes effect.
 - Similar algorithms for Boolean AND can be designed.
 - Turns out that ARBITRARY is at least as powerful as COMMON.
 - If all values are equal, both match the semantics.
 - Otherwise, ARBITRARY may be more useful.
- PRIORITY : Assumes that processors have numbers that can be used to decide which write succeeds.
 - Difficult to place wrt ARBITRARY and COMMON.
- Other models: TOLERANT, COLLISION, ...

Revisiting our Prefix Sum Algorithm

- What model of PRAM does our algorithm require?
 - No concurrent writes.
 - May be concurrent reads.
 - Can however convert to an exclusive read algorithm. How?
 - Can this be done in all cases?

Other Design Paradigms

- Partitioning
 - Similar to divide and conquer
 - But no need to combine solutions
 - Can treat problems independently and solve in parallel.
 - Example: Parallel merging, searching.

Coming Up...

- From now on, we will also care about the model of the PRAM when designing algorithms.
- Aim for EREW algorithms because of their applicability.
- We will design algorithms for
 - Merging
 - Sorting
 - List ranking
 - > Tree algorithms
 - Graph algorithms
 - \triangleright

Parallel Algorithm for Merging

- The problem:
 - Input: Two sorted arrays A and B of size n each.
 - Output: A sorted array C that contains all the elements of A and B.
 - Assume that all elements are distinct. Can be done away easily. (HW)

The Sequential Algorithm

8

8 10

8 10 12

8 10 12 15

8 10 12 15 17

8 10 12 15 17 24

8 10 12 15 17 24 27

8 10 12 15 17 24 27 32

Sequential Algorithm

- In the sequential algorithm, any element x waits for the positions of all lesser elements to be determined.
- The position of x is one plus the position of the largest element smaller than x.
- Looks inherently sequential.

Towards a First Parallel Algorithm

- Define Rank(x,A) to be the number of elements of A that are smaller than x in a sorted array A.
 - Example: A = (14, 18, 43, 58), Rank(49, A) = 3.
 - Notice that x need not be an element of A.
- Claim: Rank(x, C) = Rank(x, A) + Rank(x, B)
 - Proof immediate.
- Consider x in A.
 - > Rank(x,A) = index(x) 1.
 - Rank(x,B) can be found using binary search.
- This can be done in parallel for each x in A, and also each x in B.

A = [8 10 12 24] B = [15 17 27 32]

Element	8	10	12	24	15	17	27	32
Rank in A	0	1	2	3	3	3	4	4
Rank in B	0	0	0	2	0	1	2	3
Rank in C	0	1	2	5	3	4	6	7

C = [8 10 12 15 17 24 27 32]

Analysis: Time and Work

- For each element of A and each element of B:
 - > One binary search on n elements
 - > Takes O(log n) time
 - > Total time = $O(\log n)$ with O(n) processors.
- Total work done = $O(n \log n)$.
 - > Higher than the sequential time taken.
 - Such a parallel algorithm is called non-optimal.
 - Optimal means that the work done by the parallel algorithm is asymptotically equal to the time complexity of the best known sequential algorithm.
 - In essence, can simulate the parallel algorithm as a sequential algorithm.

An Improved Optimal Algorithm

- General technique
 - Solve a smaller problem in parallel
 - Extend the solution to the entire problem.
- For the first step, the problem size to be solved is guided by the factor of non-optimality factor of an existing parallel algorithm.

- Our simple parallel algorithm is away from optimality by a factor of O(log n).
- So, we should solve a problem of size O(n/log n).
- For this purpose, we pick every log nth element of A, and similarly in B.
- Use the simple parallel algorithm on these elements of A and B.
 - Binary search however in the entire A and B.

- Let $A_1, A_2, \dots, A_{n/\log n}$ be the elements of A ranked in B.
- These ranks induce partitions in B.
 - > Define $[B_{r(i)}...B_{r(i+1)}]$ as the portion of B so that [A(i)...A(i+1)] have ranks in.
- Can therefore merge [A(i)...A(i+1)] with [B_{r(i)}...B_{r(i+1)}] sequentially.

- Such sequential merges can happen in parallel, at each index of A[i].
- Time taken for the sequential merge is O(log n + $B_{r(i+1)} B_{r(i)}$).
- Time:
 - > Binary search: O(log n), with n/log n processors.
 - Sequential merge: O(log n), subject to certain conditions. There are also n/log n such merges in parallel.
- Work:
 - There are n/log n binary searches in parallel. Work = O(n).
 - > For the sequential merges too, work = O(n).

- What if $[B_{r(i)}...B_{r(i+1)}]$ has a size of more than log n?
- The situation can be addressed
 - Pick equally spaced, no more than log n, spaced items in [B_{r(i)}...B_{r(i+1)}].
 - > Rank these in $[A_i...A_{i+1}]$.

- What if $[B_{r(i)}...B_{r(i+1)}]$ has a size of more than log n?
- The situation can be addressed
 - Pick equally spaced, no more than log n, spaced items in [B_{r(i)}...B_{r(i+1)}].
 - > Rank these in $[A_i ... A_{i+1}]$.

Final Result

- Can merge two sorted arrays of size n in time O(log n) with work O(n).
 Need CREW model, for binary searches.
- Can improve further, we will see later.
- The technique to achieve optimality is a general technique, with several applications. We will see more applications of this later.

Some Administrative Issues

- HW 5 posted on the web today. Due in a week's time.
- HW4 grading will be returned by then.
- Revised mid1 scripts also will be returned by then.