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Graphics processing units (GPUs) provide large computational power at a very low price, which position
GPUs well as an ubiquitous accelerator. However, GPUs are space constrained, and hence applications
developed for GPUs are space sensitive.

Space-constrained computational devices such as GPUs can greatly benefit from representations that re-
duce space consumption drastically. One such representation is the succinct representation of trees. Succinct
representation of trees generally allows for operations such as parent queries, least common ancestor queries,
and so on. Mapping such a robust representation to the GPU for targeted applications can lead to substantial
improvement in problem sizes that are processed at a given point of time. Space-saving methods such as
succinct data structures remain largely unexplored on the GPU. In this work, a succinct representation of
ordered trees on the GPU is explored, with application to discrete range searching (DRS).

Based on the succinct representations found applicable, a space–saving solution for DRS is presented here.
In our method, DRS is mapped to a least common ancestor query on a Cartesian tree. For space-efficient DRS
queries, we store the succinct representation of the Cartesian tree of an array. Our method uses a maximum
of 7.5 bits of additional space per element. Furthermore, the speed-up achieved by our method is in the range
of 20–25 for preprocessing and 25–35 for batch querying over a sequential implementation. Compared to an
8-threaded implementation, our preprocessing and querying methods obtain a speed-up of 6–8.

We also study the applications of the DRS on the GPU. Efficient primitives expand the range of applications
performed on the GPU. DRS is one such primitive with direct applications to string processing, document and
text retrieval systems, and least common ancestor queries. We suggest that graph algorithms that use the
least common ancestor, can be enabled on the GPU based on DRS primitive. We also show some applications
of DRS in tree queries and string querying.
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gramming
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1. INTRODUCTION

Graphics processing unit (GPU)-assisted acceleration has been quickly considered to
be a valid high-performance computing method. A detailed description of the GPU

Authors’ addresses: J. Soman, IBM Research, India 4 Block C, Institutional Area, Vasant Kunj, New Delhi
110070, India (Part of this work was done while at International Institute of Information Technology, Hyder-
abad); K. Kishore, Center for Security, Theory and Algorithm Research; P J Narayanan, Center for Visual
Information Technology International Institute of Information Technology, Hyderabad, India.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1084-6654/2012/10-ART4.5 $15.00

DOI 10.1145/2133803.2345679 http://doi.acm.org/10.1145/2133803.2345679

ACM Journal of Experimental Algorithmics, Vol. 17, No. 4, Article 4.5, Publication date: October 2012.



4.5:2 J. Soman et al.

architecture can be found in Nvidia [2007]. GPUs are suited for fine-grained data-
parallel applications. Application and algorithm engineering for a GPU is different
from that of the CPU. To accommodate architectural level nuances, GPU requires
programming models different from the CPU models. Current programming models
for GPUs include CUDA [Nvidia 2007], STREAM [Bayoumi et al. 2009], and OpenCL
[Stone et al. 2010].

Computing, in general, is dependent on a set of basic algorithms and operations.
These set of algorithms have been named as motifs or dwarfs [Asanovic et al. 2006].
GPUs have been an intermittent compute model. The novel compute model of the GPUs
has little history of general-purpose algorithmic research. Research on algorithmic
motifs has been substantial since the release of first version of CUDA [Nvidia 2007].
Focus has been on designing optimal algorithmic motifs for the GPU. Due to the non-
traditional compute model, this has been an important aspect of GPU-centric research.
A reduction of programming effort also requires efficient algorithmic motifs. GPU
computing, in general, relies on dividing a problem into smaller algorithmic motifs
and optimizing these motifs. Such motifs are referred to as primitives in the context of
the GPU. Common primitives include scan [Sengupta et al. 2007], sort [Satish et al.
2009; Sintorn and Assarsson 2008; Cederman and Tsigas 2008], split [Patidar and
Narayanan 2009; Scheuermann and Hensley 2007], and list-ranking [Rehman et al.
2009].

Discrete range searching (DRS) is a yet-unexplored primitive on the GPU, which has
wide spread applications in graph theory, string processing, VLSI, document retrieval,
and biology [Bentley and Friedman 1979]. To further the claim of DRS as a GPU
primitive, in Section 7.1, we present ways in which tree queries on the GPU can be
answered efficiently using DRS.

In this article, discrete range search focuses on the range minima query (RMQ) on
static arrays. Given an array A, with |A| = n, a formal definition for RMQ is:

RMinQA[i, j] = k|k ∈ [i, j] and A[k] ≤ A[l], for all l ∈ [i, j], 0 ≤ i, j < n

Space-saving techniques have found relevance in DRS problems in general. Solutions
for DRS have a specific focus on space-saving methods due to the otherwise polynomial
space requirement. Succinct tree representations are a well-studied field of research
with a large body of theoretical results. Succinct tree representation finds a direct
application in the DRS problem, especially for a space-saving design of a solution. In
this work, DRS on GPU is explored using succinct representations.

1.1. Related Work

Range minima has been found to form a dual with the least common ancestor (LCA).
In the first work on this subject, Gabow et al. [1984] suggest that the minima given a
range in an array is equivalent to finding the least common ancestor on the Cartesian
tree of the array (Cartesian tree is a heap ordered tree representation of an array). The
LCA problem is well studied, and multiple solutions exist for the LCA problem.

