
II
IT

 H
y
d

er
ab

ad

Irregular Algorithms on the GPU

P. J. Narayanan
Centre for Visual Information Technology
International Institute of Information Technology
Hyderabad

PPoPP Tutorial on GPUs. Jan 10, 2010

II
IT

 H
y
d

er
ab

ad

Graph Cuts for Computer Vision

on the GPU

Work done with Vibhav Vineet

(CVGPU08 Workshop)

PPoPP Tutorial on GPUs. Jan 10, 2010

II
IT

 H
y
d

er
ab

ad

Graph Cuts in Computer Vision

• Several optimization problems have been mapped to
maxflow on a graph built from the pixels with a special s
node and t node.
– Segmentation: Assign binary labels to pixels

• Pixels connected to s after cut is foreground and the rest are
background.

– Stereo matching: Assign integer labels to pixels

• Disparity is the standard label.

• Framework works for many problems

• Many sequential algorithms exist. Goldberg-Tarjan (push-
relabel) and Edmonds-Karp (augmenting path based) are
popular.
– Former is more parallelizable

II
IT

 H
y
d

er
ab

ad

The st-Mincut Problem

Graph (V, E, C)

Vertices V = {v1, v2 ... vn}

Edges E = {(v1, v2)}

Costs C = {c(1, 2)}

Source

Sink

v1 v2

2

5

9

4
2

1

II
IT

 H
y
d

er
ab

ad

The st-Mincut Problem

Source

Sink

v1 v2

2

5

9

4
2

1

What is an st-cut?

II
IT

 H
y
d

er
ab

ad

The st-Mincut Problem

Source

Sink

v1 v2

2

5

9

4
2

1

What is an st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges
going from S to T

5 + 2 + 9 = 16

II
IT

 H
y
d

er
ab

ad

The st-Mincut Problem

What is an st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges
going from S to T

What is the st-mincut?

st-cut with the
minimum cost

Source

Sink

v1 v2

2

5

9

4
2

1

2 + 1 + 4 = 7

II
IT

 H
y
d

er
ab

ad

Maxflow Algorithms

Goldberg’s generic Push-
Relabel Algorithm

1. Intialize-Preflow(G,s)

2. Perform an applicable push or
relabel operation

3. Repeat untill there exists no
applicable push or relabel
operation

Source

Sink

v1 v2

2

5

9

4
2

1

Flow = 0

Algorithms assume non-negative capacity

II
IT

 H
y
d

er
ab

ad

Maxflow Algorithms

Push Operation

1. V is overflowing

2. Height h(V2) == h(V1) + 1

3. Push as much unit of flows from
V2 to V1

Source

Sink

v1

v2

5

9

1

2

Algorithms assume non-negative capacity

Flow = 0

4

2

Height h

II
IT

 H
y
d

er
ab

ad

Maxflow Algorithms

Relabel Operation

1. V2 is overflowing and
is in residual graph

2. Height h(V2) <= h(V1)

3. Increase the height of V2

Source

Sink

v1
v2

0

1

2

Flow = 0

4

Height h

II
IT

 H
y
d

er
ab

ad

GraphCuts on Images

• Specialized algorithms for

vision problems

– Grid graphs

– Low connectivity; typically

limited to 4, 8 or 27

II
IT

 H
y
d

er
ab

ad

Image Grid

Image/Grid
divided into
blocks

Block
Block sub-
divided into
threads

thread pixel

Mapping Image On CUDA

II
IT

 H
y
d

er
ab

ad
Push Relabel Algorithm on

CUDA

1. Push is an local operation with each node sending
flows to its neighbors

2. Relabel is also a local operation

3. Problems faced:

1. RAW problems: (Read after write)

2. Synchronization is limited to the threads of a
block.

II
IT

 H
y
d

er
ab

ad
Push Relabel Algorithm on

CUDA

1. Push operation is divided into
two phases: Push Phase and
Pull Phase

2. Relabel is also local operation

3. Naïve Solution: Three Kernels

1. Push Kernel

2. Pull Kernel

3. Relabel Kernel

source

sink

II
IT

 H
y
d

er
ab

ad

Push Kernel (node u)

