## Complexity and Advanced Algorithms Monsoon 2011

Parallel Algorithms
Lecture 2

## Trivia

- ISRO has a new supercomputer rated at 220 Tflops
> Can be extended to Pflops.
» Consumes only 150 KW of power.
- LINPACK is the standard benchmark used for these ratings.
> Can get your computer rated too.
> Visit http://www.netlib.org/benchmark/linpackjava/


## Balanced Binary Tree - Prefix Sums

- Two traversals of a complete binary tree.
- The tree is only a visual aid.
- Map processors to locations in the tree
- Perform equivalent computations.
- Algorithm designed in the PRAM model.
- Works in logarithmic time, and optimal number of operations.
//upward traversal

1. for $i=1$ to $n / 2$ do in parallel
$b_{i}=a_{2 i-2} 0 a_{2 i}$
2. Recursively compute the prefix sums of $B=\left(b_{1}, b_{2}, \ldots\right.$, $\mathrm{b}_{\mathrm{n} / 2}$ ) and store them in $\mathrm{C}=\left(\mathrm{c}_{1}\right.$, $\mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{n} / 2}$ )
//downward traversal
3. for $\mathrm{i}=1$ to n do in parallel

$$
\begin{aligned}
& i \text { is even : } s_{i}=c_{i} \\
& i=1 \text { : } s_{1}=c_{1} \\
& i \text { is odd }: s_{i}=c_{(i-1) / 2} \circ a_{i}
\end{aligned}
$$

## Analvsis of Parallel Aloorithms

To analyze parallel algorithms, we rely on asymptotics and recurrences.

- Each operation costs 1 unit, only sequential time needs to be counted. We assume as many processors as can be used are available.
- In the prefix sum example, let $T(n)$ be the time in parallel for an input of size $n$.
- Step 1 can use n/2 processors in parallel each taking 1 unit of time.
- Step 2 is a recursive call and takes $\mathrm{T}(\mathrm{n} / 2)$ time.
- Step 3 uses n processors each taking 1 unit of time.


## Analvsis of Parallel Aloorithms

- The recurrence relation is:
- $T(n)=T(n / 2)+O(1)$
- Can ignore effects due to constant factors, such as the difference in the number of processors between steps 1 and 3 .
- The solution to the above recurrence is $T(n)=$ O( $\log \mathrm{n}$ ).
- Another parameter of interest in parallel algorithms is the work done.
- Can be stated as the sum of the works done by each of the processors.


## Analvsis of Parallel Aloorithms

The work done by the prefix algorithm can be expressed by the recurrence
$-W(n)=W(n / 2)+O(n)$.

- The $O(n)$ accounts for the work in the first and the third steps.
- Solution: $W(n)=O(n)$.
- Work done can indicate if the algorithm is doing about the same amount of operations as the best known sequential algorithm.


## The PRAM Model



- An extension of the von Neumann model.


## The PRAM Model

- A set of $n$ identical processors
- A common access shared memory
- Synchronous time steps
- Access to the shared memory costs the same as a unit of computation.
- Different models to provide semantics for concurrent access to the shared memory
- EREW, CREW, CRCW(Common, Aribitrary, Priority, ...)


## The Semantics

- In all cases, it is the programmer to ensure that his program meets the required semantics.
- EREW : Exclusive Read, Exclusive Write
- No scope for memory contention.
- Usually the weakest model, and hence algorithm design is tough.
- CREW : Concurrent Read, Exclusive Write
- Allow processors to read simultaneously from the same memory location at the same instant.
- Can be made practically feasible with additional hardware


## The Semantics

- CRCW : Concurrent Read, Concurrent Write
- Allow processors to read/write simultaneously from/to the same memory location at the same instant.
- Requires further specification of semantics for concurrent write. Popular variants include


## Concurrent Read/Write Models



- COMMON : Concurrent write is allowed so long as the all the values being attempted are equal.
- Example: Consider finding the Boolean OR of $n$ bits.
- Each Boolean bit with a processor.
- Reserve a common cell in the memory
- Every processor that holds a 1 writes 1 in the common cell.