A parallel algorithm for the range minima problem was first suggested by Berkman
and Vishkin [1989]. Berkman and Vishkin suggest that LCA on a Cartesian tree can
be found by finding the range minima on an array containing the heights of elements
arranged according to the Euler tour of the tree. The heights in adjacent elements
in the array differ by 1; hence, such an array is called as a ±1 array. On this array,
range minima is equivalent to range minima on the main array. RMQ queries can
be answered in O(1) time on the ±1 array. The bookkeeping required substantially
increases the space used. It is to be noted that our succinct representation performs a
similar mapping of an array, with an intermediate Cartesian tree, to a ±1 array. Our
method does not require any additional space and is fully self-sufficient for querying.
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Table I. Space Complexity of Various Succinct Methods
for RMQ

Method Final Space
Berkman and Vishkin [1989] O(n log n) + |A|
Bender et al. [2001] O(n log n) + |A|
Fischer and Heun [2007] 2n + o(n) + |A|
Fischer et al. [2008] O(nHk) + o(n) + |A|
Sadakane [2007] 2n + o(n) + |A|
Our Method 2n + o(n) + |A|

A simple and practical algorithm for the RMQ problem is presented by Bender et al.
[2001]. Bender et al. present a �(n log n) space and �(1) time algorithm to solve the
range minima problem. Given an array A, |A| = n, the array A is preprocessed to form
a look-up table M, such that M[i][ j], i ∈ [0, n − 1], j ∈ [1, log n] contains the index of
the smallest element in the range [i, i + 2 j−1 − 1]. Any query for the range [i, j] can
thus be answered as follows.

RMQ(i, j) = arg min{M[i][k], M[ j − t − 1][k]} : t = 2k, t < j − i < 2t

Bender et al. [2001] further present a look-up table–based hierarchical method that
uses O(n) space and O(1) time per query.

Fischer and Heun [2006, 2007] present a succinct representation-based solution.
They use a succinct representation for the lower levels of the hierarchy of the method
presented by Bender et al. [2001]. They represent an array by its Cartesian tree and
store the Cartesian rank of the tree. In their method, all possible queries on all pos-
sible Cartesian ranks are stored by their method. The space required to store each
array is smaller than that of Bender et al., but the look-up table size is compara-
tively large. The technique presented in Fischer and Heun [2006] has comparable per
query time with other succinct representation based methods in literature. In our
method, we have used a succinct representation of the Cartesian tree. The look-up
table we utilized is independent of the size of the array used to form the Cartesian
tree. A GPU-centric implementation of range query is presented in our earlier work
[Soman et al. 2010].

1.2. Our Contributions

We have presented the first implementation of succinct representation on the GPU.
The RMQ algorithm developed has been found to be efficient on the GPU. Also, we
were able to achieve speed-ups of over 6–8 over a multithreaded CPU implementation.
The method was hence used to support further applications for the GPU. It is our claim
that RMQ can be considered as a primitive on the GPU. We further state that given
the space constrained computational model of the GPU, succinct representations are
worth exploring.

Our contributions can be summarized as follows:

—exploration of succinct tree representation for the GPU computational model;
—bridging ideas from succinct tree literature and range minima query to form an

robust RMQ algorithm;
—an efficient RMQ primitive designed for the GPU computational model;
—with minimal space trade-off, fastest range query results to date;
—applications of RMQ, especially in the context of GPU computing.

The rest of this article is arranged as follows: Section 2 presents the generic frame-
work that the RMQs employ. Section 3 presents the challenges of implementing the
RMQ framework on the GPU. Section 4 presents the detailed explanation of the succinct
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Fig. 1. A binary query tree showing decomposition of a query into sub queries.

representation we have employed. Section 5 presents our method. Section 6 presents
the implementation level details and the results of the experiments. Section 7 presents
the applications of the RMQ algorithm to multiple methods.

2. RANGE QUERY FRAMEWORK

Bender et al. [2001] presented a hierarchical method to perform range queries. Fischer
and Heun [2007] improved the space requirement for the same in their hierarchical
method. Their space utilization for only the representation is less than a byte per
element of the array. Hence, the space requirement of the Fischer-Heun method is
approximately 8n bits. Although both methods show a limited depth in their hierarchy,
a generalization of the hierarchical schema of the two methods follows here.

Their methods can be seen as an analogy to a query tree. The preprocessing algorithm
can be interpreted as the formation of a query tree, with each node storing the minimum
of all the leaf nodes in its sub tree. Additionally, each inner node of the query tree stores
enough information to find the minimum of any pair of its child nodes. The number of
children for a node is variable, depending on the height of the node. For a given height,
the number of children is kept constant. A binary tree equivalent is shown in Figure 1,
where each node stores only the minimum of its two children. A query (2,6) is shown,
and inner nodes that inside the query are shown in black. The arrows point to nodes
that have sufficient information to perform the query.

For generalizing to k-ary trees, each inner node contains sufficient information to
answer queries for any pair of children of the node. Querying on such a structure
involves finding the correct set of inner nodes that can answer the query such that
the number of such nodes is minimum. For this, a query decomposition technique
is utilized. Each query node falls on the shortest path between the two nodes being
queried. The nodes on which the query is performed should have at least two child
nodes in the given range.

