
II
IT

 H
y
d

er
ab

ad

Irregular Algorithms on the GPU

P. J. Narayanan
Centre for Visual Information Technology
International Institute of Information Technology
Hyderabad

PPoPP Tutorial on GPUs. Jan 10, 2010
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Graph Cuts for Computer Vision 

on the GPU

Work done with Vibhav Vineet

(CVGPU08 Workshop)

PPoPP Tutorial on GPUs. Jan 10, 2010
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Graph Cuts in Computer Vision

• Several optimization problems have been mapped to 
maxflow on a graph built from the pixels with a special s
node and t node.
– Segmentation: Assign binary labels to pixels

• Pixels connected to s after cut is foreground and the rest are 
background.

– Stereo matching: Assign integer labels to pixels

• Disparity is the standard label.

• Framework works for many problems

• Many sequential algorithms exist. Goldberg-Tarjan (push-
relabel) and Edmonds-Karp (augmenting path based) are 
popular.
– Former is more parallelizable
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The st-Mincut Problem

Graph (V, E, C)

Vertices V = {v1, v2 ... vn}

Edges E = {(v1, v2) ....}

Costs C = {c(1, 2) ....}

Source

Sink

v1 v2
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The st-Mincut Problem

Source

Sink

v1 v2

2

5

9

4
2

1

What is an st-cut?
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The st-Mincut Problem

Source

Sink

v1 v2

2

5

9

4
2

1

What is an st-cut?

An st-cut (S,T) divides the nodes 
between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges 
going from S to T

5 + 2 + 9 = 16
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The st-Mincut Problem

What is an st-cut?

An st-cut (S,T) divides the nodes 
between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges 
going from S to T

What is the st-mincut?

st-cut with the 
minimum cost

Source

Sink

v1 v2

2

5

9

4
2

1

2 + 1 + 4 = 7



II
IT

 H
y
d

er
ab

ad

Maxflow Algorithms

Goldberg’s generic Push-
Relabel Algorithm

1. Intialize-Preflow(G,s)

2. Perform an applicable push or 
relabel operation

3. Repeat untill there exists no 
applicable push or relabel
operation

Source

Sink

v1 v2

2

5

9

4
2

1

Flow = 0

Algorithms assume non-negative capacity
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Maxflow Algorithms

Push Operation

1. V    is overflowing   

2. Height h(V2) == h(V1) + 1

3. Push as much unit of flows from 
V2 to V1

Source

Sink

v1

v2

5

9

1

2

Algorithms assume non-negative capacity

Flow = 0

4

2

Height h
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Maxflow Algorithms

Relabel Operation

1. V2 is overflowing and
is in residual graph 

2. Height h(V2) <= h(V1) 

3. Increase the height of V2

Source

Sink

v1
v2

0

1

2

Flow = 0

4

Height h
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GraphCuts on Images

• Specialized algorithms for 

vision problems

– Grid graphs 

– Low connectivity; typically 

limited to 4, 8 or 27
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Image         Grid       

Image/Grid 
divided into 
blocks  

Block
Block sub-
divided into 
threads

thread             pixel

Mapping Image On CUDA
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Push Relabel Algorithm on 

CUDA

1. Push is an local operation with each node sending 
flows to its neighbors

2. Relabel is also a local operation

3. Problems faced:

1. RAW problems: (Read after write)

2. Synchronization is limited to the threads of a 
block. 
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Push Relabel Algorithm on 

CUDA

1. Push operation is divided into 
two phases: Push Phase and 
Pull Phase 

2. Relabel is also local operation

3. Naïve Solution: Three Kernels

1. Push Kernel

2. Pull Kernel 

3. Relabel Kernel

source

sink
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Push Kernel (node u)

1. Load h(u) from the global memory 
to shared memory of the block. 

2. Synchronize threads to ensure 
completion of load

3. Push flow to the eligible nodes 
without violating the preflow
conditions. 

4. Update the residual capacities of 
edges(u,v) in the residual graphs. 

5. Store the flow pushed to each edge 
in a special global memory array F. 

Height required

by 9 nodes
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Pull Kernel (node u)

1. Read the flows pushed to u from 
the F array of its neighbors. 

2. Compute the final excess flow by 
aggregating all incoming flows. 
Store it as the e(u) value in global 
memory. 
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Relabel Kernel (node u)

1. Load h(u) from the global memory 
to the shared memory. 

2. Synchronize to ensure the 
completion of load of heights. 

3. Compute the minimum heights of 
neighbors of node u. 

4. Write the new height to global 
memory location h(u).

Height required

by 9 nodes
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Push and Relabel Kernels (Shared 

Memory)

1. Load h(u) from the global memory 
to shared memory of the block. 

Shared Memory Used:

- Each Block has MxN threads. 

