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Abstract

Letp, g, andr denote prime numbers. In this paper, simple linear timerétyas to acyclically
color the edges of complete graphs of orgér — 1), a complete graphs of ordgfg — 1)(r — 1),
and a complete bipartite graphs of order 1)(¢ — 1) are presented. The number of colors used by
our algorithms improve the state-of-the-art and is clogbeémptimal value for small values pf All
the above algorithms are based on a simple algorithm forrgegeaphs of orden that use€n — 3
colors. We also present a variation of the simple algorithat tisep colors for a complete graph of
orderp, which resembles the algorithm of Alon et al.[2].

*This work is supported by the Department of Science and Tdoby, Govt. of India, New Delhi, under Project
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1 Introduction

An edge coloring of a grap&¥' is proper if no two incident edges have the same color. Ityslacif it is
proper and there is no cycle in the subgraph induced by theseofgany two of the colors. The acyclic
edge chromatic number of a grapgh denoted by: ’(G), is the least number of colors in an acyclic edge
coloring of G.

Acyclic colorings were introduced by Grunbaum [11]. Thejeabis further studied by Albertson
and Berman [1], Borodin [6, 7, 8, 9], Alon [2, 3, 4], amongsthers. Throughout the paper ¢, andr
denote prime numbers greater than 3, unless otherwise state

Determination of the edge chromatic number,(G), of a graphG is a hard problem both from
theoretical and algorithmic point of view. For example, Aland Zaks prove in [4] that it is an NP-
complete problem to decide for a given arbitrary graph G et '(G) < 3. However, the following
upper bounds have been obtained. As a corollary to a resutyclic vertex coloring Alon et al. [2]
show that the edges of any graph G with maximum degksemn be acyclically colored using at most
64A colors. Molloy and Reed [15] improved on the constant front®46. Alon et al. [3] claim that
the constant 16 can be further improved. They further comjedhata '(G) < A(G) + 2 for all graphs
G and prove that there exists a constasuch thata '(G) < A(G) + 2 for any graph G whose girth
is at leastA(G) log A(G). In addition, they showed that'(G) < A(G) + 2 for almost allA-regular
graphs. Muthu et al. [16] show that the acyclic chromatieid’(G) < 6A for all graphsG with girth
at least 9. The same argument was extended to achieve a bburidA with girth being at least 220.
Nesetril and Wormald [17] have obtained a boundi6fG) < A + 1 for randomA-regular (A-fixed)
graph. All these proofs are based on probabilistic methadsaae not constructive.

The difficulty in determining the value af’(G) for a complete graph G &,, may be estimated from
a closely related conjecture called the perfect 1-facition conjecture [3, 18, 21, 22]. This conjecture
of Kotzig [13] and others is still open except for certainued ofn [3, 18]. It says that for any, > 2,
K5, can be decomposed infa — 1 perfect matchings such that the union of any two matchingago
a Hamiltonian cycle ofy,,. If such a decomposition ak5,, o exists, then by coloring every perfect
matching using a different color and removing one vertexhatend of coloring, we obtain an acyclic
edge coloring ofKs,+1 with 2n + 1 = A(Ks,+1) + 1 colors. By removing another vertex from
the coloredKs,, 1, we obtain an acyclic edge coloring &fy,, with 2n + 1 = A(Ky,) + 2 colors,
which is best possible faky,, [3]. Thus, if the perfect 1-factorization conjecture isdinena ' ( Ky, ) =
a'(Kopt1) = 2n+1 for everyn. A decomposition of(5,, 1 into 2n+ 1 matchings each havingedges
such that the union of any two matchings forms a Hamiltoniath pf K5,,.1 is called a perfect near
1-factorization. As discussed abovefib,, 1 » has a perfect 1-factorization théfy,, 1 has a perfect near
1-factorization, which in turn implies that’(K»,+1) = 2n + 1. If K5,,1 has an acyclic edge coloring
with 2n + 1 colors then it can be shown that this coloring correspondsgerfect near 1-factorization
of Ko, 11 which implies thatK,, 5 has a perfect 1-factorization [3].