In their method, a given query is divided into smaller queries, and the partial results
are combined together to find the complete result. For example, let the query tree
consist of three levels, the last two of fixed size b2, b1. For a query pair 〈i, j〉, i =
i1· b2. b1 − i2· b1 − i3, and j = j1· b2. b1 + j2· b1 + j3. The range minima query from i to j
is equal to the minima of all the query pairs.

q1 i i1· b2. b1 − i2· b1
q2 i1· b2. b1 − i2· b1 i1· b2. b1
q3 i1· b2. b1 j1· b2. b1
q4 j1· b2. b1 j1· b2. b1 + j2· b1
q5 j1· b2. b1 + j2· b1 j
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Fig. 2. Decomposition of a query into multiple subqueries. Here, b2 = 6, b1 = 3, and query = 3,23.

An example of the this is shown in Figure 2. Here, b1 = 3, b2 = 6. The resulting
queries are 〈3, 3〉, 〈4, 18〉, 〈19, 21〉, and 〈22, 23〉. The queries can be represented as nodes
on the k-ary query tree shown in Figure 2(a), as point a, b, c, and d, respectively.

In our solution, at each level, the size of the array is reduced by a factor of B. The
first level is divided into two stages, one of size B1 and other of size B2 = B

B1
. It can

be noted here that the first level is divided into two stages to reduce space utilization,
as the first level requires the maximum space. At the first level, the first stage uses
a space-optimal succinct representation to reduce space requirements. Here, we first
represent an array by its Cartesian tree. This tree is then represented by its succinct
representation. This reduces the space requirement to store the tree. The second stage
uses a comparitively space-consuming but faster succinct representation.

It is notable that the look-up table in both algorithms (Fischer and Heun [2007] and
Bender et al. [2001]) takes up substantial space and is required by each query. For a
CPU-centric method, with a user-invisible cache heirarchy, such a method is practical.
On a GPU, the memory heirarchy is fully user pragrammable and needs careful user
level optimizations. A more robust succinct representation, requiring a minimal look-up
table, is more suitable. In the following section, we present our succint representation,
which does not require a large look-up table. A space-computation trade-off is done,
maintaining the constant time requirement for each query.

3. CHALLENGES OF RANGE QUERY ON THE GPU

Implementing any algorithm on the GPU requires sensitivity to the architecture and
compute model of the GPU. The following challenges are found while implementing
RMQ on the GPU.

(1) Limited on chip memory available, as well as limited global memory accessible for
the GPU.

(2) The number of registers available on the GPU per thread is limited; 16,384 registers
are available per thread block on a Tesla C1060. If the total register requirement
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per thread block exceeds 16,384, then the register allotment overflows into other
available memory. This causes performance degradation. Reducing the number of
threads per thread block to increase the register count per thread increases the
time for the algorithms.

(3) Thread divergence is another factor that decides the performance on the GPU.
Algorithms that cause a large number of divergent branches to be present at a
given point of time per warp cause the performance to degrade.

(4) Large look-up tables require efficient methods to manage data, making use of large
RAM and file system. GPU computing introduces a large overhead to access CPU-
assisted resources. Hence, space-efficient look-up tables are also necessary.

4. A SUCCINCT REPRESENTATION OF A CARTESIAN TREE

A tree can be reconstructed given two different types of traversals of the same. For
succinct representations, the given tree is converted to another tree such that, for a
given tree size, any one of the traversals can regenerate the tree irrespective of the
structure or topology of the tree. Hence, the traversal is stored succinctly. One such
transformation is done by assigning a value of one to each node, and zero to every
absent child of each node. Let such a tree be called the padded tree. An important
property of a padded tree is that the inorder traversal of such a tree will always be a
string of alternate zeros and ones. Hence, any other traversal of the tree is sufficient
to generate the tree.

Some interesting properties of the padded tree include the following.

—The number of zeros in the subtree rooted at the given node is always greater than
the number of ones by one.

—The enumeration of the leaf nodes in preorder, postorder, and inorder traversal of
the tree are the same.

—For a Cartesian tree, the ith zero represents the ith element in the base array.
—In the preorder traversal of a padded Cartesian tree, for the ith zero, let the number

of ones on the left be Ones(i). Then, Ones(i)-i represents the number of left parents
the ith node has. Left parents of i denote parent nodes for which have i in their left
subtree.

—In the preorder traversal, if i = lca(a, b), then the ith zero will always be between the
ath and the bth zero.

Based on the properties of a padded tree, it is possible to represent any tree as a
string of size 2n bits. If any other traversal of the tree is available other than the
inorder traversal, the original structure of the tree can be reconstructed. Designing
a succinct representation is hence converted into finding an optimal traversal of the
tree. The important and relevant traversals are level order, preorder, and postorder.
All of these traversals are used for the purpose of succinct representations. Variants
based on these and further extensions and optimizations to extend to general trees are
also studied. We will now use this property to formulate a strategy for answering LCA
queries.

