
Complexity and Advanced
Algorithms

Introduction to Parallel Algorithms

Why Parallel Computing?
• Save time, resources, memory, ...

• Who is using it?
– Academia

– Industry

– Government

– Individuals?

• Two practical motivations:
– Application requirements

– Architectural concerns.

• Why now?
– Soon may not be able to buy a good single core computer!

– Need to therefore study how to use parallel computers.

1. Application Requirements
• A computational fluid dynamics(CFD) calculation on an air plane

wing 512 X 64 X 256 grid

– 5000 fl-pt operations per grid point

– 5000 steps 2.1x1014 ft-ops.

– 3.5 minutes on a machine sustaining 1 trillion flops

– simulation of a full aircraft 3.5 x 1017 grid points total of 8.7 x

1024 ft-pt operations on the same machine requires more than

275,000 years to complete.

1. Application Requirements
• Digital movies and special effects

– 1014 fl-pt operations per frame and

– 50 frames per second

– 90-minute movie represents 2.7 x 1019 fl-pt operations.

– It would take 2,000 1-Gflops CPUs approximately 150 days

to complete the computation.

1. Application Requirements
• Simulation of magnetic materials at the level of 2000-atom

systems require 2.64 Tflops of computational power and 512 GB

of storage.

– Full hard disk simulation 30 Tflops and 2 TB

– Current investigations limited about 1000 atoms 0.5 Tflops
250 GB

– Future investigations involving 10,000 atoms 100 Tflops
2.5TB

• Inventory planning, risk analysis, workforce scheduling and chip

design.

2. Architectural Advances

• Moore's Law:
– The number of transistors that can be inexpensively

placed on an integrated circuit is increasing
exponentially, doubling approximately every two years.

• Present Difficulties
– Memory Wall
– Power Wall
– ILP Wall

The Brick Wall - 1

• Memory Wall
– Memory latency up to 200 cycles per load/store.
– Floating point operations take no more than 4

cycles.
– Earlier, it was thought that “multiply is slow but load

and store is fast”.

The Brick Wall - 2

• Power Wall
– Enormous increase in power consumption.
– Power leakage.
– However, presently “Power is expensive but

transistors are free’’.

Basic Architecture Concepts

CPU Architecture

4 stages of instruction execution

Too many cycles per instruction (CPI)

To reduce the CPI, introduce pipelined execution

• Needs buffers to store results across stages.

A cache to handle slow memory access times

Fetch Decode Execute Write

Fetch Decode Execute Write

Fetch Decode Execute Write

Fetch Decode Execute Write

t=1 2 3 4 5

Cache

Basic Architecture Concepts

Fetch Decode Execute Write

Fetch Decode Execute Write

Fetch Decode Execute Write

Fetch Decode Execute Write

t=1 2 3 4 5

Cache

CPU Architecture
4 stages of instruction execution

Too many cycles per instruction (CPI)

To reduce the CPI, introduce pipelined execution

• Needs buffers to store results across stages.

A cache to handle slow memory access times

• Caches, out-of-order execution, branch prediction, ...

The Brick Wall - 3

• ILP Wall
– ILP via branch prediction, out-of-order and

speculative execution
– Diminishing returns from instruction level

parallelism.

Conventional Wisdom in Computer Architecture

• Power Wall + Memory Wall + ILP Wall = Brick Wall

• Old CW: Uniprocessor performance 2X / 1.5 yrs

• New CW: Uniprocessor performance only 2X / 5 yrs?

Multicores to the Rescue
• Predicted that 100+ core computers would be a

reality soon.

• Increased number of cores without significant

improvement in clock rates.

–Due to silicon technology improvements

• Big questions

–How to exploit these cores in parallel?

–What are the killer applications that can democratize

these new models?

• Search, web, ???

Multicore and Manycore Processors

• IBM Cell

• NVidia GeForce 8800 includes 128 scalar processors

and Tesla

• Sun T1 and T2

• Tilera Tile64

• Picochip combines 430 simple RISC cores

• Cisco 188

• TRIPS

Cell Broadband Engine

Cell processing elements
 A standard PowerPC core
 8 SIMD Cores (SPEs)

Dual XDR memory controller
and two I/O controllers
Game controllers, HPC
Power 100 W

SPE local store of 256 KB

The NVidia Telsa

• The Tesla C870 GPU computing processor transforms a standard workstation into a personal
supercomputer. With 128 streaming processor cores, the CUDA C-language development
environment and developer tools, and a range of applications.

