
Information Processing Letters 114 (2014) 256–263
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On reporting the L1 metric closest pair in a query rectangle

Ananda Swarup Das a, Prosenjit Gupta b,∗, Kishore Kothapalli c,∗,
Kannan Srinathan c,∗
a IBM India Research Labs, New Delhi, India
b Heritage Institute of Technology, Kolkata, India
c International Institute of Information Technology, Hyderabad, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 May 2013
Received in revised form 11 December 2013
Accepted 12 December 2013
Available online 13 December 2013
Communicated by R. Uehara

Keywords:
Computational geometry
Range queries
Closest pair
Manhattan metric

In this work, we consider the problem of finding the closest pair (in L1 metric) of
points in an orthogonal query rectangle. Given a set of n static points on a U × U grid,
we preprocess these points into a data structure of size O (mf (m) log2 m) that can be
queried in time O ((g(m) + log log m) log3 m), for m = O (n log U) and (i) f (m) = O (1) and
g(m) = O (logε m); (ii) f (m) = O (log log m) and g(m) = O (log log m); (iii) f (m) = O (logε m)

and g(m) = O (1). Here ε: 0 < ε < 1 is a small but arbitrary constant.
© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Range searching is one of the most fundamental and
well studied problems in computational geometry. The
objective of any range searching query is to preprocess
a set S of geometric objects (points, lines, etc.) such that
given an orthogonal query rectangle, we can report the
subset S ′ of objects intersecting the query rectangle. How-
ever, more often than not, an informative summary of the
output is of more interest to a user. Such informative sum-
mary can be obtained by applying appropriate aggregate
functions like counting, maximal points, closest pair (see [1,
3,6]). These aggregate functions find applications in tools
like databases, tools for design rule checking in electronic
design automation, decision making, etc. In this work, we
consider the closest pair in L1 metric to be our aggre-
gate function and design data structures to support range-
aggregate queries. The problem finds its application in

* Corresponding authors.
E-mail addresses: anandaswarup@gmail.com (A.S. Das),

prosenjit_gupta@acm.org (P. Gupta), kkishore@mail.iiit.ac.in
(K. Kothapalli), srinathan@mail.iiit.ac.in (K. Srinathan).
0020-0190/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2013.12.006
tools like EDA-design rule checking where the use of L1

metric is quite common. The problem may also be impor-
tant for air-traffic control where a controller may wish to
determine the closest pair of aircrafts in any query window
to avoid possible collisions. For such a tool, the positions of
the aircrafts can be considered as points (see [6]).

As stated in [6], the problem of finding the clos-
est pair in a query rectangle is not decomposable. This
means that if S1 and S2 are two subsets of S ′ such
that S ′ = S1 ∪ S2, then the closest pair information for
S1, S2 respectively do not help us to find the closest
pair in S ′ . Of course, one can first find all the points
in the query rectangle and then try to find the distance
between each pair of points to return the closest pair.
But the solution is prohibitive if the number of points
is too large. In this work, we therefore design a data
structure of size O (mf (m) log2 m) that can be queried
in time O ((g(m) + log log m) log3 m), for m = O (n log U)

and (i) f (m) = O (1) and g(m) = O (logε m); (ii) f (m) =
O (log log m) and g(m) = O (log log m); (iii) f (m) =
O (logε m) and g(m) = O (1). Here ε is a small but arbi-
trary constant. We assume our model of computation to
be word RAM with size of each word being θ(log U). All

http://dx.doi.org/10.1016/j.ipl.2013.12.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:anandaswarup@gmail.com
mailto:prosenjit_gupta@acm.org
mailto:kkishore@mail.iiit.ac.in
mailto:srinathan@mail.iiit.ac.in
http://dx.doi.org/10.1016/j.ipl.2013.12.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2013.12.006&domain=pdf

A.S. Das et al. / Information Processing Letters 114 (2014) 256–263 257
the storage spaces mentioned in this work are in terms of
words unless specified otherwise.

1.1. Our contribution

The formal definition for the problem that we study in
this work is as follows:

Problem 1. Given a set S of n points on a U × U grid,
preprocess S into a data structure such that given an axes-
parallel query rectangle q, the closest pair (in the L1 met-
ric) in S ∩ q can be reported efficiently.