4.1. Answering LCA Queries on a Preorder Traversal of a Padded Tree

As presented in the previous section, if i = lca(a, b), then ith zero will always be between
ath and bth zero. lca(a, b) is the highest node with a in the left subtree and b in the right
subtree. In preorder representation, as soon as a left tree is closed, a zero is placed in
the bit string. A one is placed as soon as th left subtree of a node is explored. Thus,
i = lca(a, b) will have its left subtree opened before a opened its left subtree and closed
before b opened its left subtree. Also, a should close its left subtree before i.
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To find the lca(a, b) in linear time, we substitute each zero in bitstring S with −1,
to form S′. From the ath zero to the bth zero, we can perform a prefix sum. There can
be multiple minimums; each minimum represents a node that has the least number of
left parents between a and b. The first minimum represents the lca(a, b).

Hence, lca(a, b) = Arg(Minimum(pref ix sum(S′(a, b)))).

To find the lca(a, b), we need the following information, position of ath and bth zero in
S, and prefix sum of S′. To perform prefix sum, a linear scan is sufficient. To accelerate
the process, we preprocess the prefix sum value for each bit string of size sz. If the
length of S′ is L, then the prefix sum of S′ can be found by concatenating results of L/sz
blocks and merging the results. This method is a minor extension of parallel prefix sum
algorithm [JáJá 1992].

To find the ath and bth zero in S is equivalent to finding the ath and bth −1 in S′.
This can again be found from the prefix scan of S′. Hence, the succinct representation
presented here is self-sufficient in answering RMQ queries. Additional overheads are
related to speeding up the scan process.

5. OUR METHOD

Based on the DFUDS succinct representation of ordered trees presented by Jansson
et al. [2007], a Cartesian tree–specific modification suitable for the GPU is presented
in Section 4. The range minima algorithm presented here is based on the same rep-
resentation. The complete preprocessing as well as querying phase is performed on
the GPU. The preprocessing as well as the the querying phase are explained in the
following sections.

5.1. Preprocessing

Our method is divided into three levels. Each level uses a range minima method which
is suited to the data size at the given level. Level 1 focuses on minimizing space,
Level 2 focuses on fast querying, and Level 3 focuses on using minimal additional space
so as to maximize coalescing while querying. A detailed discussion on these methods
follows.

5.1.1. Preprocessing in Level 1. Level 1 is divided into two stages. In Stage 1, the array A
is divided into blocks of size B1. Each block is then represented by a Cartesian tree. The
Cartesian tree is stored succinctly. The minimum of each block is stored in an array
A′. In Stage 2, the array A′ is divided into blocks of size B2. Array A′ is preprocessed to
answer each query.

5.1.2. Preprocessing in Stage 1. Jansson et al. [2007] presented a method to represent
ordered trees succinctly. Cartesian trees are ordered trees, with the number of children
at most two. It has been shown that the representation is able to answer LCA queries
without any additional data structures. To accelerate the process, succinct dictionaries
are provided that accelerate the process of finding the LCA. The dictionary is inde-
pendent of the size of the tree. A detailed mapping of the method of Jansson et al.
[2007] is shown in Section 4. In our method, we do not add any additional data to the
succinct information, but we rely on succinct dictionaries for the purpose of providing
a O(1)-time solution.

As presented in Section 4, an array can be represented by a succinct representation
that stores the preorder traversal of the padded Cartesian tree of the array. The re-
sultant traversal can be stored in a bit string. To generate such a representation, we
first generate a padded Cartesian tree for the given array. This is done by performing a
nearest smaller values search for each element. A preorder traversal is then performed
on this structure. For each block B of size B1, the preorder ±1 bit string is formed. The
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Fig. 3. Conversion of an array into its succinct representation using an intermediate tree representation.
Here, blue circles represent actual tree nodes, and red triangle represent padded nodes.

ALGORITHM 1: Preprocessing in Level 1: Stage 1
for Each Block B do

for Each element e ∈ B do
Find the nearest smaller values of e to its left and right within B

end for
Form the Cartesian tree T of B using the nearest smaller values
Form the padded tree T ′ from T
Perform a sequential preorder traversal on the padded tree T ′

Store the preorder traversal as a bit string
end for

detailed algorithm is presented in Algorithm 1. The resultant string of 1 and 0 is then
stored. The resulting string requires 2B1 + 1 bits of space. Neglecting the trailing zero,
the representation uses exactly 2B1 bits of space. An example is shown in Figure 3. A
brief description of the algorithm is given in Algorithm 1.

5.1.3. Preprocessing for Stage 2. The succinct representation for the first stage works
well for small sizes of B1. For large block sizes, the number of memory and compute
operations required to perform a query outweigh the space advantage. Hence, alterna-
tive methods, which may be space intensive but can answer queries fast, are used. The
method suggested by Bender et al. [2001] is used here. The block size is taken as B2.
For a block of size 2k, 0 < k < log(B2); for each element i, the index with the minimum
value in the range i to i + 2k is found, and the relative index with regard to i is stored.

Observe that for an index i, the minimum in a range of size 2k is equal to the
minimum in the range i to 2k−1 − 1 and i + 2k−1 to i + 2k − 1. This leads to a natural
iterative method. For each element, the resultant relative indexes are packed into
limited number of words. Compared to explicitly storing the indexes and minimum
values, this method is used to save space. For blocks of size B2, log(B2)·log(B2−1)

2 bits are
required for storing the result.

