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Abstract

Let p, q, andr denote prime numbers. In this paper, simple linear time algorithms to acyclically
color the edges of complete graphs of orderp(q − 1), a complete graphs of orderp(q − 1)(r − 1),
and a complete bipartite graphs of order(p− 1)(q − 1) are presented. The number of colors used by
our algorithms improve the state-of-the-art and is close tothe optimal value for small values ofp. All
the above algorithms are based on a simple algorithm for general graphs of ordern that uses2n − 3
colors. We also present a variation of the simple algorithm that usesp colors for a complete graph of
orderp, which resembles the algorithm of Alon et al.[2].

∗This work is supported by the Department of Science and Technology, Govt. of India, New Delhi, under Project
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1 Introduction

An edge coloring of a graphG is proper if no two incident edges have the same color. It is acyclic if it is
proper and there is no cycle in the subgraph induced by the edges of any two of the colors. The acyclic
edge chromatic number of a graphG, denoted bya ′(G), is the least number of colors in an acyclic edge
coloring ofG.

Acyclic colorings were introduced by Grunbaum [11]. The subject is further studied by Albertson
and Berman [1], Borodin [6, 7, 8, 9], Alon [2, 3, 4], amongst others. Throughout the paperp, q, andr

denote prime numbers greater than 3, unless otherwise stated.
Determination of the edge chromatic number,a ′(G), of a graphG is a hard problem both from

theoretical and algorithmic point of view. For example, Alon and Zaks prove in [4] that it is an NP-
complete problem to decide for a given arbitrary graph G whethera ′(G) ≤ 3. However, the following
upper bounds have been obtained. As a corollary to a result onacyclic vertex coloring Alon et al. [2]
show that the edges of any graph G with maximum degree∆ can be acyclically colored using at most
64∆ colors. Molloy and Reed [15] improved on the constant from 64to 16. Alon et al. [3] claim that
the constant 16 can be further improved. They further conjecture thata ′(G) ≤ ∆(G) + 2 for all graphs
G and prove that there exists a constantc such thata ′(G) ≤ ∆(G) + 2 for any graph G whose girth
is at leastc∆(G) log ∆(G). In addition, they showed thata ′(G) ≤ ∆(G) + 2 for almost all∆-regular
graphs. Muthu et al. [16] show that the acyclic chromatic indexa ′(G) ≤ 6∆ for all graphsG with girth
at least 9. The same argument was extended to achieve a bound of 4.52∆ with girth being at least 220.
Nesetril and Wormald [17] have obtained a bound ofa ′(G) ≤ ∆ + 1 for random∆-regular (∆-fixed)
graph. All these proofs are based on probabilistic methods and are not constructive.

The difficulty in determining the value ofa ′(G) for a complete graph G =Kn may be estimated from
a closely related conjecture called the perfect 1-factorization conjecture [3, 18, 21, 22]. This conjecture
of Kotzig [13] and others is still open except for certain values ofn [3, 18]. It says that for anyn ≥ 2,
K2n can be decomposed into2n − 1 perfect matchings such that the union of any two matchings forms
a Hamiltonian cycle ofK2n. If such a decomposition ofK2n+2 exists, then by coloring every perfect
matching using a different color and removing one vertex at the end of coloring, we obtain an acyclic
edge coloring ofK2n+1 with 2n + 1 = ∆(K2n+1) + 1 colors. By removing another vertex from
the coloredK2n+1, we obtain an acyclic edge coloring ofK2n with 2n + 1 = ∆(K2n) + 2 colors,
which is best possible forK2n [3]. Thus, if the perfect 1-factorization conjecture is true thena ′(K2n) =
a ′(K2n+1) = 2n+1 for everyn. A decomposition ofK2n+1 into 2n+1 matchings each havingn edges
such that the union of any two matchings forms a Hamiltonian path of K2n+1 is called a perfect near
1-factorization. As discussed above, ifK2n+2 has a perfect 1-factorization thenK2n+1 has a perfect near
1-factorization, which in turn implies thata ′(K2n+1) = 2n + 1. If K2n+1 has an acyclic edge coloring
with 2n + 1 colors then it can be shown that this coloring corresponds toa perfect near 1-factorization
of K2n+1 which implies thatK2n+2 has a perfect 1-factorization [3].