There has been very little algorithmic study of acyclic edgkering except for the following works.
Molloy and Reed [15] provided a general framework that camded to develop algorithms for appli-
cations of the Lovasz Local Lemma. Customization of thisegahframework to acyclic coloring lead
to a polynomial time algorithm to constru@tfrugal coloring [15]. They also remarked that this method
can be applied to find an acyclic edge coloring of a graph wigiximum degree\ using at most 20
colors.

Subramanian proposed a simple polynomial time greedy $teuthat uses at mostA (log A + 2)
colors to find an acyclic edge coloring of an arbitrary grapf][ Burnstein [10] showed that acyclic
chromatic numbet(G) of G is at most 5 ifA(G) = 4. Since any acyclic vertex coloring of the line



graphL(G) is an acyclic edge coloring @ and vice-versa, this implies that (G) = a(L(G)) < 5 if
A(G)=3. Alon et al. [3] claim that they have another proof for tbése, which yields a polynomial algo-
rithm to acyclically edge color a sub-cubic graph using Bl San Skulrattanakulchai [19] presented
a first linear time algorithm to acyclically edge color a sulbic graph using at most 5 colors.

In view of the discussion relating acyclic edge coloring &sfpct 1-factorization conjecture, it may
be inferred that finding the exact valueswf(K,,) for everyn seems hard. However, Alon et al. [2]
designed an algorithm that can acyclically edge célgr Through this work, they constructively showed
thata '(K,) = p. This corresponds to the known construction proving thigthas a perfect near 1-
factorization [21]. They also gave another algorithm thaat acyclically edge color a complete bipartite
graphK,_; ,—1 and use® colors. They further showed that’(KX,_;,_1) = p. The algorithm that
acyclically edge colors a complete graph on prime numberedices may be used to acyclically edge
color a complete graph on an arbitrary numbeiof vertices by taking to be the least prime greater than
or equal ton. By the known results about the distribution of primes, ityrba inferred that the resulting
coloring requires.+O(n?/3) colors [2]. Similarly, the number of colors required for amulete bipartite
graphK, ,, n arbitrary, using the above mentioned algorithm of Alon eisih + O(n?/3) [2].

In this paper a simple linear time algorithm to acyclicaliyjge colork,,, for anyn, using at most
2n — 3 colors is presented. This algorithm sets the tone for thieofabe algorithms that follow. First,
this simple algorithm is modified to arrive at an acyclic edgéoring algorithm that useg colors to
color K,,. The resulting algorithm resembles that of Alon et al. fomptete graphs with prime number
of vertices. Also proposed is a linear time algorithm to dicatly edge color a complete graph on
n = p(q — 1) vertices usingq colors. This would improve the state of the art for a larges<iaf values
of p andg. Observe thapg being more by(p — 1) from p(q — 1) + 1 = A(K4—1)) + 2, which is the
optimal value[3], the number of colors that this algorithees is close to optimum for small valuespof
The latter technique is further extended to graphs of gsfier 1)(r — 1). The extended algorithm uses
pqr colors and improves on the number of colors used for certaimes ofp, ¢, andr. We also consider
acyclic edge coloring of complete bipartite graphs, ,, wheren = (p — 1)(¢ — 1). Our algorithm in
this case usegq colors, which can be seen to be better for some choicesanfd ¢ compared to the
smallest prime greater than All these algorithms are simple and provide an explicibc@lssignment
to the edges of the concerned graph.

1.1 A Noteon Notation

In the rest of the paper, we use lower cask c, d for colors, lower case, v, w for vertices, and lowecase
i, j, k for indices into appropriate sets. Similarly, lower case, r are taken to be prime numbers. We
also follow standard graph-theoretic notation whereeeeded (cf. [23]).