5.1.4. Preprocessing for Level 2 and Level 3. The data sizes have substantially decreased
in this level, and now methods that need not be space saving but can provide faster
results while querying are explored for this level. For each query in Level 1, it can be
noticed that four global memory reads are required. This is reduced to three global
memory reads by following a data-centric method. In Level 2, the size of data has
reduced by a factor of B = B1 · B2. Assuming that the value of B is large enough to
reduce the size of the array appreciably, we state that space is no longer a constraint.
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ALGORITHM 2: Algorithm to Find RMQ in Level 1: Stage 1 between indices (i, j), i < j, given
preorder traversal bit string of block containing i and j
FindRMQ(i,j,bit string,BS)

Divide bit string into blocks of size BS
Find Block[i] and Block[ j] containing ith zero and jth zero
Find bit position (Bp[i]) of ith zero in Block[i], and Bp[ j], using stored data for sub blocks of
size BS/2
Find minimum point(mp) to right of Bp[i] in Block[i]
for Each block Block[k] between Block[i],Block[ j] do

Update mp using bit string of Block[k]
end for
Update mp using bit string to left of Bp[ j]+1 in Block[ j]
Return zero-count to left of mp+1

In Level 2, the algorithm of Bender et al. [2001] is used without any succinct repre-
sentation. Here, the value of the minimum of each block and the corresponding relative
index of the minima of each block is stored. It is to be noted that the relative index
to the beginning of the block is stored. This assists in saving space. Hence, �(log2(B))
space is used per element for storing the indexes.

We focus on assigning appropriate block sizes for each level such that Level 3 has
a small number of elements. The representation presented in Stage 2 of Level 1 can
be reused here. To accelerate querying, the generated representation can be stored in
the texture memory. It should be noted that for all the other stages, we use the global
memory to maintain preprocessed data for the query phase.

5.2. Querying

The important stage in querying in our method lies in the first stage, which uses
the succinct representation. It is to be noted that, the array in this level is repre-
sented as a bit array, using an intermediate preorder traversal of a padded Cartesian
tree. Querying in this stage is derived from the lca method of Jansson et al. [2007].
Section 4.1 discusses the method in limited detail. For a Cartesian tree of n nodes,
lca(i, j) equals RMQ(i, j) for 0 ≤ i, j ≤ n − 1. As presented in Section 4.1, RMQ in-
formation can be found by linearly parsing through the succinct representation of the
Cartesian tree once. To support RMQ queries on the succinct representation of Stage 1
of Level 1, we propose that instead of adding additional data to the bit string (succinct
representation) of each block, we can preprocess all bit sequences of a predetermined
length. This forms a succinct dictionary that can be accessed for fast querying.

This produces a strong upper bound of 2 bits per node while supporting constant time
querying. For n nodes, the length of the succinct representation is 2n. Let the length of
bit strings preprocessed be BS < n. For bit strings of size BS, we store the number of
zeros in the string and the minimum of the difference between the number of ones and
zeros to the left of each position in the string. We do the same for strings of size BS/2.
It should be noted that BS/2 can be any divisor of n. The space taken by the succinct
dictionary for block size BS is 2BSlog(BS). As BS is independent of n, the additional
space can be considered as constant. A succinct dictionary saves us from traversing the
succinct representation bit by bit and reduces memory operations substantially and
reducing divergence. The method is stated in Algorithm 2.

Querying on the GPU for the other levels is trivially based on the preprocessing
algorithm. It can be noted the nature of the querying is very similar to that of Bender
et al. [2001]. Hence, the discussion on querying in other stages can be followed from
Bender et al. [2001].
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Table II. Parameters for RMQ: Size of Each
Stage/Level and Number of Elements

Processed at Each Level/Stage

Stage Size of Block Size of Array
Stage 1 B1 = 16 N
Stage 2 B2 = 64 N/16
Level 2 B = 1,024 N/1,024
Level 3 N/1,024*1,024

6. GPU IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section, we report the GPU implementation as well as evaluation of the algo-
rithm. The experiments were run on the following systems.

—CPU: An Intel Core i7 920, with 8MB cache, 4GB RAM and a 4.8GT/s Quick path
interface, with maximum memory bandwidth of 25GB/s.

—GPU: A Tesla C1060 which is one quarter of a Tesla S1070 with 4GB memory and
102GB/s memory bandwidth. It is attached to an Intel Core i7 CPU, running CUDA
Toolkit/SDK version 2.2.