Internal Nodes: 

Each Internal Node ( )  requires 
heights of 4 other nodes (     ) 
from the same block. 

M

N
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Push and Relabel Kernels (Shared 

Memory)

1. Load h(u) from the global memory 
to shared memory of the block. 

Shared Memory Used:

Border Nodes: 

Each Border Node( )  requires 
heights of other nodes(     ) from 
the different blocks. 

M

N- Each Block has MxN threads. 
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Push and Relabel Kernels (Shared 

Memory)

1. Load h(u) from the global memory 
to shared memory of the block. 

Shared Memory Used:

- Each Block has MxN threads.
- Total Shared Memory Used: 

- (M+2)x(N+2)x(sizeof(element))

M

N

CUDA Block
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Push Relabel Algorithm
1. Push operation is divided into 

two phases: Push Phase and 
Pull Phase 

2. Relabel is also local operation

3. Different Solution : Two 
kernels

1. Push Kernel

2. Pull + Relabel Kernel 

source

sink
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Pull + Relabel Kernel (node u)
1. Load h(u) from the global memory to the 

shared memory. 

2. Synchronize threads to ensure the 
completion of load.

3. Update the excess flow e(u) and residual 
capacities of edges (u,v) in the residual 
graph with the flows from the global 
memory array F. 

4. Synchronize to ensure completion of 
updation of edge-weights and excess flow.  

5. Compute the minimum heights of neighbors 
of node u. 

6. Write the new height to global memory 
location h(u).

Height required

by 9 nodes
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On Hardware with Atomic Capabilities

1. Push and Pull operations can 
performed without any RAW 
problem.

2. Relabel is also local operation

3. Third Solution on Hardware 
with Atomic Capabilities: Two 
kernels

1. Push + Pull Kernel

2. Relabel Kernel 

source

sink
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Push + Pull Kernel (node u)
1. Load h(u) from the global memory to 

the shared memory. 

2. Synchronize threads to ensure the 
completion of load.

3. Push flows to eligible neighbors 
atomically without violating the 
preflow condition. 

4. Update the edge-weights of (u,v) and 
(v,u) atomically in the residual graph. 

5. Update the excess flow of e(u) and 
e(v) atomically in the residual graph. 

source

sink
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Results

Image Size Time (CPU)

(millisecond)

Time

(Non- Atomic)

Time  

(Atomic)

Time

(Stochastic)

Sponge 640x480 142 28 16 11

Flower 608x456 188 33 26 16

Person 608x456 140 31 27 20

Synthetic 1Kx1K 655 19 10 7

Vibhav Vineet and P J Narayanan. “CudaCuts”. IEEE CVPR Workshop

on Computer Vision on the GPUs. Alaska, June 2008.
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Fast and Scalable List Ranking 

on the GPU

M. Suhail Rehman, Kishore Kothapalli, P. J. Narayanan

Center for Security, Theory, and Algorithmic Research 

Center for Visual Information Technology

International Institute of Information Technology, Hyderabad
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The List Ranking Problem

• Given a list of N elements, rank each 

element based on the distance of that 

element with the end of the list.

• A sequential algorithm is trivial and runs on 

O(n)

• Many parallel algorithms exist for various 

models.
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Types of Linked Lists

51 86 2 310947

41 102 3 98765

Ordered List

Unordered List
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Baseline Implementation

• Wyllie’s Algorithm uses Pointer Jumping

• Initialize Ranks to 1

• For each element in Array, set it’s rank to 

rank + rank of Successor

• Reset the Successor  value to the successor 

of it’s successor (effectively jumping over 

and contracting the list)
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GPU-Specific Optimizations

• Load the data elements when needed

• Bitwise operations to pack and unpack data

• Block-level thread synchronization to force 

threads to write in a coalesced manner

• Current best implementation of Pointer 

Jumping on the GPU
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Results
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Helman JáJá Algorithm

• Wyllie’s algorithm is work suboptimal at  (n log n)

• Helman JáJá is based on sparse ruling set approach 

from Reid-Miller

• Originally devised for Symmetric multiprocessor 

systems with low processor count.