1.2 Organization of the Paper

The rest of the paper is organized as follows. Section 2 dg&sithe proposed simple linear time al-
gorithm for complete graphs of arbitrary order and its w#orato complete graphs of prime order. In
Section 3, an algorithm for complete graphs of orger — 1) is presented. Its extension to graphs of
orderp(q — 1)(r — 1) is presented in Section 4. The paper ends with some conglueimarks.



2 A SimpleAlgorithm and ItsVariation

A simple algorithm that is designed for a complete graph deon and use®n — 3 colors is proposed
here. It may be observed that the algorithm is applicablenyosiample graph of finite order.

Simple Algorithm  Color the edgéu, v) with the color numbered + v — 2, u,v € {1,2,--- ,n}.

Observation 2.1 The algorithm uses at mo3t. — 3 colors, because the largest value eithier j can
take isn and the graph is simple.

Claim 2.2 Coloring provided by the above algorithm is a proper edgevdab.

Proof. Letu € {1,2,--- ,n} be an arbitrary vertex. Fix am Since the color of other vertexof every
edge incident at: is different from that of another edge incidentuatit follows thatw + v — 2 (color
given to the edgéu, v)) is different for every edge incident at O

Claim 2.3 The union of any two color classes will not have an even leogthe.

Proof. Consider a bichromatic path of edges colored with colond b starting with a vertex.
Assume an edge coloreda is incident at vertexs.. Then, by the coloring principle of the algorithm,
the other vertex of this edgeis (a + 2 — «). Now consider the edgg incident at verteXa + 2 — u)
and is colored. Again, by the coloring principle, the other vertex of thged isb — a + u. The next
vertex in this bichromatic path & + 2 — b — u. Similarly, the next vertex i28 — 2a + v and so on. In
general, the vertices on this bichromatic pathf@are- 2 — (¢ — 1)b — uw and?b — la + u, ¢ is a positive
integer corresponding to the length of the path. For thikroimatic path to be a bichromatic cycle of
even length, we neetb — {a + u to be equal td. This implies that: must be equal t6. Buta andb are
two different colors — a contradiction. Hence the claim. O

Remark 2.4 Since bichromatic odd cycles can not exist in any proper eddgring, it follows that the
coloring provided by the algorithm is an acyclic edge cahori

2.1 A Variation tothe Simple Algorithm

The simple algorithm presented earlier may be modified tadavg on the number of colors required
to color a graph with prime number of vertices. The resulttgprithm requires only colors to color
a graph withp vertices. Incidentally, this algorithm resembles that édrAet al. [2] for acyclically
coloring ak,.

Algorithm  Color the edgéu, v) with the color(u + v — 2) mod p, whereu,v € {0,1,--- ,p — 1}.
Observation 2.5 The algorithm may be seen to yseolors.

Claim 2.6 The coloring provided by the above algorithm is a proper eclgjering.

Proof. Letwu € {0,1,2,--- ,p — 1} be an arbitrary vertex. Suppose two edges incident have

the same color. That iu + v — 2) mod p = (u + w — 2) mod p for somev andw. This implies

v = w mod p. Thatis,p dividesv — w. But0 < v —w < p — 1 andp is a prime number. This implies
thatv = w. That is, both the edges incidentwathat have the same color must be one and the same.
Hence the claim. O



Claim 2.7 The union of any two color classes will not have an even lengthe (i.e. cycle with even
number of edges).

Proof. Leta andb € {0,1,2,--- ,p — 1} be two arbitrary colors. Consider a bichromatic path of edge
colored with colors: andb starting with a vertex.. Assume that an edgecoloreda is incident at vertex
u. Then, by the coloring principle, the other vertex of theedds (a + 2 — u) mod p. Similarly, the
other vertices on this path afé — a + «) mod p, (2a + 2 — b — w) mod p, (2b — 2a + u) mod p, etc.