We assume that the coordinates of the points are in-
tegers and no two points are on the same horizontal or
vertical line. It should be noted that the distance between
two points p, r in the L1 metric is equal to the half of the
perimeter of the axes-parallel rectangle formed by taking
p, r as diagonally opposite corners of the rectangle.

Let Query(q, S) denote the operation of reporting the
closest pair in L1 metric for a set of points from S in the
query rectangle q. Also, let ε be an arbitrary but small con-
stant. For Problem 1, we have the following result

Theorem 1. A set S of n points on a U × U grid can be pre-
processed into a data structure of size O (mf (m) log2 m) that
supports Query(q, S) in time O ((g(m) + log log m) log3 m), for
m = O (n log U) and (i) f (m) = O (1) and g(m) = O (logε m);
(ii) f (m) = O (log log m) and g(m) = O (log log m) and
(iii) f (m) = O (logε m) and g(m) = O (1).

2. Preliminaries

Rectangle visibility We define two points (p, r) of S to be
rectangle visible to each other, if the axes parallel rectan-
gle defined by p, r as diagonally opposite corners does not
contain any other point from S .

Range tree Suppose, we are given a set S of n points in
R2 and we need to preprocess these points into a data
structure such that given an axes parallel query rectan-
gle, we can efficiently report the points of the set S that
are in the query rectangle. Range tree is known to be a
very efficient data structure for this problem [4]. Broadly
speaking, the range tree needed to solve the problem is
a two-layer balanced binary search tree which is con-
structed as follows: build a primary tree Tx , the leaf nodes
of which store the x-coordinates of the points of S in
non-decreasing order. Each internal node of the tree Tx

is assigned to an interval int(μ) which is equal to the
union of the discrete intervals associated with the leaf
nodes of the subtree rooted at μ. Each internal node μ
maintains an auxiliary array Aμ which stores the x and
the y coordinates of the points present in the subtree
rooted at μ. The array Aμ is sorted in nondecreasing or-
der of the y-coordinates of the points stored. Given a
query rectangle, [a,b] × [c,d], the segment [a,b] is al-
located to the node φ if the interval int(φ) ⊂ [a,b] but
int(parent(φ)) � [a,b]. As is known from [4], the segment
[a,b] is thus allocated to O (log n) canonical nodes. Next,
at each such canonical node φ, the corresponding auxiliary
array Aφ is searched to find the smallest index i such that
c � Aφ[i] and the largest index j such that Aφ[j] � d. All
the points with y-coordinates in Aφ[i, . . . , j] are then re-
ported. The query time needed by this search technique is
O (log2 n +k) where k is the size of the output. The storage
space needed by the range tree is O (n log n). The query
time can be improved to O (log n + k) by using a pointer
jumping technique known as fractional cascading. For more
details on the query search as well as fractional cascad-
ing, one can refer to [4]. The range tree data structure
can be extended for higher dimensions with a penalty of
O (log n) on the storage space as well as on the query
time.

Compact range tree As stated above, a standard range tree
for a set of n static points in R2 uses O (n log n) space.
However, in [2] the authors have shown that the space re-
quirement for the standard range tree can be reduced by
storing compact representation of the auxiliary arrays Aμ .
More precisely, the array Aμ is stored as a bit vector where
the ith index of bit vector stores a zero if the point whose
y-coordinate is at position i in Aμ[1,n] is present in the
left subtree rooted at μ. Else Aμ[i] stores a one. As stated
in [8], we need to support two operations on the compact
range tree, namely: (a) noderange(c,d, v): given a range
[c,d] and a node v , noderange(c,d, v) returns two indices
i, j such that for any point p = (p(x), p(y)), if p(x) ∈ int(v)

and p(y) ∈ [c,d], then p(y) ∈ Av [i, . . . , j]; (b) point(v, i):
given an index i and a node v , point(v, i) returns the coor-
dinates of the point in Av [i]. For these two operations, the
following result is known from [2,8].

Lemma 1. There exists a compact range tree that uses O (nf (n))

space and supports operations point(v, i) and noderange(c,
d, v) in O (g(n)) and O (g(n) + log log n) time, respectively, for
(i) f (n) = O (1) and g(n) = O (logε n), (ii) f (n) = O (log log n)

and g(n) = O (log log n) and (iii) f (n) = O (logε n) and g(n) =
O (1).