## Concurrent Read/Write Models

- ARBITRARY : In case of a concurrent write, it is guaranteed that some processor succeeds and its write takes effect.
- Similar algorithms for Boolean AND can be designed.
- Turns out that ARBITRARY is at least as powerful as COMMON.
- If all values are equal, both match the semantics.
- Otherwise, ARBITRARY may be more useful.
- PRIORITY : Assumes that processors have numbers that can be used to decide which write succeeds.
- Difficult to place wrt ARBITRARY and COMMON.
- Other models: TOLERANT, COLLISION, ...


## Revisiting our Prefix Sum Algorithm

- What model of PRAM does our algorithm require?
> No concurrent writes.
- May be concurrent reads.
- Can however convert to an exclusive read algorithm. How?
» Can this be done in all cases?


## Other Design Paradigms

- Partitioning
- Similar to divide and conquer
- But no need to combine solutions
- Can treat problems independently and solve in parallel.
- Example: Parallel merging, searching.
- From now on, we will also care about the model of the PRAM when designing algorithms.
- Aim for EREW algorithms because of their applicability.
- We will design algorithms for
> Merging
- Sorting
- List ranking
- Tree algorithms
- Graph algorithms
- ...


## Parallel Algorithm for Merging

## $12 \quad 38 \quad 42 \quad 67 \quad 92$ <br> $15 \quad 2242 \quad 55 \quad 89$

MERGE

## $\begin{array}{llllllllll}12 & 15 & 22 & 34 & 38 & 42 & 55 & 67 & 89 & 92\end{array}$

- The problem:
> Input: Two sorted arrays A and B of size n each.
> Output: A sorted array C that contains all the elements of $A$ and $B$.
, Assume that all elements are distinct. Can be done away easily. (HW)


## The Sequential Algorithm

## 8101224 <br> 15172732

```
8
810
81012
8101215
810121517
81012151724
8101215172427
8101215172427 32
```

Procedure Merge (L, R, A)

$$
i=1, j=1
$$

$$
\text { for } k=1 \text { to } l+r \text { do }
$$

$$
\text { if } L[i]<R[j] \text { then }
$$

$$
A[k]=L[i] ;
$$

$$
i=i+1
$$

else

$$
A[k]=R[j] ;
$$

$$
j=j+1 ;
$$

End.

## Sequential Algorithm

- In the sequential algorithm, any element x waits for the positions of all lesser elements to be determined.
- The position of $x$ is one plus the position of the largest element smaller than $x$.
- Looks inherently sequential.


## Towards a First Parallel Algorithm

- Define Rank(x,A) to be the number of elements of $A$ that are smaller than $x$ in a sorted array $A$. > Example: $A=(14,18,43,58), \operatorname{Rank}(49, A)=3$.
> Notice that $x$ need not be an element of $A$.
- Claim: $\operatorname{Rank}(x, C)=\operatorname{Rank}(x, A)+\operatorname{Rank}(x, B)$ > Proof immediate.
- Consider x in A.
> $\operatorname{Rank}(x, A)=$ index $(x)-1$.
> Rank( $x, B$ ) can be found using binary search.
- This can be done in parallel for each $x$ in $A$, and also each x in B .


## Quick Example

$$
A=\left[\begin{array}{llll}
8 & 10 & 12 & 24
\end{array}\right] \quad B=\left[\begin{array}{llll}
15 & 17 & 27 & 32
\end{array}\right]
$$

| Element | 8 | 10 | 12 | 24 | 15 | 17 | 27 | 32 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Rank in A | 0 | 1 | 2 | 3 | 3 | 3 | 4 | 4 |
| Rank in B | 0 | 0 | 0 | 2 | 0 | 1 | 2 | 3 |
| Rank in C | 0 | 1 | 2 | 5 | 3 | 4 | 6 | 7 |

$$
C=\left[\begin{array}{lllllll}
8 & 10 & 12 & 15 & 17 & 24 & 27 \\
32
\end{array}\right]
$$

## Analysis: Time and Work

- For each element of A and each element of B:
, One binary search on $n$ elements
, Takes O(log n) time
, Total time $=O(\log n)$ with $O(n)$ processors.
- Total work done $=O(n \log n)$.
> Higher than the sequential time taken.
, Such a parallel algorithm is called non-optimal.
, Optimal means that the work done by the parallel algorithm is asymptotically equal to the time complexity of the best known sequential algorithm.
- In essence, can simulate the parallel algorithm as a sequential algorithm.