In general, an edge with colaris incident on the vertices of the for((/ — 1)b — (¢ — 1)a + u) mod p
and(fa+2— (¢ —1)b—u) mod p. Similarly, an edge with colo¥ is incident on the vertices of the form
(ba — (£ —=1)b+ 2 —u) mod p and(¢b — fa + u) mod p. For this bichromatic path to be a bichromatic
cycle of even length we neddb — ¢a + u) mod p = u. This impliest(b — a) = kp, for some integek.
Sincep is a prime number and < a,b < p — 1, p cannot divide(b — a). So,p must divide/. But the
value of/ is at mostp — 1 and hence we arrive at a contradiction. O

3 Algorithm for Complete Graphswith p(q — 1) Vertices

In this section we present an algorithm to acyclically edgerca complete grapKk,,, wheren = p(¢—1)
usingpq colors. The main idea of this algorithm is to tred},,_) as a complete (multi) graph gn
vertices where each vertex corresponds to a complete gmragh © 1) vertices. Now this complete
graph orp vertices can be colored usipgeolors. SimilarlyK,_; can be colored using at magtolors.
Treating each multiedge in thE, as akK,_; ,—1, this can be colored using at mastolors. This now
can be used to acyclically edge colgy, usingpq colors. It may be observed that this improves the result
of Alon et al. [2] for a large class of values pfandq.

3.1 Algorithm

Step 1: Partition the(q — 1) vertices intg sets of sizéq — 1) each. That s, if the vertices are numbered
as0,1,2,--- ,q—2,9q—1,q,--- ,2¢ — 3,29 —2,2¢—1,--- ,3¢ —4,--- , pq — p, partition the vertices
Step 2: For every, t € {0,1,2,...,p — 1}, and for every pair of vertices, sayc V; andj € V;, color
the edg€7, j) with the color((s + ¢ — 2) mod p, (i + j — 2) mod q).

Observation 3.1 The number of colors used by the algorithnpds
In the following, we argue its correctness.
Claim 3.2 The coloring provided by the algorithm is proper.

Proof. Assume the contrary. That is there exist edges) and (u, w) with the same color. Suppose
u,v,andw belong to vertex sets, say;, V;,andV}, respectively. By the coloring principle the edge
(u, v) receives the colof(i + 7 — 2) mod p, (v + v — 2) mod ¢) and the edgéu, w) receives the color
((i + k —2) mod p, (u +w — 2) mod q).



Casel: j =k Then, since the color of the edges v) and(u, w) is same, we have
((i +j —2) mod p, (u+v—2) mod q) = ((i +j — 2) mod p, (u +w — 2) mod q)
This implies that
(u+v—2)mod ¢ = (u+ w — 2) mod g,
which in turn implies
(v —w) =0 mod gq.

0 <wv,w < ¢—1andgqisaprime. Sg cannot dividev — w unlessv = w which is a contradiction.

Case2: j # k Thenitis required that
((i +7 —2) mod p, (u+ v —2) mod q) = ((i + k — 2) mod p, (u + w — 2) mod q).
This implies
(t+7—2)modp=(i+k—2)modp and (u+ v —2) mod ¢ = (u + w — 2) mod q.

Consider
(i4+7—2)modp=(i+k—2) mod p.

This implies
(j — k) =0 mod p.

But this cannot be satisifed @s< j,k < p — 1 andj # k by assumption. S¢ = k. Hence, we arrive
at a contradiction in this case also.
Hence the Claim. O

Claim 3.3 The union of any two color classes will not have an even leagthe.

Proof. Consider a bichromatic path of edges colored with colat$) and(c, d) and starting from a
vertexu € V; for somei € {0,1,2,...,p — 1}. Consider the edge coloréd, b) and incident at:.. Then,
by the coloring principle, the other vertex of this edgglis- u + 2) mod ¢ € V{4—i19) mod p- NOW
consider the edge colorgd, d) and incident atb — u + 2) mod q of V(,_;12) mod p- Then, again by
the coloring principle, the other vertex of this edgéds— b + u) mod q¢ € V(c_44) mod p- FOllOWing
similar argument, the other vertices on this bichromatith gan be calculated to b@b — d — u +
2) mod q € Vi2q—c—i4+2) mod p» (2d — 2b 4+ u) mod q € Vi2c—24+4) mod p» (30 — 2d — u + 2) mod q €
Vi3a—2c—i4+2) mod p» (3d — 3b + u) mod ¢ € V(3.—34+4) mod p» €IC. IN general, the vertices on this path
can be expressed & — (£ — 1)d — u + 2) mod q € Viyg—(4—1)c—u+2) mod p @Nd (¢d — £b + u) mod
q € Vite—tats) mod p» Wherel is the length of the bichromatic path. For this bichromatthpto be a
bichromatic cycle of even length, we need