Reporting points in a query rectangle using compact range tree
Given a query rectangle q = [a,b] × [c,d], the segment
[a,b] is allocated to a node μ in the compact tree if
int(μ) ⊂ [a,b] but int(parent(μ)) � [a,b]. For each of the
O (log n) nodes μ to which the segment [a,b] is allo-
cated, we run the operation noderange(c,d,μ) and find
the two indices i, j for the auxiliary array Aμ . Next, for
each l: i � l � j, we run the operation point(μ, l) to
find the coordinates of the point whose y-coordinate is
a rank l in Aμ . Thus, the operation point(μ, l) for each
l: i � l � j has to be executed for | j − i| times as each
of these points are in q. The exact query time of the algo-
rithm presented in this section is O (log n logε n + k logε n).
However, this can be improved to O ((1 + k) logε n) us-
ing the techniques of [2] without increasing the storage
space. Recently, the authors of [7] have shown a tech-
nique to report the points in a query rectangle in in-
creasing order of their x-coordinates in time O (logε n +
k logε n) using a compact range tree. Here k is the output
size.

258 A.S. Das et al. / Information Processing Letters 114 (2014) 256–263
Range minima/maxima query (RMQ) As defined in [5],
Range Minima (respectively Maxima) query is defined as
follows: given an array A[1,n] of elements from a totally
ordered set, a range minima (respectively maxima) query
RMQ A[l, r] returns the index of the smallest (respectively
largest) element in A[l, r]. It is known from [5] that for the
RMQ queries, there exists a data structure of size 2n +o(n)

bits and the data structure answers the queries in constant
time without accessing the values of the array A.

Reporting the most weighted point Suppose, we are given
a set S of n weighted static points in R2 and we need
to preprocess these points into a data structure such that
given an axes parallel query rectangle q, we can efficiently
report the maximum weighted point of the set S that is
in q. For this problem, we can have the following result.

Lemma 2. For a set S of n weighted static points in R2 , there ex-
ists a data structure of size O (nf (n)) that can be queried with
an axes parallel rectangle q to find the most weighted point
in the query rectangle in time O ((g(n) + log log n) log n), for
(i) f (n) = O (1) and g(n) = O (logε n), (ii) f (n) = O (log log n)

and g(n) = O (log logn) and (iii) f (n) = O (logε n) and g(n) =
O (1).

Proof. As the points of the set S are static, we map
the x and the y coordinates of the points in the set
S to a rank space which is a grid of size n × n. We
then build a compact range tree Tx , the leaves of which
store the x-coordinates of the points in the set S . At
each internal node μ, we associate a compact represen-
tation of the auxiliary array Aμ . Next, for the point p
whose y-coordinate is at position i in Aμ , we store its
corresponding weight w(p) in the ith index of a sepa-
rate array Bμ . We then construct a range maxima data
structure of [5] for the array Bμ . The range maxima
data structure is denoted by RMQμ . Once RMQμ is con-
structed, the array Bμ is deleted. Given a query rect-
angle [a,b] × [c,d], we allocate the segment [a,b] to
a canonical node φ, if and only if int(φ) ⊂ [a,b] but
int(parent(φ)) � [a,b]. The segment [a,b] is allocated to
O (log n) canonical nodes of Tx . For each such canonical
node φ, we find the indices (i, j) by running the query
noderange(c,d, φ). Next, we identify the index m with
maximum weight by running RMQφ[i, j] and find the coor-
dinates and the weight of the corresponding point by run-
ning point(φ, i). We need to collect O (log n) such values,
one from each canonical node. We then return the point
with the maximum weight among these O (log n) points.
RMQ at any node takes O (1) time. Thus, the running time
of this query algorithm is dependent on the performance
of noderange(c,d, φ) and point(φ, i). From Lemma 1, we
know that the operations noderange(c,d, φ) and point(φ, i)
can be supported in O (g(n)) and O (g(n) + log log n) time
using a storage space of O (nf (n)), for (i) f (n) = O (1)