• Algorithm of choice for all recent work in this field

• Worst Case runtime is O( log n + n/p) and O(n) work.
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Helman-JáJá (Contd.)

• Helman JáJá algorithm originally devised for 
SMP with low processor count

• Splits a list into smaller sublists, computes 
local rank of each sublist and stores it into a 
smaller, new list.

• Perform prefix sum on the new list

• Recombine the global prefix sum of the new 
list with the local ranks of the original list.
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4 8 1 3 7 - 62 59
Successor 

Array

Step 1. Select Splitters at equal intervals
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4 8 1 3 7 - 62 59
Successor 

Array

Step 2. Traverse the List until the next splitter is met
and increment local ranks as we progress

0 0 0 0 0 0 0 0 0 0Local Ranks
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4 8 1 3 7 - 62 59
Successor 

Array

0 0 1 0 1 1 0 0 0 1Local Ranks

Step 2. Traverse the List until the next splitter is met
and increment local ranks as we progress
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4 8 1 3 7 - 62 59
Successor 

Array

0 0 1 2 0 1 2 0 0 1Local Ranks

Step 2. Traverse the List until the next splitter is met
and increment local ranks as we progress
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4 8 1 3 7 - 62 59
Successor 

Array

Step 3. Stop When all elements have been assigned a local 
rank

0 3 1 2 0 1 2 3 0 1Local Ranks
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4 8 1 3 7 - 62 59
Successor 

Array

Step 4. Create a new list of splitters which contains a prefix 
value that is equal to the local rank of it’s predecessor

0 3 1 2 0 1 2 3 0 1Local Ranks
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4 8 1 3 7 - 62 59
Successor 

Array

Step 4. Create a new list of splitters which contains a prefix 
value that is equal to the local rank of it’s predecessor

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks
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4 8 1 3 7 - 62 59
Successor 

Array

Step 5. Scan the global ranks array sequentially

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking
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4 8 1 3 7 - 62 59
Successor 

Array

Step 6. Add the global ranks to the corresponding local ranks 
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 0 0 0 0 0 0 0 0 0

Local Ranks

Final Ranks
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4 8 1 3 7 - 62 59
Successor 

Array

Step 6. Add the global ranks to the corresponding local ranks 
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 0 1 0 0 0 0 0 0 0

Local Ranks

Final Ranks
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4 8 1 3 7 - 62 59
Successor 

Array

Step 6. Add the global ranks to the corresponding local ranks 
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 0 1 0 0 0 2 0 0 0

Local Ranks

Final Ranks
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4 8 1 3 7 - 62 59
Successor 

Array

Step 6. Add the global ranks to the corresponding local ranks 
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 5 1 0 0 0 2 0 0 0

Local Ranks

Final Ranks
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4 8 1 3 7 - 62 59
Successor 

Array

Step 6. Add the global ranks to the corresponding local ranks 
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 5 1 4 0 0 2 0 0 0

Local Ranks

Final Ranks
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4 8 1 3 7 - 62 59
Successor 

Array

Step 6. Add the global ranks to the corresponding local ranks 
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 5 1 4 0 3 2 0 0 0

Local Ranks

Final Ranks
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4 8 1 3 7 - 62 59
Successor 

Array

Step 6. Add the global ranks to the corresponding local ranks 
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 5 1 4 0 3 2 0 1 0

Local Ranks

Final Ranks
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4 8 1 3 7 - 62 59
Successor 

Array

Step 6. Add the global ranks to the corresponding local ranks 
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 5 1 4 6 3 2 0 1 0

Local Ranks

Final Ranks
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4 8 1 3 7 - 62 59
Successor 

Array

Step 6. Add the global ranks to the corresponding local ranks 
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 5 1 4 6 3 2 9 1 0

Local Ranks

Final Ranks
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4 8 1 3 7 - 62 59
Successor 

Array

Step 6. Add the global ranks to the corresponding local ranks 
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 5 1 4 6 3 2 9 1 7

Local Ranks

Final Ranks
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4 8 1 3 7 - 62 59
Successor 

Array

Step 6. Add the global ranks to the corresponding local ranks 
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 5 1 4 6 3 2 9 1 7

Local Ranks

Final Ranks
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Modifying the algorithm for GPU

• Step 5 is a sequential ranking step.