Tesla C870 GPU specifications
- One GPU (128 thread processors)
- 518 gigaflops (peak)
- 1.5 GB dedicated memory
- Fits in one full-length, dual slot with one open PCI Express x16 slot

Massively Multi-threaded Processor Architecture
Solve compute problems at your workstation that previously required a large cluster

128 Floating Point Processor Cores
Achieve up to 350 GFLOPS of performance (512 GFLOPS peak) with one C870 GPU

Multi-GPU Computing
Solve large-scale problems by dividing it across multiple GPUs

• Shared Data Memory
Groups of processor cores can collaborate using shared data

• High Speed, PCI-Express Data Transfer
Fast and high-bandwidth communication between CPU and GPU

The Nvidia Tesla

Some Performance Numbers

Some Performance Numbers

The K Supercomputer
Country: Japan
Rated at 8 PFlops

Tianhe 1 Supercomputer
Country: China
Rated at 2 PFlops

The Jaguar Cray XT5
Country: USA
Rated at 1.7 PFlops

The Nebulae
Country: China
Rated at 1.27 PFlops

Tsubame Supercomputer
Country: Japan
Rated at 1.19 PFlops

The Eka Supercomputer
Country: India
Rated at 170 TFlops

The Academic Interest

 Algorithmics and compelxity
 How to design parallel algorithms?
 What are good theoretical models for parallel

computing?
 How to analyze parallel algorithms?
 Can every sequential algorithm be parallelized?
 What are some complexity classes wrt parallel

computing?

The Academic Interest

 Systems and Programming
 How to write parallel programs?
 What are some tools and environments.
 How to convert algorithms to efficient

implementations.
 What are the differences to sequential

programming?
 What are the performance measures?
 Can sequential programs be automatically

converted to parallel programs?

The Academic Interest

 Architectures
 What are standard architectural designs?
 What new issues are raised due to multiple

cores?
 Downstream concerns

 Does a programmer have to worry about this?
 How to support the systems software as

architecture changes?

The Course Coverage
 Focus on algorithms and complexity

 Models for parallel algorithms

 Algorithm design methodologies with
application

 Semi-numerical
 Lists
 Trees and graphs

 Some parallel programming practice

 Complexity, characterization, and connection to
sequential complexity classes.

The PRAM Model

• An extension of the von Neumann model.

P1 P2 P3 Pn

Global Shared Memory

The PRAM Model

• A set of n identical processors

• A common access shared memory

• Synchronous time steps

• Access to the shared memory costs the same as a

unit of computation.

• Different models to provide semantics for concurrent

access to the shared memory
– EREW, CREW, CRCW(Common, Aribitrary, Priority, ...)

The Semantics

• In all cases, it is the programmer to ensure that his
program meets the required semantics.

• EREW : Exclusive Read, Exclusive Write
– No scope for memory contention.

– Usually the weakest model, and hence algorithm
design is tough.

• CREW : Concurrent Read, Exclusive Write
– Allow processors to read simultaneously from the

same memory location at the same instant.
– Can be made practically feasible with additional

hardware

The Semantics

• CRCW : Concurrent Read, Concurrent Write
– Allow processors to read/write simultaneously

from/to the same memory location at the same
instant.

– Requires further specification of semantics for
concurrent write. Popular variants include

• COMMON : Concurrent write is allowed so long as the
all the values being attempted are equal. Example:
Consider finding the Boolean OR of n bits.

• ARBITRARY : In case of a concurrent write, it is
guaranteed that some processor succeeds and its write
takes effect.

• PRIORITY : Assumes that processors have numbers
that can be used to decide which write succeeds.

PRAM Model – Advantages and Drawbacks

• A simple model for

algorithm design

• Hides architectural

details for the

designer.

• A good starting point

• Ignores architectural

features such as:
– memory bandwidth,
– communication cost

and latency,
– scheduling, ...

• Hardware may be

difficult to realize

Advantages Disadvantages

Example 1 – Matrix Multiplication
• One of the fundamental parallel processing

tasks.

• Applications to several important problems in

linear algebra, signal processing and

optimization.

• Several techniques that work in parallel also.

Example I – Matrix Multiplication
• Recall that in C = A x B, C[i,j] = A[i,k].B[k,j].

• Consider the following recursive approach:

–Works well in practice.