and g(n) = O (logε n), (ii) f (n) = O (log log n) and g(n) =
O (log log n), and (iii) f (n) = O (logε n) and g(n) = O (1).
Since, we have to repeat noderange(c,d, φ) and point(φ, i)
for O (logn) nodes, the total query time we need is
O ((g(n) + log log n) log n). It should be noted that the cor-
rectness of the technique discussed here follows from the
correctness of the operations noderange(c,d, φ), point(i, φ)

and the RMQ[i, j]. �
Weighted rectangle visible points Let (r1, r2) ∈ S be two
rectangle visible points. We form a 4-d point p = (r1(x),
r2(x), r1(y), r2(y)) to which we assign a weight w(p). The
weight w(p) is equal to the half of the perimeter of the
axes parallel rectangle realized by (r1, r2) with (r1, r2) be-
ing two diagonally opposite corners of the rectangle. In
other words, w(p) = |r1(x) − r2(x)| + |r1(y) − r2(y)|. In the
rest of this work, we will call such a point as weighted 4-d
rectangle visible point.

3. Proposed solution for range aggregate closest pair in
L1 metric

3.1. An overview of the algorithm

In this section, we first provide an overview of our algo-
rithm without providing the details of the data structures
and preprocessing of data. For this section, the readers may
consider the data structures to be black boxes and assume
that the preprocessing is taken care of by some oracle.

For the n 2-d points in the set S , we first create
O (n log U) pairs of weighted 4-d rectangle visible points
and then preprocess these points into a data structure de-
noted by D . We also preprocess the coordinates of the n
2-d points in the set S into a compact range tree denoted
by RA. Given a query rectangle q = [a,b] × [c,d], we first
search the compact range tree RA and start reporting the
points in the query rectangle. There are two possible cases
which we enumerate next.

1. If the number of reported points is less than or equal
to four, then
• we find all pairs of rectangle visible points realizable

with the reported points and return the pair with
minimum Manhattan distance in between. It must
be noticed that the axes parallel rectangle realized
by two reported points with the two points being
diagonally opposite corners must be completely con-
tained in the query rectangle. Thus, to find if the
rectangle thus realized is empty, all we have to do
is to check for its emptiness with the other reported
points.

2. If the number of points reported exceeds four, then
• we stop reporting the points in the query rectan-

gle. Instead, we search D with q′ = [a,b] × [a,b] ×
[c,d] × [c,d] and find the 4-d point with smallest
weight in q′ .

Road map In Section 3.2, we provide the details of how
to create O (n log U) 4-d weighted points. In Section 3.3,
we discuss the data structure D . The query algorithm is
provided in details in Section 3.5. Finally, the reason for re-
porting only four points in the query rectangle is provided
in the Proof of Lemma 5.

3.2. Selecting the 4-d weighted points

For each point p ∈ S , find the rectangle visible points
for p in its northeast quadrant that is NE(p). The rectangle

A.S. Das et al. / Information Processing Letters 114 (2014) 256–263 259
Fig. 1. The point p and two rectangle visible points for p in its northeast
quadrant.

visible points for p = (p(x), p(y)) are actually the set or
chain of points in NE(p) that do not dominate any other
point in NE(p). This set of points are monotonically in-
creasing in their x-coordinates while monotonically de-
creasing in their y-coordinates. Denote such a chain as C .
Next, consider the topmost and the second topmost points
r1 = (r1(x), r1(y)) and r2 = (r2(x), r2(y)) of the chain C . In
the rest of the section, we denote by |r(y)− p(y)| (respec-
tively |r(x) − p(x)|) the distance of the projections of the
points r and p on the y-axes (respectively on the x-axes).

Consider Fig. 1. Let us first consider the following claim.

Lemma 3. Let r1, r2 be two points in S that are rectangle visible
from p in NE(p), r1(y) > r2(y) and h = |r1(y)− p(y)|. Now, if
r2 is closer to p than r1 , then |r2(y) − p(y)| < h

2 .

Proof. For contradiction, let us assume that |r2(y) −
p(y)| � h

2 .
Then, we have

∣
∣r1(y) − r2(y)

∣
∣ � h

2
. (1)

It is evident from Fig. 1 that
∣
∣r2(x) − r1(x)

∣
∣ <

∣
∣r2(x) − p(x)

∣
∣. (2)

Let dr2,p and dr1,r2 be the respective distances between the
points (r2, p) and (r2, r1). Clearly, dr2,p = |r2(x) − p(x)| +
|r2(y) − p(y)| and dr2,r1 = |r2(x) − r1(x)| + |r1(y) − r2(y)|.