u= (bd — b+ u) mod ¢ and i = (c— la+ i) mod p.

That is
u=4~0d—¥¢b+u+ kig, forsome integek; ,

and
i =4f0c—{fa+i+ kop, for some integeks.
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These in turn imply
¢(d—b) =0mod ¢ and ¢(c — a) = 0 mod p.

For the above two conditions to be satisfied at the same tioteenthatq cannot divided — b and
similarly p cannot dividec—a as0 < b,d < g—1and0 < a,c < p—1 and bothp, g are prime. S@ has
to divide ¢ and alsg has to divide/. But, ¢, being the length of the cycle can be at mp&t — 1). For
bothp andq to divide 4, £ must be at leagig. Hence a contradiction arises implying that no bichromatic
cycle can exist. O

4 Algorithm for Complete Graphswith p(¢ — 1)(r — 1) Vertices

The previous algorithm for complete graphs of orgdér — 1) is hereby extended to complete graphs of
orderp(q—1)(r—1). The resulting algorithm usegr colors. It may be seen that this is an improvement
over that of Alon et al. [2] for certain values pf ¢, andr.

4.1 Algorithm

Step 1: Partition the(¢— 1)(r — 1) vertices intop(q — 1) sets of sizér — 1) each. That s, if the vertices
are numbered & 1,2, --- , [p(¢ — 1)(r — 1) — 1], partition the vertices &g, = {[(s(¢ — 1) + z)(r —
DL{s(g =) +2)(r=1)+1],---, [(slg =D +2)(r =)+ (r=2)]}, s =0,1,2,--- ,p—1andz =
071727'” 7q_2

Step 2: For every pair of vertices, sa¢ V,, andj € V,,, color the edgé€i, j) with the color
((s +t—2)mod p, (x +y —2) mod ¢, (i + j — 2) mod r).

Observation 4.1 The algorithm may be seen to yse- colors.
Claim 4.2 The coloring provided by the algorithm is proper.

Proof. Assume the contrary. That is, there exist edges incidergrd¢xu, say(u,v) and(u, w), with
the same color. Supposev, andw belong toVy,, V;,;, andVj;, respectively. By the coloring principle,
edge(u,v) receives((f + h — 2) mod p, (¢ + i — 2) mod ¢, (u + v — 2) mod r) and the edgéu, w)
receives((f + j — 2) mod p, (g + k — 2) mod ¢, (v + w — 2) mod r). From the assumption, this
implies that(f + h —2) modp = (f + j — 2) mod p, (¢ +i — 2) mod ¢ = (¢ + k — 2) mod ¢, and
(u+v—2)modr = (u+ w — 2) mod r. These in turn imply:

h—j+kip=0 forsome integek,

i —k+ koqg =0 for some integek,,

and
v—w+ ksr =0 for some integeks.

ButO <h,j <p—-1,0<i,k<qg—2and0 < j k <r —2,andp, ¢, andr are prime numbers. So, it
follows thath = j,7 = k, andv = w. That is the edges that receive the same color must be onéand t
same. O

Claim 4.3 The union of any two color classes will not have an even leogtle.