• When we choose log n splitters, we reduce 

the list to n/log n, which is still large 

amount of sequential work

• By Amdahl’s law, this is a bottleneck for 

parallel speedup. More so in the case of 

GPU.
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4 8 1 3 7 - 62 59
Successor 

Array

Make step 5 recursive to allow the GPU to continue 
processing the list in parallel

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking
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4 8 1 3 7 - 62 59
Successor 

Array

Make step 5 recursive to allow the GPU to continue 
processing the list in parallel

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

Process this list again 
using the algorithm and 

reduce it further.
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GPU Implementation

• Each phase is coded as separate GPU kernel
– Since each step requires global synchronization.

• Splitter Selection
– Each thread chooses a splitter

• Local Ranking
– Each thread traverses its corresponding sublist and get 

the global ranks

• Recursive Step

• Recombination Step
– Each thread adds the global and local ranks for each 

element
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When do we stop?

• Convergence can be met until list size is 1

• We also have the option to send a small list 

to CPU or Wyllie’s algorithm so that it can 

be processed faster than on this algorithm.

• May save about 1% time
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Choosing the right amount of 

splitters

• Notice that choosing splitters in a random 

list yields uneven sublists

• We can attempt to load balance the 

algorithm by varying the no. of splitters we 

choose.

• n/log n works for small lists, n/2 log2 n 

works well for lists > 1 M.
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Results

• Significant Speedup over 

sequential algorithm on 

CPU ~ 10x

• Wylie’s algorithm works 

best for small lists < 512 

K

• GPU RHJ works well for 

large lists

• 2 log 2N works well for 

lists > 1M
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Ordered Lists

• Perform significantly 

faster than random 

lists.

• Data locality is 

automatically taken 

advantage of by the 

global memory access 

hardware

• Compared with GPU 

ordered scan.

0.1

1

10

100

1000

512K 1M 2M 4M 8M 16M

CPU (Ordered) GPU RHJ (Ordered)

CUDPP Scan GPU RHJ (Random)
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Other Irregular Applications

• Graph Algorithms:

– Shortest path

– Breadth-First Search

– Spanning Tree, etc.

– Etc

• Many others
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General Graph Algorithms
1. General Graph Algorithms:

• Breadth First Search

• ST- Connectivity

• Single Source Shortest Paths

• All Pairs Shortest Path

• Minimum Spanning Tree 

• Max Flow

2. Randomness in the graph posses great difficulty in utilizing 
the hardware resources. 

3. Connectivity is unknown. 

4. Graph Representation is not trivial. 
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Singular Value Decomposition

Work with Sheetal Lahabar

Appeared in IEEE IPDPS.

Rome. June 2009.

PPoPP Tutorial on GPUs. Jan 10, 2010
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Problem Statement

• SVD on GPU 

SVD of matrix A(mxn) for m>n

A = U S V

U and V are orthogonal and S is a diagonal 
matrix
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Motivation

• SVD has many applications

• High computational complexity

• GPUs have high computing power

– Teraflop performance

• Exploit the GPU for high performance 
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Methods

• SVD algorithms

– Golub Reinsch

(Bidiagonalization and Diagonalization)

– Hestenes algorithm(Jacobi)

• Golub Reinsch method 

– Simple and compact

– Maps well to the GPU

– Popular in numerical libraries
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Golub Reinsch algorithm

• Bidiagonalization:

– Series of householder transformations

• Diagonalization:

– Implicitly Shifted QR iterations 
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SVD 

• Overall algorithm

– B = QTAP 

Bidiagonalization of A to B

S = XTBY 

Diagonalization of B to S

– U = QX , V T = (PY ) T  

Compute orthogonal matrices U andV T

• Complexity: O(mn2) for m>n
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Results

• Intel 2.66 GHz Dual Core CPU used

• Speedup on NVIDIA GTX 280: 

– 3-8 over MKL LAPACK

– 3-60 over MATLAB    
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Contd…

• CPU outperforms for smaller matrices

• Speedup increases with matrix size
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Contd…

• SVD timing for rectangular matrices 

(m=8K)

– Speedup increases with varying dimension
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Contd…
• SVD of upto 14K x 14K on Tesla S1070 

takes 76 mins on GPU

• 10K x 10K SVD takes 4.5 hours on CPU, 

25.6 minutes on GPU
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Contd…

• Yamamoto achieved a speedup of 4 on 

CSX600 for very large matrices

• Bobda report the time for 106 x 106 matrix 

which takes 17 hours

• Bondhugula report only the partial 

bidiagonalization time
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Timing for Partial Bidiagonalization

• Speedup:1.5-16.5 over Intel MKL

• CPU outperforms for small matrices

• Timing comparable to Bondhugula (11 
secs on GTX 280 compared to 19 secs 
on 7900)

SIZE
Bidiag.