By using Eqs. (1), (2) and our assumption that |r2(y) −
p(y)| � h

2 , we get

dr2,p > dr2,r1 . (3)

But, this is a contradiction to the assumption that r2, p are
the closest. �

Thus, for each point p ∈ S , we do the following:

1. We find the points which are rectangle visible from p
in its northeast quadrant. Let C be the chain of such
points. Consider these points in order of their decreas-
ing y-coordinates and denote these points as r1 . . . r|C | .

2. YSWEEP: Consider the topmost point r1 in the chain C .
Form a 4-d point (p(x), r1(x), p(y), r1(y)). Also, set
crux = r1. In the subsequent section, we will de-
note the coordinates of the point stored in crux as
(crux(x), crux(y)). Let hthreshold = |p(y) − crux(y)|.

3. For any point ri for i = 2, . . . , |C |, let h = |p(y)− ri(y)|.
If h <

hthreshold , we
2
Fig. 2. The point p and the visible points for p in its northeast quadrant.

(i) form a 4-d point (p(x), ri(x), p(y), ri(y))

(ii) set crux = ri and
(iii) set hthreshold = |p(y) − ri(y)|.

4. Repeat the above steps until all the points of the chain
C are visited.

5. XSWEEP: Next, we form a 4-d point with the last point
of the chain that is r|C | . Notice that this is the point
with maximum x-coordinate in the chain C . We set
crux = r|C | . Let h′

x,threshold = |p(x) − crux(x)|.
6. Now, consider the points in chain C in decreasing or-

der of their x coordinates. For any point ri starting
from the second rightmost point to the leftmost point,

let h′
x = |p(x) − ri(x)|. If h′

x <
h′

x,threshold
2 , we

(i) form a 4-d point (p(x), ri(x), p(y), ri(y))

(ii) set crux = ri and
(iii) set h′

x,threshold = |p(x) − ri(x)|, respectively.
7. Continue till all the points starting from the second

rightmost point to the leftmost point of the chain C
are visited.

8. Repeat similar steps in NW(p), SE(p), SW(p). The
step 3 (respectively 6) for the point p will start from
the point p′ = (p′(x), p′(y)) for which the horizontal
distance |p′(x) − p(x)| (respectively the vertical dis-
tance |p′(y) − p(y)|) is minimum.

Lemma 4. With a set of n points on a U × U grid, the number
of 4-d points thus formed is O (n log U).

Proof. Consider the chain C of the rectangle visible points
for the point p in its northeast quadrant. See Fig. 2. The
topmost point (respectively the rightmost point) of the
chain will surely form a 4-d point with p. The maximum
distance of the projection of the topmost point and the
point p on y-axes (respectively the rightmost point and
the point p on x-axes) is U . Let this distance be denoted
as h. The distance is set as a threshold. By the step 3 if
condition (respectively step 6 if condition), the second point
from the top (respectively from the right) in the chain
which forms a 4-d point with p has its projection on
the y-axes (respectively on the x-axes) at a distance < h

2
from the projection of p on the y-axes (respectively on the
x-axes) and if the point forms a 4-d point with p, then the
distance of its projection on the y-axes (or x-axes) is set
as the new threshold. Similarly, for any subsequent point z
to form a 4-d point with p, the distance of its projection
from the projection of p on the y-axes (respectively on the

260 A.S. Das et al. / Information Processing Letters 114 (2014) 256–263
x-axes) has to be less than half of the current threshold.
Hence the claim. �
3.3. Construction of data structure D

1. Let S ′ be the set of m = O (n log U) 4-d weighted
points, each representing a pair of rectangle visible
points in S . For any point p ∈ S ′: p = (p1(x), p2(x),
p1(y), p2(y), w(p)), (p1(x), p2(x), p1(y), p2(y)) are
the coordinates of the point p and w(p) is the weight
assigned to the point p. As stated earlier, w(p) =
|p1(x) − p2(x)| + |p1(y) − p2(y)|.

2. Construct a height balanced binary search tree Tx , the
leaves of which store in increasing order, the values
p1(x) for the points in S ′ . Each internal node μ ∈ Tx is
assigned an interval int(μ) which is equal to the union
of the discrete intervals associated with the leaf nodes
of the subtree rooted at μ.