Proof. Consider a bichromatic path of edges colored with coler9, ¢), (d, e, f) and starting from

a vertexu € V;; for somei € 0,1,2,--- ,p—1andj € 0,1,2,--- ,¢ — 2. Also, consider the edge
colored (a, b, c) and incident at.. Then, by the coloring principle, the other vertex of thigeds
(c—u+2) mod 7 € Vig_ii2) mod p,(b—j+2) mod - NOW consider the edge coloréd, e, f) and incident
at (c — u + 2) mod 7 0f Viy_i19) mod p,(b—j+2) mod q- TNEN, @gain, by the coloring principle, the other
vertex of this edge i$f — ¢ + u) mod r € Vig_q44) mod p,(e—b+j) mod ¢- FOllOWING similar argument,
the other vertices on this bichromatic path can be caladttde:

(26_ _u+2) mod r € VY(Qa d—i+2) mod p,(2b—e—j+2) mod ¢

(2f —2c+ ’LL) mod r € V(Zd 2a+1) mod p,(2e—2b+j5) mod ¢>

(3C —2f—u+ 2) mod r € Vv(?)a 2d—i+2) mod p,(3b—2e—;+2) mod g¢> and
(3f 3¢+ u) mod 7 € V(3d 3a+1i) mod p,(3e—3b+3) mod ¢

and so on. In general, the vertices on this path can be exuress

(be— (L =1)f —u+2) mod r € Vigg—(4—1)d—i+2) mod p,(lb—(f—1)f—j+2) mod q @N
(Uf — e+ u) mod 7 € Vigg—rati) mod p,(fe—th+j) mod q

where/ is the length of the bichromatic path. For this bichromatthpto be a bichromatic cycle of
even length, we need f — ¢c + u) mod r = u, (¢d — la+1i) mod p = i, (fe — b+ j) mod ¢ = j. But
these imply
bf —lc+u+ kir =u for some integek,

bd — ba+ i+ kop =1 for some integeks,
le —0lb+ j+ ksq=j for some integeks.

These, in turn imply
£f —fc=0modr,

4d — fa = 0 mod p,
le — £b=0mod q.

For all the above three conditions to be satisfied simultasigpnotice that cannot dividef — ¢, p
cannot divided — a, andq cannot dividee— b asp, g, are primeand < ¢, f <r—1,0<d,a <p-—1,
and0 < b,e < ¢ — 1. Sop, ¢, andr have to divide/ simultaneously. However, this is not possible as
¢ < p(q — 1)(r — 1) and the smallest integer divisible by all @fg, andr is pgr. Hence, we arrive at a
contradiction meaning that no bichromatic cycles can exist O

Remark 4.4 One may be tempted to extend the approach for complete gefpbrsler p(¢ — 1)(r —
1)(s — 1), s also prime, and beyond. However, as the smallest prime grélagn an integer. is known
to be withinn + O(n?/3) [14], the approach will not result in any saving in the numtaércolors used,
at least asymptotically.

5 Algorithm for K,,,,, wheren = (p —1)- (¢ —1).

In this section, we describe our algorithm to color a congplepartite graph witm = (p — 1)(¢ — 1)
vertices on each side of the partition. Our algorithm usesaligorithm of Alon et al. [2] to color
K,_1,-1 usingp colors. Notice that their approach can be used to colorZipy, but the number of



colors increase to the smallest prime greater thalt is known that for an integet, the smallest prime
greater tham is in n + O(n?/?). Our algorithm viewsk, ,, as aK,_; with each edge being — 1
multi-edges and uses; colors. This results in a saving of number of colors used. @gorithm is as
follows.

First, we denote the complete bipartite gragh,, asG = (V U W, E) with |V| = |IW| = n and
E = {(u,v) | u € V,v € W}. The algorithm is given below.

Algorithm Color( K, ,,)

1. Partition the vertices in each side of the partition imte 1 sets ofg — 1 vertices each. Let; c V
be the set of vertices numberéd—1)(¢ — 1) + 1toi(¢g — 1) fori =1,2,--- ,p — 1. Similarly, let
W* C W be the set of vertices numberéd— 1)(¢ — 1) + 1toi(q — 1) fori =1,2,--- ,p — 1.