There has been very little algorithmic study of acyclic edgecoloring except for the following works.
Molloy and Reed [15] provided a general framework that can beused to develop algorithms for appli-
cations of the Lovasz Local Lemma. Customization of this general framework to acyclic coloring lead
to a polynomial time algorithm to constructβ-frugal coloring [15]. They also remarked that this method
can be applied to find an acyclic edge coloring of a graph with maximum degree∆ using at most 20∆
colors.

Subramanian proposed a simple polynomial time greedy heuristic that uses at most5∆(log ∆ + 2)
colors to find an acyclic edge coloring of an arbitrary graph [20]. Burnstein [10] showed that acyclic
chromatic numbera(G) of G is at most 5 if∆(G) = 4. Since any acyclic vertex coloring of the line
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graphL(G) is an acyclic edge coloring ofG and vice-versa, this implies thata ′(G) = a(L(G)) ≤ 5 if
∆(G)=3. Alon et al. [3] claim that they have another proof for thiscase, which yields a polynomial algo-
rithm to acyclically edge color a sub-cubic graph using 5 colors. San Skulrattanakulchai [19] presented
a first linear time algorithm to acyclically edge color a sub-cubic graph using at most 5 colors.

In view of the discussion relating acyclic edge coloring to perfect 1-factorization conjecture, it may
be inferred that finding the exact values ofa ′(Kn) for everyn seems hard. However, Alon et al. [2]
designed an algorithm that can acyclically edge colorKp. Through this work, they constructively showed
that a ′(Kp) = p. This corresponds to the known construction proving thatKp has a perfect near 1-
factorization [21]. They also gave another algorithm that can acyclically edge color a complete bipartite
graphKp−1,p−1 and usesp colors. They further showed thata ′(Kp−1,p−1) = p. The algorithm that
acyclically edge colors a complete graph on prime number of vertices may be used to acyclically edge
color a complete graph on an arbitrary number,n, of vertices by takingp to be the least prime greater than
or equal ton. By the known results about the distribution of primes, it may be inferred that the resulting
coloring requiresn+O(n2/3) colors [2]. Similarly, the number of colors required for a complete bipartite
graphKn,n, n arbitrary, using the above mentioned algorithm of Alon et al. is n + O(n2/3) [2].

In this paper a simple linear time algorithm to acyclically edge colorKn, for anyn, using at most
2n − 3 colors is presented. This algorithm sets the tone for the rest of the algorithms that follow. First,
this simple algorithm is modified to arrive at an acyclic edgecoloring algorithm that usesp colors to
color Kp. The resulting algorithm resembles that of Alon et al. for complete graphs with prime number
of vertices. Also proposed is a linear time algorithm to acyclically edge color a complete graph on
n = p(q − 1) vertices usingpq colors. This would improve the state of the art for a large class of values
of p andq. Observe thatpq being more by(p − 1) from p(q − 1) + 1 = ∆(Kp(q−1)) + 2, which is the
optimal value[3], the number of colors that this algorithm uses is close to optimum for small values ofp.
The latter technique is further extended to graphs of orderp(q − 1)(r − 1). The extended algorithm uses
pqr colors and improves on the number of colors used for certain values ofp, q, andr. We also consider
acyclic edge coloring of complete bipartite graphs,Kn,n wheren = (p − 1)(q − 1). Our algorithm in
this case usespq colors, which can be seen to be better for some choices ofp andq compared to the
smallest prime greater thann. All these algorithms are simple and provide an explicit color assignment
to the edges of the concerned graph.

1.1 A Note on Notation

In the rest of the paper, we use lower casea, b, c, d for colors, lower caseu, v,w for vertices, and lowecase
i, j, k for indices into appropriate sets. Similarly, lower casep, q, r are taken to be prime numbers. We
also follow standard graph-theoretic notation whereever needed (cf. [23]).

1.2 Organization of the Paper

The rest of the paper is organized as follows. Section 2 discusses the proposed simple linear time al-
gorithm for complete graphs of arbitrary order and its variation to complete graphs of prime order. In
Section 3, an algorithm for complete graphs of orderp(q − 1) is presented. Its extension to graphs of
orderp(q − 1)(r − 1) is presented in Section 4. The paper ends with some concluding remarks.
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2 A Simple Algorithm and Its Variation

A simple algorithm that is designed for a complete graph of order n and uses2n − 3 colors is proposed
here. It may be observed that the algorithm is applicable to any simple graph of finite order.