6.1. GPU Implementation

The size of each level is shown in Table II. In Stage 1, 16 threads are used per block of
size B1. The thread-block size is kept at 1,024 threads. Each thread finds the nearest
smaller value to the left and to the right for the corresponding element. Optimality
is sacrificed finding the while nearest smaller values to reduce thread divergence.
Each thread searches across the 16 elements to find the nearest smaller values. Bank
conflicts do not arise if half a warp (16 threads) accesses the same element of a shared
memory bank. Hence, bank conflict is avoided here. The Cartesian tree is created by
finding the larger valued of the two nearest smaller valued elements. For example,
for a given element e, with value 5 and index ie, the left nearest smaller value is 2
with index il, and the right smaller value is 3 with index ir. The parent of ie will be
il, since the value at il is greater than the value at ir. The left and right child of each
node is also found. The tree created is traversed to give the preorder traversal of the
tree. To improve parallelism, leaf nodes of the tree precompute their subtree traversal.
The preorder traversal at a node if the concatenation of preorder traversal of its left
and right subtrees to the node. This inherent limited parallelism is used to increase
the occupancy of the threads. Arbitrarily selected nodes perform preorder traversal of
their subtrees. A new tree is formed with the previously selected nodes. The sequential
traversal on this tree and code generation is performed by the first thread of each block.

Our method is able to scale on the GPU, and requires limited number of registers
and limited shared memory. As presented in Section 3, memory is an important prob-
lem in GPUs. Using succinct representation, we were able to reduce global memory
usage. Also, the design and implementation of Stage 1 has reduced shared memory and
register requirement with regard to Fischer-Heun’s method. The size of the succinct
representation per block for Level 1: Stage 1 is thus 32 bits. Hence, comparing elements
of a block is equivalent to querying on the 32-bit word.

The size of Stage 2 is fixed at 64 elements per block so that one thread block can
process both stages together. This reduces the kernel call overhead as well as global
memory read/write overhead. In Stage 2, only 64 threads are active out of the 1,024
threads for each thread block. Bender’s method for 64 elements requires six iterations.
Thread synchronization is performed at the end of each iteration. For each element,
the resulting six relative indexes can be stored by using 21 bits. To decrease space
usage, results of only five iterations are used. This can be stored in 15 bits. It is notable
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Table III. GPU Optimizations of Each Stage

Global Memory Thread Shared Memory
Stage Usage Divergence and Register

Preprocessing
Level 1: Stage 1 Uses succinct representation Uses nonoptimal yet Low memory usage

symmetric methods Limited bank conflicts
Level 1: Stage 2 Uses succinct representation Optimal and symmetric Reuse of Stage 1

and reuses data from Stage 1 method memory
Level 2 Small data size Optimal and symmetric Negligible bank

method conflicts
Querying

Level 1: Stage 2 Maximum of 3 accesses to Usage of succinct Limited memory needed
read succinct representation dictionary reduces divergence for succinct dictionary

Level 1: Stage 2 Up to 3 accesses of succinct Symmetrical computation Reuses memory
representation with low overhead from earlier stages

Level 2 Reduces number of access to Limited Reuses memory
the data array

Level 3 Metadata stored Limited Reuses memory
in texture memory

that the querying method also requires results of five iterations. The minimum valued
index for the block and its value is also stored. It should be noted that the GPU state
is lost as soon as the thread block exits. Hence, before each exit, the relevant parts of
the thread state has to be explicitly stored in the global memory.

Level 2 is managed as a different GPU kernel. The block size at this level is 1,024.
Bender’s algorithm is used without compression in this level. Bender’s method is par-
allel in nature and allows for negligible bank conflicts. Level 3 has very limited data to
process; hence, a limited number of threads are sufficient. The metadata from Level 3
is redirected to the GPU texture memory.

While querying, each query is handled by a single thread. The compressed represen-
tation at each level reduces global memory reads. In the querying phase, the number
of divergent branches are limited. In all the levels, the type of queries can be (i) within
the same block, (ii) in adjacent blocks, (iii) in blocks separated by a single block, and
(iv) distant blocks. The number of subqueries are 1, 2, 3, and 2, respectively, for each
type. In any level, the number of divergent branches are hence a maximum of 2. In
Level 1: Stage 1, within a subquery, divergent branches are reduced by the usage of a
succinct dictionary. BS is kept as 4. It is notable that the value along with the index
at each of the relevant indexes are read from the global memory. Usage of succinct
representation is able to reduce the number of global memory accesses. A detailed list
of optimizations used to handle GPU-specific issues is presented in Table III.

6.2. Experimental Results

Each experiment was run 10 times, and an average value is reported. Two set of results
are shown, one containing the raw speed-up of the algorithm on the GPU with respect
to CPU. In the second experiment, the time taken to transfer the data bidirectionally
is added to the results. The first one shows the feasibility of using RMQ as a primitive
for the GPU, and the second one shows the feasibility of GPU acting as an accelerator
for RMQ operations for the CPU. The data is randomly generated. The obtained results
are tabulated in the following text, and the number of queries is fixed at 10M. CPU
times reported are for single-threaded and multithreaded (8 threads) queries. Times
reported are for the 10M queries. All times are in milliseconds.