3. For each internal node μ ∈ Tx construct a set S ′′ such
that p′ = (p2(x), p1(y), p2(y), w(p)) ∈ S ′′ if p1(x) ∈
int(μ) for p = (p1(x), p2(x), p1(y), p2(y), w(p)) and
p ∈ S ′ .

4. At each internal node μ ∈ Tx , associate an auxiliary
height balanced binary search tree Tμ,x , the leaves of
which store in increasing order, the values of p2(x).
Each internal node φ ∈ Tμ,x is assigned an interval
int(φ) which is equal to the union of the discrete in-
tervals associated with the leaf nodes of the subtree
rooted at φ.

5. At each internal node φ ∈ Tμ,x , construct a set Sφ such
that p′′ = (p1(y), p2(y), w(p)) ∈ Sφ if p2(x) ∈ int(φ)

for p′ = (p2(x), p1(y), p2(y), w(p)) and p′ ∈ S ′′ .
6. Thus, at each node φ ∈ Tμ,x we have a set of 2-d

weighted points. These points are stored in the set Sφ .
Hence, we construct an instance of the data struc-
ture of Lemma 2 at the node φ. We denote this
data structure as Wφ . While storing the point p′′ =
(p1(y), p2(y), w(p)) in Wφ , also store the point p =
(p1(x), p2(x), p1(y), p2(y), w(p)) along with it.

3.4. Construction of RA

As stated earlier, the data structure RA is a compact
range tree built on the 2-d static points of the set S such
that RA supports reporting points in a query rectangle in
O (logε n + k logε n) time. Here k is the output size.

3.5. Query algorithm

1. Given an axes-parallel query rectangle q = [a,b] ×
[c,d], we first query RA with q and start reporting
the points in S ∩ q. While reporting the points, we
maintain a counter to count the number of points thus
reported.

2. While counter � 4, continue reporting points.
(a) If |S ∩ q| � 4, find all pairs of empty axes parallel

rectangles realizable by the reported points with
two points being diagonally opposite and return
the pair which has the smallest Manhattan dis-
tance in between.
Fig. 3. The point p and r in q.

3. If counter == 5, we stop reporting. Instead, we search
the data structure D in the following way:
(a) given the axes-parallel query rectangle [a,b] ×

[c,d], we convert it into a 4-d orthogonal rect-
angular box [a,b] × [a,b] × [c,d] × [c,d]. Next,
we find the canonical nodes μ ∈ Tx such that
int(μ) ⊂ [a,b] but int(parent(μ)) � [a,b]. There
will be O (log m) such canonical nodes.

(b) For each such canonical node μ ∈ Tx , we search
the associated secondary tree Tμ,x and find the
canonical nodes φ ∈ Tμ,x such that int(φ) ⊂ [a,b]
but int(parent(φ))� [a,b].

(c) Thus, there are O (log2 m) canonical nodes. At
each such node φ, we search the data struc-
ture Wφ with the query rectangle [c,d] × [c,d]
and find the smallest weighted point in the rect-
angle [c,d] × [c,d]. Let |Wφ | be the number of
points stored in the data structure Wφ . From the
proof for Lemma 2, we know that after search-
ing Wφ at the node φ, there will be log(|Wφ |)
candidate points. Select the one with the smallest
weight.

(d) Thus, we get O (log2 m) 4-d weighted rectangle
visible points. We then return the point with
smallest weight among these O (log2 m) points.

Lemma 5. Given an axes parallel query rectangle q = [a,b] ×
[c,d], let p = (p(x), p(y)) and r = (r(x), r(y)) be the two
points that are closest in the query rectangle. However the rect-
angle visible point (p(x), r(x), p(y), r(y)) is not present in D.
Then, the query rectangle cannot have more than four points
of S.

Proof. Let Rect(p, r) be the axes parallel rectangle realized
by the points (p, r). See Fig. 3. With reference to Rect(p, r),
the query rectangle q is divided into eight regions denoted
by R1, . . . , R8. Our proof is divided into three parts. Pre-
cisely, we show that (i) there cannot be any point in the
regions R1, R2, R3, R4; (ii) there cannot be any point in the
regions R6 and R8; (iii) no more than one point can be
present in the region R7 (respectively in R5).