Simple Algorithm Color the edge(u, v) with the color numberedu + v − 2, u, v ∈ {1, 2, · · · , n}.

Observation 2.1 The algorithm uses at most2n − 3 colors, because the largest value eitheri or j can
take isn and the graph is simple.

Claim 2.2 Coloring provided by the above algorithm is a proper edge coloring.

Proof. Let u ∈ {1, 2, · · · , n} be an arbitrary vertex. Fix anu. Since the color of other vertexv of every
edge incident atu is different from that of another edge incident atu, it follows thatu + v − 2 (color
given to the edge(u, v)) is different for every edge incident atu. ⊓⊔

Claim 2.3 The union of any two color classes will not have an even lengthcycle.

Proof. Consider a bichromatic path of edges colored with colorsa and b starting with a vertexu.
Assume an edgee coloreda is incident at vertexu. Then, by the coloring principle of the algorithm,
the other vertex of this edgee is (a + 2 − u). Now consider the edgef incident at vertex(a + 2 − u)
and is coloredb. Again, by the coloring principle, the other vertex of the edgef is b − a + u. The next
vertex in this bichromatic path is2a + 2− b − u. Similarly, the next vertex is2b − 2a + u and so on. In
general, the vertices on this bichromatic path areℓa + 2 − (ℓ − 1)b − u andℓb − ℓa + u, ℓ is a positive
integer corresponding to the length of the path. For this bichromatic path to be a bichromatic cycle of
even length, we needℓb− ℓa + u to be equal toℓ. This implies thata must be equal tob. But a andb are
two different colors – a contradiction. Hence the claim. ⊓⊔

Remark 2.4 Since bichromatic odd cycles can not exist in any proper edgecoloring, it follows that the
coloring provided by the algorithm is an acyclic edge coloring.

2.1 A Variation to the Simple Algorithm

The simple algorithm presented earlier may be modified to improve on the number of colors required
to color a graph with prime number of vertices. The resultingalgorithm requires onlyp colors to color
a graph withp vertices. Incidentally, this algorithm resembles that of Alon et al. [2] for acyclically
coloring aKp.

Algorithm Color the edge(u, v) with the color(u + v − 2) mod p, whereu, v ∈ {0, 1, · · · , p − 1}.

Observation 2.5 The algorithm may be seen to usep colors.

Claim 2.6 The coloring provided by the above algorithm is a proper edgecoloring.

Proof. Let u ∈ {0, 1, 2, · · · , p − 1} be an arbitrary vertex. Suppose two edges incident atu have
the same color. That is,(u + v − 2) mod p = (u + w − 2) mod p for somev andw. This implies
v ≡ w mod p. That is,p dividesv − w. But 0 ≤ v − w ≤ p − 1 andp is a prime number. This implies
that v = w. That is, both the edges incident atu that have the same color must be one and the same.
Hence the claim. ⊓⊔
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Claim 2.7 The union of any two color classes will not have an even lengthcycle (i.e. cycle with even
number of edges).

Proof. Let a andb ∈ {0, 1, 2, · · · , p − 1} be two arbitrary colors. Consider a bichromatic path of edges
colored with colorsa andb starting with a vertexu. Assume that an edgee coloreda is incident at vertex
u. Then, by the coloring principle, the other vertex of the edge e is (a + 2 − u) mod p. Similarly, the
other vertices on this path are(b − a + u) mod p, (2a + 2 − b − u) mod p, (2b − 2a + u) mod p, etc.
In general, an edge with colora is incident on the vertices of the form((ℓ − 1)b − (ℓ − 1)a + u) mod p

and(ℓa+2− (ℓ−1)b−u) mod p. Similarly, an edge with colorb is incident on the vertices of the form
(ℓa− (ℓ − 1)b + 2− u) mod p and(ℓb − ℓa + u) mod p. For this bichromatic path to be a bichromatic
cycle of even length we need(ℓb− ℓa + u) mod p = u. This impliesℓ(b− a) = kp, for some integerk.
Sincep is a prime number and0 ≤ a, b ≤ p − 1, p cannot divide(b − a). So,p must divideℓ. But the
value ofℓ is at mostp − 1 and hence we arrive at a contradiction. ⊓⊔