1. Load h(u) from the global memory
to shared memory of the block.

2. Synchronize threads to ensure
completion of load

3. Push flow to the eligible nodes
without violating the preflow
conditions.

4. Update the residual capacities of
edges(u,v) in the residual graphs.

5. Store the flow pushed to each edge
in a special global memory array F.

Height required

by 9 nodes

II
IT

 H
y
d

er
ab

ad

Pull Kernel (node u)

1. Read the flows pushed to u from
the F array of its neighbors.

2. Compute the final excess flow by
aggregating all incoming flows.
Store it as the e(u) value in global
memory.

II
IT

 H
y
d

er
ab

ad

Relabel Kernel (node u)

1. Load h(u) from the global memory
to the shared memory.

2. Synchronize to ensure the
completion of load of heights.

3. Compute the minimum heights of
neighbors of node u.

4. Write the new height to global
memory location h(u).

Height required

by 9 nodes

II
IT

 H
y
d

er
ab

ad
Push and Relabel Kernels (Shared

Memory)

1. Load h(u) from the global memory
to shared memory of the block.

Shared Memory Used:

- Each Block has MxN threads.

Internal Nodes:

Each Internal Node () requires
heights of 4 other nodes ()
from the same block.

M

N

II
IT

 H
y
d

er
ab

ad
Push and Relabel Kernels (Shared

Memory)

1. Load h(u) from the global memory
to shared memory of the block.

Shared Memory Used:

Border Nodes:

Each Border Node() requires
heights of other nodes() from
the different blocks.

M

N- Each Block has MxN threads.

II
IT

 H
y
d

er
ab

ad
Push and Relabel Kernels (Shared

Memory)

1. Load h(u) from the global memory
to shared memory of the block.

Shared Memory Used:

- Each Block has MxN threads.
- Total Shared Memory Used:

- (M+2)x(N+2)x(sizeof(element))

M

N

CUDA Block

II
IT

 H
y
d

er
ab

ad

Push Relabel Algorithm
1. Push operation is divided into

two phases: Push Phase and
Pull Phase

2. Relabel is also local operation

3. Different Solution : Two
kernels

1. Push Kernel

2. Pull + Relabel Kernel

source

sink

II
IT

 H
y
d

er
ab

ad

Pull + Relabel Kernel (node u)
1. Load h(u) from the global memory to the

shared memory.

2. Synchronize threads to ensure the
completion of load.

3. Update the excess flow e(u) and residual
capacities of edges (u,v) in the residual
graph with the flows from the global
memory array F.

4. Synchronize to ensure completion of
updation of edge-weights and excess flow.

5. Compute the minimum heights of neighbors
of node u.

6. Write the new height to global memory
location h(u).

Height required

by 9 nodes

II
IT

 H
y
d

er
ab

ad

On Hardware with Atomic Capabilities

1. Push and Pull operations can
performed without any RAW
problem.

2. Relabel is also local operation

3. Third Solution on Hardware
with Atomic Capabilities: Two
kernels

1. Push + Pull Kernel

2. Relabel Kernel

source

sink

II
IT

 H
y
d

er
ab

ad

Push + Pull Kernel (node u)
1. Load h(u) from the global memory to

the shared memory.