## An Improved Optimal Algorithm

- General technique
> Solve a smaller problem in parallel
, Extend the solution to the entire problem.
- For the first step, the problem size to be solved is guided by the factor of non-optimality factor of an existing parallel algorithm.


## An Improved Parallel Algorithm

- Our simple parallel algorithm is away from optimality by a factor of $O(\log n)$.
- So, we should solve a problem of size O(n/log n).
- For this purpose, we pick every $\log \mathrm{n}^{\text {th }}$ element of A, and similarly in B.
- Use the simple parallel algorithm on these elements of A and B.
> Binary search however in the entire A and B.


## An Improved Parallel Algorithm



- Let $A_{1}, A_{2}, \ldots, A_{n / l o g n}$ be the elements of $A$ ranked in $B$.
- These ranks induce partitions in $B$.
, Define $\left[B_{r(i)} \ldots B_{r(i+1)}\right]$ as the portion of $B$ so that [A(i)...A(i+1)] have ranks in.
- Can therefore merge $[A(i) \ldots A(i+1)]$ with $\left[B_{r(i)} \ldots B_{r(i+1)}\right]$ sequentially.


## An Improved Parallel Algorithm

- Such sequential merges can happen in parallel, at each index of $A[i]$.
- Time taken for the sequential merge is $\mathrm{O}(\log \mathrm{n}+$ $\left.B_{r(i+1)}-B_{r(i)}\right)$.
- Time:
, Binary search: $O(\log n)$, with $n / \log n$ processors.
, Sequential merge: O(log n), subject to certain conditions. There are also $\mathrm{n} / \log \mathrm{n}$ such merges in parallel.
- Work:
> There are $\mathrm{n} / \log \mathrm{n}$ binary searches in parallel. Work = O(n).
. For the sequential merges too, work = O(n).


## An Improved Parallel Algorithm



- What if $\left[B_{r(i)} \ldots B_{r(i+1)}\right]$ has a size of more than log $n$ ?
- The situation can be addressed
, Pick equally spaced, no more than log n, spaced items in $\left[\mathrm{B}_{\mathrm{r}(\mathbf{1})} \ldots \mathrm{B}_{\mathrm{r}(\mathrm{t}+1)}\right]$.
$\Rightarrow$ Rank these in $\left[\mathrm{A}_{\mathrm{i}} \ldots \mathrm{A}_{\mathrm{i}+1}\right]$.


## An Improved Parallel Algorithm



- What if $\left[B_{r(i)} \ldots B_{r(i+1)}\right]$ has a size of more than log $n$ ?
- The situation can be addressed
- Pick equally spaced, no more than log n, spaced items in $\left[\mathrm{B}_{\mathrm{r}(\mathbf{1})} \ldots \mathrm{B}_{\mathrm{r}(\mathrm{t}+1)}\right]$.
$\Rightarrow$ Rank these in $\left[\mathrm{A}_{\mathrm{i}} \ldots \mathrm{A}_{\mathrm{i}+1}\right]$.


## Final Result

- Can merge two sorted arrays of size n in time $\mathrm{O}(\log n)$ with work $O(n)$. , Need CREW model, for binary searches.
- Can improve further, we will see later.
- The technique to achieve optimality is a general technique, with several applications. We will see more applications of this later.


## Some Administrative Issues

- HW 5 posted on the web today. Due in a week's time.
- HW4 grading will be returned by then.
- Revised mid1 scripts also will be returned by then.