3 Algorithm for Complete Graphs with p(q − 1) Vertices

In this section we present an algorithm to acyclically edge color a complete graphKn, wheren = p(q−1)
usingpq colors. The main idea of this algorithm is to treatKp(q−1) as a complete (multi) graph onp
vertices where each vertex corresponds to a complete graph on (q − 1) vertices. Now this complete
graph onp vertices can be colored usingp colors. SimilarlyKq−1 can be colored using at mostq colors.
Treating each multiedge in theKp as aKq−1,q−1, this can be colored using at mostq colors. This now
can be used to acyclically edge colorKn usingpq colors. It may be observed that this improves the result
of Alon et al. [2] for a large class of values ofp andq.

3.1 Algorithm

Step 1: Partition thep(q−1) vertices intop sets of size(q−1) each. That is, if the vertices are numbered
as0, 1, 2, · · · , q − 2, q − 1, q, · · · , 2q − 3, 2q − 2, 2q − 1, · · · , 3q − 4, · · · , pq − p, partition the vertices
asVi = {i(q − 1), i(q − 1) + 1, · · · , i(q − 1) + (q − 2)}, for i = 0, 1, 2, · · · , p − 1.

Step 2: For everys, t ∈ {0, 1, 2, ..., p − 1}, and for every pair of vertices, say,i ∈ Vs andj ∈ Vt, color
the edge(i, j) with the color((s + t − 2) mod p, (i + j − 2) mod q).

Observation 3.1 The number of colors used by the algorithm ispq.

In the following, we argue its correctness.

Claim 3.2 The coloring provided by the algorithm is proper.

Proof. Assume the contrary. That is there exist edges(u, v) and(u,w) with the same color. Suppose
u, v, andw belong to vertex sets, say,Vi, Vj , andVk respectively. By the coloring principle the edge
(u, v) receives the color((i + j − 2) mod p, (u + v − 2) mod q) and the edge(u,w) receives the color
((i + k − 2) mod p, (u + w − 2) mod q).
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Case 1: j = k Then, since the color of the edges(u, v) and(u,w) is same, we have

((i + j − 2) mod p, (u + v − 2) mod q) = ((i + j − 2) mod p, (u + w − 2) mod q)

This implies that
(u + v − 2) mod q = (u + w − 2) mod q,

which in turn implies
(v − w) ≡ 0 mod q.

0 ≤ v,w ≤ q − 1 andq is a prime. Soq cannot dividev − w unlessv = w which is a contradiction.

Case 2: j 6= k Then it is required that

((i + j − 2) mod p, (u + v − 2) mod q) = ((i + k − 2) mod p, (u + w − 2) mod q).

This implies

(i + j − 2) mod p = (i + k − 2) mod p and (u + v − 2) mod q = (u + w − 2) mod q.

Consider
(i + j − 2) mod p = (i + k − 2) mod p.

This implies
(j − k) ≡ 0 mod p.

But this cannot be satisifed as0 ≤ j, k ≤ p − 1 andj 6= k by assumption. Soj = k. Hence, we arrive
at a contradiction in this case also.

Hence the Claim. ⊓⊔

Claim 3.3 The union of any two color classes will not have an even lengthcycle.

Proof. Consider a bichromatic path of edges colored with colors(a, b) and(c, d) and starting from a
vertexu ∈ Vi for somei ∈ {0, 1, 2, ..., p − 1}. Consider the edge colored(a, b) and incident atu. Then,
by the coloring principle, the other vertex of this edge is(b − u + 2) mod q ∈ V(a−i+2) mod p. Now
consider the edge colored(c, d) and incident at(b − u + 2) mod q of V(a−i+2) mod p. Then, again by
the coloring principle, the other vertex of this edge is(a − b + u) mod q ∈ V(c−a+i) mod p. Following
similar argument, the other vertices on this bichromatic path can be calculated to be(2b − d − u +
2) mod q ∈ V(2a−c−i+2) mod p, (2d − 2b + u) mod q ∈ V(2c−2a+i) mod p, (3b − 2d − u + 2) mod q ∈
V(3a−2c−i+2) mod p, (3d − 3b + u) mod q ∈ V(3c−3a+i) mod p, etc. In general, the vertices on this path
can be expressed as(ℓb − (ℓ − 1)d − u + 2) mod q ∈ V(ℓa−(ℓ−1)c−u+2) mod p and(ℓd − ℓb + u) mod
q ∈ V(ℓc−ℓa+s) mod p, whereℓ is the length of the bichromatic path. For this bichromatic path to be a
bichromatic cycle of even length, we need

u = (ℓd − ℓb + u) mod q and i = (ℓc − ℓa + i) mod p.