A
00

A
01

A
10 A

11

B
00

B
01

B
10

B
11

X

C
00

C
01

C
10

C
11

=

C
00

 = A
00

 . B
00

 + A
01

 . B
10

C
01

 = A
00

 . B
01

 + A
01

 . B
11

C
10

 = A
10

 . B
00

 + A
11

 . B
10

C
11

 = A
10

 . B
01

 + A
11

 . B
11

Example I – Matrix Multiplication

• Other approaches include Cannon's algorithm

• Can overlap computation with communication.

• Works well when the number of processors is

more.

=

B CA

X

Example 2 – New Parallel Algorithm

• Prefix Computations: Given an array A of n
elements and an associative operation o,
compute A(1) o A(2) o ... A(i) for each i.

• A very simple sequential algorithm exists for this
problem.

Listing 1:
S(1) = A(1)
for i = 2 to n do

S(i) = S(i-1) o A(i)

Parallel Prefix Computation

• The sequential algorithm in Listing 1 is not
efficient in parallel.

• Need a new algorithm approach.
– Balanced Binary Tree

Balanced Binary Tree

• An algorithm design approach for parallel
algorithms

• Many problems can be solved with this design
technique.

• Easily amenable to parallelization and analysis.

• A complete binary tree with processors at each
internal node.

• Input is at the leaf nodes
• Define operations to be executed at the internal

nodes.
– Inputs for this operation at a node are the values at

the children of this node.

• Computation as a tree traversal from leaf to root.

Balanced Binary Tree

Balanced Binary Tree – Prefix Sums

a0 a1 a2 a3 a4 a5 a6 a7

+ + + +

+ +

+

Balanced Binary Tree – Sum

a0 a1 a2 a3 a4 a5 a6 a7

+ + + +

+ +

+

a0 + a1 a2 + a3 a4 + a5 a6 + a7

a0 + a1 + a2 + a3 a4 + a5 + a6 + a7

a
i

Balanced Binary Tree – Sum

• The above approach called as an ``upward
traversal''
– Data flow from the children to the root.
– Helpful in other situations also such as computing

the max, expression evaluation.

• Analogously, can define a downward traversal
– Data flows from root to leaf
– Helps in settings such as element broadcast

Balanced Binary Tree

• Can use a combination of both upward and
downward traversal.

• Prefix computation requires that.
• Illustration in the next slide.

Balanced Binary Tree – Sum

a1 a2 a3 a4 a5 a6 a7 a8

+ + + +

+ +

+

a1 + a2 a3 + a4 a5 + a6 a7 + a8

a1 + a2 + a3 + a4 a5 + a6 + a7 + a8

a
i

a1 a2 a3 a4 a5 a6 a7 a8

+ + + +

+ +

+

a1 + a2 a3 + a4 a5 + a6 a7 + a8

a1 + a2 + a3 + a4 a5 + a6 + a7 + a8

a
i

Upward traversal

Balanced Binary Tree – Prefix Sum

a1 a2 a3 a4 a5 a6 a7 a8

+ + + +

+ +

+

a1 + a2 a3 + a4 a5 + a6 a7 + a8

a1 + a2 + a3 + a4 a5 + a6 + a7 + a8

a
i

Downward traversal

– Even indices

a1 + a2 a1+a2+a

3 + a4

i=1
6a

i
a

i

a1
a1+a2

a1+a2+a3+a4
i=1

6a
i

a
i

Balanced Binary Tree – Prefix Sum

a1 a2 a3 a4 a5 a6 a7 a8

+ + + +

+ +

+

a1 + a2 a3 + a4 a5 + a6 a7 + a8

a1 + a2 + a3 + a4 a5 + a6 + a7 + a8

a
i

Downward traversal

– Odd indices

Balanced Binary Tree – Prefix Sum

a1 + a2 a1+a2+a

3 + a4

i=1
6a

i
a

i

a1 (a1+a2) + a3
i=1

4a
i
) + a5

i=1
6a

i
) + a7

Balanced Binary Tree – Prefix Sums

• Two traversals of a complete
binary tree.

• The tree is only a visual aid.
– Map processors to locations in the

tree

– Perform equivalent computations.

– Algorithm designed in the PRAM
model.

– Works in logarithmic time, and
optimal number of operations.

//upward traversal
1. for i = 1 to n/2 do in
parallel
 bi = a2i-2 o a2i

2. Recursively compute the
prefix sums of B= (b1, b2, ...,

bn/2) and store them in C = (c1,

c2, ..., cn/2)

//downward traversal
3. for i = 1 to n do in
parallel
 i is even : si = ci

 i= 1 : s1 = c1

 i is odd : si = c(i-1)/2 o ai

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