Experimental results provided are for batch mode, that is, a large number of queries
are processed together. In the experimental results shown, all the queries are per-
formed in a single CUDA kernel call on the GPU. A speed-up of 20–25 is noted against
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Table IV. Results for Queries on Large Datasets

Base Preprocessing Query Time(ms)
Array time(ms) 10M queries
(M) GPU CPU CPU-1 CPU-8 GPU
100 88 2,053 5,187 1,128 140
150 120 3,092 5,471 1,167 152
200 158 4,133 5,513 1,200 160
250 193 5,130 5,648 1,211 168

Fig. 4. Comparison of results for querying.

a sequential implementation preprocessing over preprocessing time taken by Fischer-
Heun’s algorithm. A speed-up of 25–35 over the implementation provided by Fischer
is noted while querying. While querying, a speed-up of 7–8 over an 8-threaded version
of Fischer’s method is noted. For large base arrays, the time per query was nearly con-
stant given a constant number of queries, while the size of the base array was changed
per experiment. This was not true in the case of the CPU implementation, where the
time taken increased over time. This can be directly attributed to the user manage-
ment of the cache memory. With the addition of data transfer overhead, the speed-up
with regard to an 8-threaded implementation fell to an average of 4–6. Table IV and
Figure 4 show the results of our experiments. Query GPU is the time taken by only
the GPU query. Query CPU is the comparison of Fischer-Heun’s implementation pro-
vided by them. Query trans GPU is the time taken by our method including the CPU
transfer time. As compared to the method of Fischer-Heun, our method used 7.5 bits of
space per element against their 7 bits for integer data types, which use 32 bits of space
for storage. The space usage includes the space required to store the minimum and the
relative index from each level.

6.3. Analysis of Results

6.3.1. CPU Comparison of Results. The following results are taken on a CPU with Corei7
920, running g++ version 4.2, O3 flag has been used while compiling. The CPU version
of our method is similar to the GPU implementation. Results on an array of 1 million
elements is presented here. It was observed that for Fischer-Heun’s method, it took
15ms for preprocessing their succinct representation. In comparison, our method using
a single thread took 44ms for preprocessing. Both methods show linear scaling of time
with an increase in the size of the data. A comparison of time taken for different data
sizes on the CPU is shown in Table V. For Fischer-Heun’s method, processing of the
succinct stage takes about 70% of the total time. Our method takes about 90% of the
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Table V. Comparison for Preprocessing of CPU
Implementation of Both Methods

Size of Array CPU-Fischer CPU-DFUDS
(in million elements) (ms) (ms)

1 15 44
2 31 90

10 159 454
20 328 905
50 840 2,303

time in the succinct representation. Note that this is a sequential representation of a
parallel algorithm and hence is slower. The time taken for our CPU based method for
the later stages are same as that of Fischer-Heun’s method. This is attributed to the
similarity in the methods.

In the querying phase, in Fischer-Heun’s method, approximately 50% of the time
was taken by the succinct representation processing.

It is the claim by Fischer-Heun that their method outperforms other succinct repre-
sentation in RMQ queries. Hence, we claim to have compared our method against the
current state-of-the-art method.

6.3.2. GPU Results. In the preprocessing phase, succinct processing takes 60% to 70%
of the total time. The rest of the stages put together take the rest of the 30% to 40%
time. The data is maintained in the GPU global memory. In the querying phase, our
method takes 70% to 80% of the time in processing the succinct representation. The
secondary stages take the rest of the time. It is notable that the increase in the time
taken by our method with a fixed number of queries and varying size of the data is
nearly constant. This is shown in Figure 4(a). As can be seen by comparing with the
discussion in Section 6.3.1, our method shows similar behavior on the CPU as well as
the GPU in terms of time ratios.

GPU implementation of Fischer-Heun’s method is impractical due to the substantial
divergence and memory requirement. A discussion on the GPU performance of Fischer-
Heun’s algorithm is hence not followed here.

7. APPLICATIONS OF DRS

In this section, we show some applications of DRS in parallel computing. DRS on the
GPU can also enable queries on array-based representations of complex structures
such as trees, as shown in Section 7.1. Similarly, certain string operations such as the
longest common extension can also be modeled using the DRS primitive, as shown in
Section 7.2. Other applications suggested in Fischer and Heun [2006, 2007] fit on the
GPU with support from our DRS implementation.

7.1. Tree Queries for the GPU as DRS

A tree can be represented by a set of arrays using the Euler tour technique [JáJá 1992].
The representation can be based on the preorder number of nodes and the left- and
rightmost appearances of each node in an Euler tour of the tree. Certain queries on
the tree, such as subtree queries and the least common ancestor, can be converted into
queries on a range of the Euler tour. We elaborate on these two types of tree queries.

7.1.1. Subtree Queries. Finding the minimum value in a subtree can be modeled as a
range query. The minimum value in the subtree of a node is equivalent to finding the
minimum along the preorder traversal of its subtree. If values in a tree are arranged
in an array K, according to the preorder number of each node, the minimum in the
subtree of node n is the range minima in the range [preorder(n), preorder(n) + size(n)].
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Fig. 5. A tree and corresponding query.

Here, preorder(n) is the preorder number of node n, and size(n) is the size of the subtree
rooted at n.

In Figure 5, a tree and all its subtree queries are shown. Each vertex in the tree
has a label and a value previously assigned to it. The minimum value in every subtree
can be found in O(n) sequential time by performing a level order traversal. However,
this method is not easily amenable to parallelism as compared to using DRS. We
suggest that this method is especially useful in applications where preorder or pos-
torder traversal has been already done and the size of the subtree is previously known.
Examples of such algorithms include tree-based algorithms, such as parallel bicon-
nected components and ear decomposition.