GTX 280

Partial 
Bidiag. 

GTX 280

Partial 
Bidiag.

Intel MKL

512 x 512 0.57 0.37 0.14

1K x 1K 2.40 1.06 3.81

2K x 2K 14.40 4.60 47.9

4K x 4K 92.70 21.8 361.8

Time in secs
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Timing for Diagonalization 

• Speedup:1.5-18 over Intel MKL
• Maximum Occupancy: 83%
• Data coalescing achieved
• Performance increases with matrix size
• Performs well even for small matrices

SIZE
Diag.

GTX 280

Diag.

Intel MKL

512 x 512 0.38 0.54

2K x 2K 5.14 49.1

4K x 4K 20 354

8K x 2K 8.2 100

Time in secs
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Limitations

• Limited double precision support 

• High performance penalty

• Discrepancy due to reduced precision

m=3K, n=3K
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Contd…

• Max singular value discrepancy = 0.013%

Average discrepancy < 0.00005%

• Average discrepancy < 0.001% for U and 

VT

• Limited by device memory
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Regular Algorithms on CUDA

PPoPP Tutorial on GPUs. Jan 10, 2010



II
IT

 H
y
d

er
ab

ad

Mapping an Image on CUDA

Image         Grid       

Image divided 
into blocks  

Block
Block sub-
divided into 
threads

thread             pixel

Kernel runs on

each pixel
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Image Processing, Filtering

• Thread accesses its pixel data 
using thread to pixel mapping
– Read is efficient: Coalesced

– Process each pixel independently 
and write results

• 2D Filtering: Keep block 
values + neighbouring rows 
and cols in shared memory
– Coalesced access to bring to SM

– Synchronize threads of block to 
ensure loading

– A thread computes its pixel’s 
output value from shared memory

– Write results coalesced

Shared Memory

Processors/Threads
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Mean filtering

float *shMem = (float *) &sharedMem[0]  // Pointer

// Computer image coordinates

x = blockIdx.x*blockDim.x + threadIdx.x

y = blockIdx.y*blockDim.y + threadIdx.y

// Compute a local coordinate within block

localIndex = threadIdx.x+threadIdx.y*blockDim.x

// Copy own portion to shared memory

shMem[localIndex] = globalImage[y*width + x]

__syncthreads() // Wait till all copying is done

// Compute the required output and copy back

g_odata[y*width + x] = meanGreyValue()
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Mean Computation

float meanValue = 0.0

// Compute the average of the 9 pixels

for (int i=0; i<3; i++)

for (int j=0; j<3; j++)

indx = (threadIdx.x – i) + (threadIdx.y – j)*blockDim.x

meanValue += shMem[indx]

meanValue /= 9.0

Note:

• Borders are not handled properly.

• Needs if-then-else to process borders specially

• Divergence: Different threads doing different actions

• Always suffers in performance on SIMD architectures

• Intra-warp divergence only for CUDA
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Image Rotation

• Rotate by angle q.

• x’ = x cos q - y sin q
y’ = x sin q + y cos q

• Fractional coordinates!

• Think reverse and 
interpolate

• x = x’ cos q + y’ sin q
y = x’ sin  q - y’ cos q

• Can use texture memory 
to get interpolation

q

P

P’
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Image Rotation

// image/texture coordinates
x = blockIdx.x*blockDim.x + threadIdx.x
y = blockIdx.y*blockDim.y + threadIdx.y;
u = x / (float) width
v = y / (float) height;

// transform coordinates
u -= 0.5f, v -= 0.5f;
tu = u*cosf(theta) + v*sinf(theta) + 0.5f
tv = v*cosf(theta) - u*sinf(theta) + 0.5f;

// read from texture and write to global memory
g_odata[y*width + x] = tex2D(tex, tu, tv)

// Interpolation: img[i,j] (1-b) (1-c) + img[i,j+1] (1-b) c +
// img[i+1,j] (1 - b) c + img[i+1,j+1] b c
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Data-Parallel Computation

• Kernels operate on data elements

– Little interaction between data elements

– Simple model. Think like data elements. Know little!

• Also called

– Stream computing

– Throughput computing

• Application areas

– Signal processing, Image processing

– (Large) matrix operations

– Scientific computing with large data
• Molecues, fluid flow, ….
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Thank you!