2. Synchronize threads to ensure the
completion of load.

3. Push flows to eligible neighbors
atomically without violating the
preflow condition.

4. Update the edge-weights of (u,v) and
(v,u) atomically in the residual graph.

5. Update the excess flow of e(u) and
e(v) atomically in the residual graph.

source

sink

II
IT

 H
y
d

er
ab

ad

Results

Image Size Time (CPU)

(millisecond)

Time

(Non- Atomic)

Time

(Atomic)

Time

(Stochastic)

Sponge 640x480 142 28 16 11

Flower 608x456 188 33 26 16

Person 608x456 140 31 27 20

Synthetic 1Kx1K 655 19 10 7

Vibhav Vineet and P J Narayanan. “CudaCuts”. IEEE CVPR Workshop

on Computer Vision on the GPUs. Alaska, June 2008.

II
IT

 H
y
d

er
ab

ad

Fast and Scalable List Ranking

on the GPU

M. Suhail Rehman, Kishore Kothapalli, P. J. Narayanan

Center for Security, Theory, and Algorithmic Research

Center for Visual Information Technology

International Institute of Information Technology, Hyderabad

II
IT

 H
y
d

er
ab

ad

The List Ranking Problem

• Given a list of N elements, rank each

element based on the distance of that

element with the end of the list.

• A sequential algorithm is trivial and runs on

O(n)

• Many parallel algorithms exist for various

models.

II
IT

 H
y
d

er
ab

ad

Types of Linked Lists

51 86 2 310947

41 102 3 98765

Ordered List

Unordered List

II
IT

 H
y
d

er
ab

ad

Baseline Implementation

• Wyllie’s Algorithm uses Pointer Jumping

• Initialize Ranks to 1

• For each element in Array, set it’s rank to

rank + rank of Successor

• Reset the Successor value to the successor

of it’s successor (effectively jumping over

and contracting the list)

II
IT

 H
y
d

er
ab

ad

GPU-Specific Optimizations

• Load the data elements when needed

• Bitwise operations to pack and unpack data

• Block-level thread synchronization to force

threads to write in a coalesced manner

• Current best implementation of Pointer

Jumping on the GPU

II
IT

 H
y
d

er
ab

ad

Results

0.01

0.1

1

10

100

1000

10000

100000

1 K 2 K 4 K 8 K 16

K

32

K

64

K

128

K

256

K

512

K

1 M 2 M 4 M 8 M 16

M

32

M

64

M

T
im

e
(m

il
li

se
co

n
d

s)

List Size

CPU

Wylie-64

II
IT

 H
y
d

er
ab

ad

Helman JáJá Algorithm

• Wyllie’s algorithm is work suboptimal at  (n log n)

• Helman JáJá is based on sparse ruling set approach

from Reid-Miller

• Originally devised for Symmetric multiprocessor

systems with low processor count.

• Algorithm of choice for all recent work in this field

• Worst Case runtime is O(log n + n/p) and O(n) work.

II
IT

 H
y
d

er
ab

ad

Helman-JáJá (Contd.)

• Helman JáJá algorithm originally devised for
SMP with low processor count

• Splits a list into smaller sublists, computes
local rank of each sublist and stores it into a
smaller, new list.

• Perform prefix sum on the new list

• Recombine the global prefix sum of the new
list with the local ranks of the original list.

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Step 1. Select Splitters at equal intervals

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Step 2. Traverse the List until the next splitter is met
and increment local ranks as we progress

0 0 0 0 0 0 0 0 0 0Local Ranks

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

0 0 1 0 1 1 0 0 0 1Local Ranks

Step 2. Traverse the List until the next splitter is met
and increment local ranks as we progress

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

0 0 1 2 0 1 2 0 0 1Local Ranks

Step 2. Traverse the List until the next splitter is met
and increment local ranks as we progress

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Step 3. Stop When all elements have been assigned a local
rank

0 3 1 2 0 1 2 3 0 1Local Ranks

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Step 4. Create a new list of splitters which contains a prefix
value that is equal to the local rank of it’s predecessor

0 3 1 2 0 1 2 3 0 1Local Ranks

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Step 4. Create a new list of splitters which contains a prefix
value that is equal to the local rank of it’s predecessor

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Step 5. Scan the global ranks array sequentially