Results. In our implementation, the preorder and size of the subtree are assumed to
be previously known. Two categories of queries are looked into:

—all nodes perform a subtree query and
—a small subset of nodes need to perform a subtree query.

These two are dealt with differently because coalescing will be much larger in the
first case. This decreases the per-query time. This is especially true if the queries are
arranged in the order of the preorder numbers. The comparison of perquery time is
given in the table for different number of queries on a tree size of 20M. The queries
are randomly chosen, and unsorted. For comparison with sequential implementation,
a sequential expression evaluation algorithm, which performs a comparison of the key
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Table VI. Comparison of Complete Queries

Tree Query Time (ms)
Size (M) GPU CPU
1 6.84 48
2 16 99
4 37 203
8 90 427

16 194 817

Table VII. Comparison of Different Numbers of
Queries on a Tree with n Nodes

Size GPU Query Time (ms)
100*log(n) 0.1
n/100 2
n/10 15

Table VIII. Results of LCA on Preprocessed Trees

Tree Size (M) 10 11 12 13 14 15
Time Taken (ms) 6.8 7.3 8.0 8.7 9.2 10.1

at the node to the minimum of subtree is done. The time taken for a tree of 20 M nodes
is 1s.

For complete queries where the number of queries is equal to the number of nodes,
Tables VI and VII show the query time for both cases.

7.1.2. Least Common Ancestor as DRS. The least common ancestor (LCA) has a direct
dual with DRS. Applications that map LCA to DRS have been shown in Fischer and
Heun [2007]. As mentioned in Section 7.1, the Euler tour technique is used as a pre-
processor for trees, helping to form efficient algorithms, especially in the context of
the GPU. The level order and preorder traversal are computed using the Euler tour
technique. Euler tour along with list ranking of Rehman et al. [2009] and the scan
primitive [Sengupta et al. 2007] are used to preprocess a given tree to generate the
required traversal of the graph [JáJá 1992]. Given an Euler tour of a tree T , let the
rank of an edge e be defined as the position of e in the Euler tour of T . For a node i,
let L[i]] and R[i] denote the left- and rightmost occurrences of node i in the Euler tour
of T . Suppose the edge uv has a rank of i. We define an array A as A[i] := level(u),
where level(u) denotes the level to which node u belongs in the tree. Then, it holds
that the least common ancestor of two nodes u and v can be computed as follows. Let
k = RMQA(R[u], L[v]. Then, LCA(u, v) = w such that the edge wx has a rank of k.

A detailed commentary on ETT for the GPU is given in Rehman [2010] with a method
to generate ETT, R, L and A for a given tree. The array A is to be processed for range
queries.

Results. The times (independent of the ETT step) found for a n
10 random queries on

a tree of size n (in millions) are given in Table 7.1.2.

7.2. Longest Common Extension for the GPU

Longest common extension (LCE) two strings is their longest common prefix. Though
trivial using suffix trees, it can also be found by querying on a suffix array. A suffix array
representation of a string typically consists of indices corresponding to lexicographi-
cally sorted suffixes, stored in an suffix array (SA). For example, for a string “SAAD,” the
corresponding values in the suffix array is 2(AAD), 3(AD), 4(D), 1(SAAD). Additional
supporting data structures assist computation. Inverse suffix array, SA−1, contains the
lexicographical rank of each element in the string. For example, for “SAAD,” inverse
suffix array will contain 4(SAAD), 1(AAD), 2(AD), 3(D). The longest common prefix
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(LCP) contains the length of the maximum common prefix of adjacent elements in the
suffix array.

String: S A A D
SA 2 3 4 1
SA−1 4 1 2 3
LCP 0 1 0 0

The LCE of substrings starting from indices i, j is given by the following equation:
LCE[i, j] = LC P[RMQLC P(SA−1[i] + 1, SA−1[ j])]

For example, the LCE of string AAD and AD is equal to RMQ[2, 2]=1. Assuming an
application that requires large number of such queries on a static string, our method can
be used to preprocess the LCP array, so that LCE queries can be answered efficiently.

Results. The suffix array and the LCP array are generated on the CPU and the LCP
array is moved to the GPU. LCP array acts as the base array for Range queries. The
query time for LCE computation on a string of size 1M with 100K queries is 0.52ms.

8. CONCLUSION AND FUTURE WORK

We have presented here, an implementation of a succinct representation on the GPU
which uses 2n bits of space for a tree of size n. This representation can represent
Cartesian trees. Additionally, the succinct representation is useful in answering LCA
queries on Cartesian trees. The additional space required is constant and is sufficient
to answer LCA queries in constant time. The succinct data structure is amenable
to the GPU model of computation. This method can naturally scale to a multi-GPU
environment, such as a cluster of CPUs with GPUs attached to each CPU.

Range minima queries are implemented using the succinct representation. The
method we designed for range minima querying has low space overhead and is able to
provide a speed-up of more than 25 over a CPU for batch querying. The range minima
algorithm we presented can be used for applications such as tree queries and string
queries. We also recommend that DRS can be helpful in implementing tree based graph
algorithms on the GPU.

In the future, we plan to explore succinct representations that are amenable to the
GPU as well as reduce the number of bits required.
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