2. Color the edgéu, v) with u € V; andv € V with the color(u 4+ v — 2 mod ¢,i + j — 2 mod p).
End Algorithm.

It can be easily seen that the number of colors used by theeaddgurithm ispq. The idea behind the
above algorithm is that when all the vertices in edGh/V; are treated as a single vertex, the resulting
graph resembles &,_; ,_; which can be colored using colors [2]. Now, this color value can be
interpreted as a color class @tolors as for each edge in t#6,_; ,,_; corresponds tq — 1 multiedges.

In the following, we show that the coloring is proper and doeshave any bichromatic cycles.

Claim 5.1 The coloring obtained is proper.

Proof. On the contrary, assume that two edges have the same cotdhe_edges béu, v) and (u, w)
withu € V;,v € Wj, andw € Wy for0 <, j,k < p—1and0 < u,v,w < ¢— 1. The color of(u, v) is
(u+v—2 mod ¢,i+7j—2 mod p) and the color assigned to, w) is (u+w—2 mod ¢, i+k—2 mod p).
Now we make a case distinction as follows.

Casej = k Inthis case, the above conditions imply that we need to have — 2 mod ¢ = v+ w —
2 mod ¢ which implies that — w = 0 mod ¢. But, bothv andw can0 < v, w < ¢—1 andg is a prime.
Hence, we arrive at a contradiction.

Casej # k Inthis case, werequiretha#j —2 =i+ k—2 mod pandu+v—2 = u+w—2 mod q.
These in turn imply thaf — £ = 0 mod p andv — w = 0 mod ¢. Now, notice thad < j,k < p—1and
thatp is a prime. So, unless = k, 7 — k = 0 mod ¢ cannot be satisfied. Similarl§, < v,w < ¢—1
andgq is a prime. S — w = 0 mod ¢ cannot satisfied unless= w. In this case too, we arrive at a
contradiction.

Hence the coloring obtained is proper. O

Claim 5.2 The coloring does not induce any bichromatic cycles.

Proof. Consider a bichromatic path starting at vertexc V; with edges alternating between colors
(a,b) and(c,d) where0 < u < ¢ —1and0 < i < p — 1. The other end point of this edge colored
(a,b) can be seen to be of the forfa — u + 2) mod ¢ € W,_i19) mod p- BY OUr assumption, there
is an edge coloredc, d) from this vertex. The other endpoint of this edge can be tatied to be
(c—a+wu) mod g € Vig_pyi) mod p- Extending this line of argument, we have that, the last édge
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endpoints of the forn(¢ — 1)(c — a) + u) mod q € V{y_1)(d—t)+i) mod p» Where is the length of the
path. For this path to be a bichromatic cycle, we need that:

(—1)(c—a)+umodq = u
(—-1)d—-b)+imodp = i

For the above set of equations to hold, we need(thatl)(c—a) = k1 -gand({ —1)(d—b) = ka-p
for some integers;, k2. But, note that < ¢ < (p—1)(¢—1)and0 < a,c <g—1,and0 < b,d < p—1
by construction. So the above equations cannot hold simediasly ag and g are prime. Hence the
proof. O

Remark 5.3 One can think of extending this approach to cal6y, , withn = (p — 1)(¢ — 1)(r — 1).
However, no benefit can be gained, at least asymptoticalyh@ smallest prime greater thanshall be
smaller than the number of colors used by the above apporbgh [

6 Conclusions

In this paper, we have presented several simple algoritbmack/clically coloring complete graphs and
complete bipartite graphs. Our algorithms improve theestditthe art in some cases and are explicit.
For example, when using our algorithm for coloriag g, with p = 5 andg = 103, both prime, our
algorithm from Section 3 requires 515 colors. The optimahbar of colors needed to acyclically color
K519 is 511 whereas using the algorithm of Alon et al. [2] requiB@4 colors, which is the smallest
prime after 510. Similarly, one can find instances where tialyer of colors used by our algorithms
are close to the optimal value. It remains to be seen whetlegurbposed algorithms apply to any wider
class of graphs.
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