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 0 0 0 0 0 0 0 0 0

Local Ranks

Final Ranks

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 0 1 0 0 0 0 0 0 0

Local Ranks

Final Ranks

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 0 1 0 0 0 2 0 0 0

Local Ranks

Final Ranks

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 5 1 0 0 0 2 0 0 0

Local Ranks

Final Ranks

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 5 1 4 0 0 2 0 0 0

Local Ranks

Final Ranks

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 5 1 4 0 3 2 0 0 0

Local Ranks

Final Ranks

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 5 1 4 0 3 2 0 1 0

Local Ranks

Final Ranks

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 5 1 4 6 3 2 0 1 0

Local Ranks

Final Ranks

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 5 1 4 6 3 2 9 1 0

Local Ranks

Final Ranks

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 5 1 4 6 3 2 9 1 7

Local Ranks

Final Ranks

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

0 3 02 1 01 2 3 1

0 5 1 4 6 3 2 9 1 7

Local Ranks

Final Ranks

II
IT

 H
y
d

er
ab

ad

Modifying the algorithm for GPU

• Step 5 is a sequential ranking step.

• When we choose log n splitters, we reduce

the list to n/log n, which is still large

amount of sequential work

• By Amdahl’s law, this is a bottleneck for

parallel speedup. More so in the case of

GPU.

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Make step 5 recursive to allow the GPU to continue
processing the list in parallel

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

II
IT

 H
y
d

er
ab

ad

4 8 1 3 7 - 62 59
Successor

Array

Make step 5 recursive to allow the GPU to continue
processing the list in parallel

0 3 1 2 0 1 2 3 0 1Local Ranks

2 1-

0 4 2

New List

Successor Array

Global Ranks

2 1-

0 6 2 After Ranking

Process this list again
using the algorithm and

reduce it further.

II
IT

 H
y
d

er
ab

ad

GPU Implementation

• Each phase is coded as separate GPU kernel
– Since each step requires global synchronization.

• Splitter Selection
– Each thread chooses a splitter

• Local Ranking
– Each thread traverses its corresponding sublist and get

the global ranks

• Recursive Step

• Recombination Step
– Each thread adds the global and local ranks for each

element

II
IT

 H
y
d

er
ab

ad

When do we stop?

• Convergence can be met until list size is 1

• We also have the option to send a small list

to CPU or Wyllie’s algorithm so that it can

be processed faster than on this algorithm.

• May save about 1% time

II
IT

 H
y
d

er
ab

ad

Choosing the right amount of

splitters

• Notice that choosing splitters in a random

list yields uneven sublists

• We can attempt to load balance the

algorithm by varying the no. of splitters we

choose.

• n/log n works for small lists, n/2 log2 n

works well for lists > 1 M.

II
IT

 H
y
d

er
ab

ad

Results

• Significant Speedup over

sequential algorithm on

CPU ~ 10x

• Wylie’s algorithm works

best for small lists < 512

K

• GPU RHJ works well for

large lists

• 2 log 2N works well for

lists > 1M

II
IT

 H
y
d

er
ab

ad

Ordered Lists

• Perform significantly

faster than random

lists.

• Data locality is

automatically taken

advantage of by the

global memory access

hardware

• Compared with GPU

ordered scan.

0.1

1

10

100

1000

512K 1M 2M 4M 8M 16M

CPU (Ordered) GPU RHJ (Ordered)

CUDPP Scan GPU RHJ (Random)

II
IT

 H
y
d

er
ab

ad

Other Irregular Applications

• Graph Algorithms:

– Shortest path

– Breadth-First Search

– Spanning Tree, etc.