That is
u = ℓd − ℓb + u + k1q, for some integerk1 ,

and
i = ℓc − ℓa + i + k2p, for some integerk2.
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These in turn imply
ℓ(d − b) ≡ 0 mod q and ℓ(c − a) ≡ 0 mod p.

For the above two conditions to be satisfied at the same time, notice thatq cannot divided − b and
similarly p cannot dividec−a as0 ≤ b, d ≤ q−1 and0 ≤ a, c ≤ p−1 and bothp, q are prime. Soq has
to divideℓ and alsop has to divideℓ. But, ℓ, being the length of the cycle can be at mostp(q − 1). For
bothp andq to divideℓ, ℓ must be at leastpq. Hence a contradiction arises implying that no bichromatic
cycle can exist. ⊓⊔

4 Algorithm for Complete Graphs with p(q − 1)(r − 1) Vertices

The previous algorithm for complete graphs of orderp(q − 1) is hereby extended to complete graphs of
orderp(q−1)(r−1). The resulting algorithm usespqr colors. It may be seen that this is an improvement
over that of Alon et al. [2] for certain values ofp, q, andr.

4.1 Algorithm

Step 1: Partition thep(q−1)(r−1) vertices intop(q−1) sets of size(r−1) each. That is, if the vertices
are numbered as0, 1, 2, · · · , [p(q − 1)(r − 1) − 1], partition the vertices asVsx = {[(s(q − 1) + x)(r −
1)], [(s(q − 1) + x)(r− 1) + 1], · · · , [(s(q − 1) + x)(r− 1) + (r− 2)]}, s = 0, 1, 2, · · · , p− 1 andx =
0, 1, 2, · · · , q − 2.

Step 2: For every pair of vertices, sayi ∈ Vsx andj ∈ Vty, color the edge(i, j) with the color
((s + t − 2) mod p, (x + y − 2) mod q, (i + j − 2) mod r).

Observation 4.1 The algorithm may be seen to usepqr colors.

Claim 4.2 The coloring provided by the algorithm is proper.

Proof. Assume the contrary. That is, there exist edges incident at vertexu, say(u, v) and(u,w), with
the same color. Supposeu, v, andw belong toVfg, Vhi, andVjk respectively. By the coloring principle,
edge(u, v) receives((f + h − 2) mod p, (g + i − 2) mod q, (u + v − 2) mod r) and the edge(u,w)
receives((f + j − 2) mod p, (g + k − 2) mod q, (u + w − 2) mod r). From the assumption, this
implies that(f + h − 2) mod p = (f + j − 2) mod p, (g + i − 2) mod q = (g + k − 2) mod q, and
(u + v − 2) mod r = (u + w − 2) mod r. These in turn imply:

h − j + k1p = 0 for some integerk1,

i − k + k2q = 0 for some integerk2,

and
v − w + k3r = 0 for some integerk3.

But 0 ≤ h, j ≤ p − 1, 0 ≤ i, k ≤ q − 2, and0 ≤ j, k ≤ r − 2, andp, q, andr are prime numbers. So, it
follows thath = j, i = k, andv = w. That is the edges that receive the same color must be one and the
same. ⊓⊔

Claim 4.3 The union of any two color classes will not have an even lengthcycle.
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Proof. Consider a bichromatic path of edges colored with colors(a, b, c), (d, e, f) and starting from
a vertexu ∈ Vij for somei ∈ 0, 1, 2, · · · , p − 1 andj ∈ 0, 1, 2, · · · , q − 2. Also, consider the edge
colored (a, b, c) and incident atu. Then, by the coloring principle, the other vertex of this edge is
(c− u + 2) mod r ∈ V(a−i+2) mod p,(b−j+2) mod q. Now consider the edge colored(d, e, f) and incident
at (c − u + 2) mod r of V(a−i+2) mod p,(b−j+2) mod q. Then, again, by the coloring principle, the other
vertex of this edge is(f − c + u) mod r ∈ V(d−a+i) mod p,(e−b+j) mod q. Following similar argument,
the other vertices on this bichromatic path can be calculated to be:

(2c − f − u + 2) mod r ∈ V(2a−d−i+2) mod p,(2b−e−j+2) mod q,

(2f − 2c + u) mod r ∈ V(2d−2a+i) mod p,(2e−2b+j) mod q,

(3c − 2f − u + 2) mod r ∈ V(3a−2d−i+2) mod p,(3b−2e−j+2) mod q, and
(3f − 3c + u) mod r ∈ V(3d−3a+i) mod p,(3e−3b+j) mod q

and so on. In general, the vertices on this path can be expressed as:

(ℓc − (ℓ − 1)f − u + 2) mod r ∈ V(ℓa−(ℓ−1)d−i+2) mod p,(ℓb−(ℓ−1)f−j+2) mod q and
(ℓf − ℓc + u) mod r ∈ V(ℓd−ℓa+i) mod p,(ℓe−ℓb+j) mod q

whereℓ is the length of the bichromatic path. For this bichromatic path to be a bichromatic cycle of
even length, we need(ℓf − ℓc+ u) mod r = u, (ℓd− ℓa+ i) mod p = i, (ℓe− ℓb+ j) mod q = j. But
these imply

ℓf − ℓc + u + k1r = u for some integerk1,

ℓd − ℓa + i + k2p = i for some integerk2,

ℓe − ℓb + j + k3q = j for some integerk3.

These, in turn imply
ℓf − ℓc ≡ 0 mod r,

ℓd − ℓa ≡ 0 mod p,

ℓe − ℓb ≡ 0 mod q.

For all the above three conditions to be satisfied simultaneously, notice thatr cannot dividef − c, p

cannot divided−a, andq cannot dividee−b asp, q, r are prime and0 ≤ c, f ≤ r−1, 0 ≤ d, a ≤ p−1,
and0 ≤ b, e ≤ q − 1. Sop, q, andr have to divideℓ simultaneously. However, this is not possible as
ℓ ≤ p(q − 1)(r − 1) and the smallest integer divisible by all ofp, q, andr is pqr. Hence, we arrive at a
contradiction meaning that no bichromatic cycles can exist. ⊓⊔

Remark 4.4 One may be tempted to extend the approach for complete graphsof order p(q − 1)(r −
1)(s − 1), s also prime, and beyond. However, as the smallest prime greater than an integern is known
to be withinn + O(n2/3) [14], the approach will not result in any saving in the numberof colors used,
at least asymptotically.

5 Algorithm for Kn,n, where n = (p − 1) · (q − 1).

In this section, we describe our algorithm to color a complete bipartite graph withn = (p − 1)(q − 1)
vertices on each side of the partition. Our algorithm uses the algorithm of Alon et al. [2] to color
Kp−1,p−1 usingp colors. Notice that their approach can be used to color anyKn,n but the number of
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colors increase to the smallest prime greater thann. It is known that for an integern, the smallest prime
greater thann is in n + O(n2/3). Our algorithm viewsKn,n as aKq−1 with each edge beingp − 1
multi-edges and usespq colors. This results in a saving of number of colors used. Ouralgorithm is as
follows.

First, we denote the complete bipartite graphKn,n asG = (V ∪ W,E) with |V | = |W | = n and
E = {(u, v) | u ∈ V, v ∈ W}. The algorithm is given below.

Algorithm Color(Kn,n)
1. Partition the vertices in each side of the partition intop − 1 sets ofq − 1 vertices each. LetVi ⊂ V

be the set of vertices numbered(i − 1)(q − 1) + 1 to i(q − 1) for i = 1, 2, · · · , p − 1. Similarly, let
W i ⊂ W be the set of vertices numbered(i − 1)(q − 1) + 1 to i(q − 1) for i = 1, 2, · · · , p − 1.

2. Color the edge(u, v) with u ∈ V i
1 andv ∈ V

j
2 with the color(u + v − 2 mod q, i + j − 2 mod p).