– Etc

• Many others

II
IT

 H
y
d

er
ab

ad

General Graph Algorithms
1. General Graph Algorithms:

• Breadth First Search

• ST- Connectivity

• Single Source Shortest Paths

• All Pairs Shortest Path

• Minimum Spanning Tree

• Max Flow

2. Randomness in the graph posses great difficulty in utilizing
the hardware resources.

3. Connectivity is unknown.

4. Graph Representation is not trivial.

II
IT

 H
y
d

er
ab

ad

Singular Value Decomposition

Work with Sheetal Lahabar

Appeared in IEEE IPDPS.

Rome. June 2009.

PPoPP Tutorial on GPUs. Jan 10, 2010

II
IT

 H
y
d

er
ab

ad

Problem Statement

• SVD on GPU

SVD of matrix A(mxn) for m>n

A = U S V

U and V are orthogonal and S is a diagonal
matrix

II
IT

 H
y
d

er
ab

ad

Motivation

• SVD has many applications

• High computational complexity

• GPUs have high computing power

– Teraflop performance

• Exploit the GPU for high performance

II
IT

 H
y
d

er
ab

ad

Methods

• SVD algorithms

– Golub Reinsch

(Bidiagonalization and Diagonalization)

– Hestenes algorithm(Jacobi)

• Golub Reinsch method

– Simple and compact

– Maps well to the GPU

– Popular in numerical libraries

II
IT

 H
y
d

er
ab

ad

Golub Reinsch algorithm

• Bidiagonalization:

– Series of householder transformations

• Diagonalization:

– Implicitly Shifted QR iterations

II
IT

 H
y
d

er
ab

ad

SVD

• Overall algorithm

– B = QTAP

Bidiagonalization of A to B

S = XTBY

Diagonalization of B to S

– U = QX , V T = (PY) T

Compute orthogonal matrices U andV T

• Complexity: O(mn2) for m>n

II
IT

 H
y
d

er
ab

ad

Results

• Intel 2.66 GHz Dual Core CPU used

• Speedup on NVIDIA GTX 280:

– 3-8 over MKL LAPACK

– 3-60 over MATLAB

II
IT

 H
y
d

er
ab

ad

Contd…

• CPU outperforms for smaller matrices

• Speedup increases with matrix size

II
IT

 H
y
d

er
ab

ad

Contd…

• SVD timing for rectangular matrices

(m=8K)

– Speedup increases with varying dimension

II
IT

 H
y
d

er
ab

ad

Contd…
• SVD of upto 14K x 14K on Tesla S1070

takes 76 mins on GPU

• 10K x 10K SVD takes 4.5 hours on CPU,

25.6 minutes on GPU

II
IT

 H
y
d

er
ab

ad

Contd…

• Yamamoto achieved a speedup of 4 on

CSX600 for very large matrices

• Bobda report the time for 106 x 106 matrix

which takes 17 hours

• Bondhugula report only the partial

bidiagonalization time

II
IT

 H
y
d

er
ab

ad

Timing for Partial Bidiagonalization

• Speedup:1.5-16.5 over Intel MKL

• CPU outperforms for small matrices

• Timing comparable to Bondhugula (11
secs on GTX 280 compared to 19 secs
on 7900)

SIZE
Bidiag.

GTX 280

Partial
Bidiag.

GTX 280

Partial
Bidiag.

Intel MKL

512 x 512 0.57 0.37 0.14

1K x 1K 2.40 1.06 3.81

2K x 2K 14.40 4.60 47.9

4K x 4K 92.70 21.8 361.8

Time in secs

II
IT

 H
y
d

er
ab

ad

Timing for Diagonalization

• Speedup:1.5-18 over Intel MKL
• Maximum Occupancy: 83%
• Data coalescing achieved
• Performance increases with matrix size
• Performs well even for small matrices

SIZE
Diag.

GTX 280

Diag.

Intel MKL

512 x 512 0.38 0.54

2K x 2K 5.14 49.1

4K x 4K 20 354

8K x 2K 8.2 100

Time in secs

II
IT

 H
y
d

er
ab

ad

Limitations

• Limited double precision support

• High performance penalty

• Discrepancy due to reduced precision

m=3K, n=3K

II
IT

 H
y
d

er
ab

ad

Contd…

• Max singular value discrepancy = 0.013%

Average discrepancy < 0.00005%

• Average discrepancy < 0.001% for U and

VT

• Limited by device memory

II
IT

 H
y
d

er
ab

ad

Regular Algorithms on CUDA

PPoPP Tutorial on GPUs. Jan 10, 2010

II
IT

 H
y
d

er
ab

ad

Mapping an Image on CUDA

Image Grid

Image divided
into blocks

Block
Block sub-
divided into
threads

thread pixel

Kernel runs on

each pixel

II
IT

 H
y
d

er
ab

ad

Image Processing, Filtering

• Thread accesses its pixel data
using thread to pixel mapping
– Read is efficient: Coalesced

– Process each pixel independently
and write results

• 2D Filtering: Keep block
values + neighbouring rows
and cols in shared memory
– Coalesced access to bring to SM

– Synchronize threads of block to
ensure loading

– A thread computes its pixel’s
output value from shared memory

– Write results coalesced

Shared Memory

Processors/Threads

II
IT

 H
y
d

er
ab

ad

Mean filtering

float *shMem = (float *) &sharedMem[0] // Pointer

// Computer image coordinates

x = blockIdx.x*blockDim.x + threadIdx.x

y = blockIdx.y*blockDim.y + threadIdx.y

// Compute a local coordinate within block

localIndex = threadIdx.x+threadIdx.y*blockDim.x

// Copy own portion to shared memory

shMem[localIndex] = globalImage[y*width + x]

__syncthreads() // Wait till all copying is done

// Compute the required output and copy back

g_odata[y*width + x] = meanGreyValue()

II
IT

 H
y
d

er
ab

ad

Mean Computation

float meanValue = 0.0

// Compute the average of the 9 pixels

for (int i=0; i<3; i++)

for (int j=0; j<3; j++)

indx = (threadIdx.x – i) + (threadIdx.y – j)*blockDim.x

meanValue += shMem[indx]

meanValue /= 9.0

Note:

• Borders are not handled properly.

• Needs if-then-else to process borders specially

• Divergence: Different threads doing different actions

• Always suffers in performance on SIMD architectures

• Intra-warp divergence only for CUDA

II
IT

 H
y
d

er
ab

ad

Image Rotation

• Rotate by angle q.

• x’ = x cos q - y sin q
y’ = x sin q + y cos q

• Fractional coordinates!

• Think reverse and
interpolate

• x = x’ cos q + y’ sin q
y = x’ sin q - y’ cos q

• Can use texture memory
to get interpolation

q

P

P’

II
IT

 H
y
d

er
ab

ad

Image Rotation

// image/texture coordinates
x = blockIdx.x*blockDim.x + threadIdx.x
y = blockIdx.y*blockDim.y + threadIdx.y;
u = x / (float) width
v = y / (float) height;

// transform coordinates
u -= 0.5f, v -= 0.5f;
tu = u*cosf(theta) + v*sinf(theta) + 0.5f
tv = v*cosf(theta) - u*sinf(theta) + 0.5f;

// read from texture and write to global memory
g_odata[y*width + x] = tex2D(tex, tu, tv)

// Interpolation: img[i,j] (1-b) (1-c) + img[i,j+1] (1-b) c +
// img[i+1,j] (1 - b) c + img[i+1,j+1] b c

II
IT

 H
y
d

er
ab

ad

Data-Parallel Computation

• Kernels operate on data elements

– Little interaction between data elements

– Simple model. Think like data elements. Know little!

• Also called

– Stream computing

– Throughput computing

• Application areas

– Signal processing, Image processing

– (Large) matrix operations

– Scientific computing with large data
• Molecues, fluid flow, ….

II
IT

 H
y
d

er
ab

ad

Thank you!