End Algorithm.

It can be easily seen that the number of colors used by the above algorithm ispq. The idea behind the
above algorithm is that when all the vertices in eachVi,Wi are treated as a single vertex, the resulting
graph resembles aKp−1,p−1 which can be colored usingp colors [2]. Now, this color value can be
interpreted as a color class ofq colors as for each edge in theKp−1,p−1 corresponds toq − 1 multiedges.
In the following, we show that the coloring is proper and doesnot have any bichromatic cycles.

Claim 5.1 The coloring obtained is proper.

Proof. On the contrary, assume that two edges have the same color. Let the edges be(u, v) and(u,w)
with u ∈ Vi, v ∈ Wj, andw ∈ Wk for 0 ≤ i, j, k ≤ p−1 and0 ≤ u, v,w ≤ q−1. The color of(u, v) is
(u+v−2 mod q, i+j−2 mod p) and the color assigned to(u,w) is (u+w−2 mod q, i+k−2 mod p).
Now we make a case distinction as follows.

Case j = k In this case, the above conditions imply that we need to haveu + v− 2 mod q ≡ u + w−
2 mod q which implies thatv−w ≡ 0 mod q. But, bothv andw can0 ≤ v,w ≤ q−1 andq is a prime.
Hence, we arrive at a contradiction.

Case j 6= k In this case, we require thati+j−2 ≡ i+k−2 mod p andu+v−2 ≡ u+w−2 mod q.
These in turn imply thatj − k ≡ 0 mod p andv −w ≡ 0 mod q. Now, notice that0 ≤ j, k ≤ p− 1 and
thatp is a prime. So, unlessj = k, j − k ≡ 0 mod q cannot be satisfied. Similarly,0 ≤ v,w ≤ q − 1
andq is a prime. Sov − w ≡ 0 mod q cannot satisfied unlessv = w. In this case too, we arrive at a
contradiction.

Hence the coloring obtained is proper. ⊓⊔

Claim 5.2 The coloring does not induce any bichromatic cycles.

Proof. Consider a bichromatic path starting at vertexu ∈ Vi with edges alternating between colors
(a, b) and(c, d) where0 ≤ u ≤ q − 1 and0 ≤ i ≤ p − 1. The other end point of this edge colored
(a, b) can be seen to be of the form(a − u + 2) mod q ∈ W(b−i+2) mod p. By our assumption, there
is an edge colored(c, d) from this vertex. The other endpoint of this edge can be calculated to be
(c − a + u) mod q ∈ V(d−b+i) mod p. Extending this line of argument, we have that, the last edgehas
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endpoints of the form((ℓ − 1)(c − a) + u) mod q ∈ V(ℓ−1)(d−b)+i) mod p, whereℓ is the length of the
path. For this path to be a bichromatic cycle, we need that:

(ℓ − 1)(c − a) + u mod q = u

(ℓ − 1)(d − b) + i mod p = i

For the above set of equations to hold, we need that(ℓ−1)(c−a) = k1 ·q and(ℓ−1)(d−b) = k2 ·p
for some integersk1, k2. But, note that0 ≤ ℓ ≤ (p−1)(q−1) and0 ≤ a, c ≤ q−1, and0 ≤ b, d ≤ p−1
by construction. So the above equations cannot hold simultaneously asp andq are prime. Hence the
proof. ⊓⊔

Remark 5.3 One can think of extending this approach to colorKn,n with n = (p − 1)(q − 1)(r − 1).
However, no benefit can be gained, at least asymptotically, as the smallest prime greater thann shall be
smaller than the number of colors used by the above apporach [14].

6 Conclusions

In this paper, we have presented several simple algorithms for acyclically coloring complete graphs and
complete bipartite graphs. Our algorithms improve the state of the art in some cases and are explicit.
For example, when using our algorithm for coloringK510, with p = 5 andq = 103, both prime, our
algorithm from Section 3 requires 515 colors. The optimal number of colors needed to acyclically color
K510 is 511 whereas using the algorithm of Alon et al. [2] requires521 colors, which is the smallest
prime after 510. Similarly, one can find instances where the number of colors used by our algorithms
are close to the optimal value. It remains to be seen whether the proposed algorithms apply to any wider
class of graphs.
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