We assume all the coordinates to be positive.
Part (i): Let z = (z(x), z(y)) be a point in the region R2.
See Fig. 4. If there are more than one point in the re-
gion R2, then consider z to be the one with the smallest

A.S. Das et al. / Information Processing Letters 114 (2014) 256–263 261
Fig. 4. The point z is in region R2.

Fig. 5. The chain of rectangle visible points for p in its northeast quadrant.

x-coordinate. It should be noted that z will also be a rect-
angle visible point for p as z has the smallest x coordinate
in the region R2 which means that any point dominated by
z will also be dominated by r. Since r is a rectangle visi-
ble point, it does not dominate any point in NE(p). Hence,
z will be a rectangle visible point for p.

It must be evident from Fig. 3 that
∣
∣p(y) − r(y)

∣
∣ >

∣
∣z(y) − r(y)

∣
∣. (4)

Next, see Fig. 5. Since (p, r) do not form a 4-d point, by
step 8 of Section 3.2 (selecting the 4-d points), YSWEEP
has to start from a point above r in the chain C of rectan-
gle visible points for p in NE(p). This is because YSWEEP
starts from a point p′ ∈ C : p′ = (p′(x), p′(y)) such that
|p′(x) − p(x)| is minimum.

Let t be the last point above r that forms a 4-d point
with p during YSWEEP. Also, let o be the last point to the
right of r that forms a 4-d point with p during XSWEEP.
By step 6(iii) of Section 3.2, h′

x,threshold is set to |p(x)−o(x)|
once o forms a 4-d point with p.

Since z and r do not form 4-d points with p during
XSWEEP, by step 6 of Section 3.2, we have

∣
∣p(x) − z(x)

∣
∣ >

h′
x,threshold

2
. (5)

Similarly,

∣
∣p(x) − r(x)

∣
∣ >

h′
x,threshold

2
. (6)

Thus, |o(x) − z(x)| < h′
x,threshold and |o(x) − r(x)| < h′

x,threshold .
2 2
Fig. 6. The point m′ is in region R6 in q.

From Fig. 5, we can see that r(x) < z(x) < o(x). Thus,

∣
∣r(x) − z(x)

∣
∣ <

h′
x,threshold

2
. (7)

Therefore, |r(x) − z(x)| + |r(y) − z(y)| < |r(x) − p(x)| +
|r(y)− p(y)|. Clearly this is a contradiction to the assump-
tion that (p, r) are the closest in the query rectangle.
Part (ii): See Fig. 6. Using arguments similar to the ones
used for the proof of Part (i), it can be shown that for any
point m′ in the region R6,
∣
∣r(x) − m′(x)

∣
∣ <

∣
∣r(x) − p(x)

∣
∣. (8)

See Fig. 5. Let t be the last point above r that forms a 4-d
point with p during YSWEEP. By step 3(iii) of Section 3.2,
hthreshold is set to |t(y) − p(y)| once t forms a 4-d point
with p. As the point r does not form a 4-d point with p,
from step 3 of Section 3.2, we have

∣
∣r(y) − p(y)

∣
∣ >

hthreshold

2
. (9)

Hence, |t(y) − r(y)| < |r(y) − p(y)|.
Also, from Fig. 5, we have p(x) < t(x) < r(x). Therefore,

|t(x) − r(x)| < |p(x) − r(x)|. Notice that the point t cannot
be in q. This is because, if t is in q, then |t(x) − r(x)| +
|t(y) − r(y)| < |p(x) − r(x)| + |p(y) − r(y)|. In other words,
(t, r) are closer than (p, r) which is a contradiction to our
assumption.

Next, as the point m′ is in R6, t(y) > m′(y) > r(y).
Therefore, |m′(y) − r(y)| < |t(y) − r(y)| < |r(y) − p(y)|.
Hence, |m′(y) − r(y)| + |m′(x) − r(x)| < |r(y) − p(y)| +
|r(x) − p(x)|. This is clearly a contradiction to the assump-
tion that (p, r) are closest in the query rectangle.
Part (iii): See Fig. 7. Let z, z′ be two points in the region
R7. Using arguments similar to the proof of Part (i), it can
be shown that
∣
∣z(x) − z′(x)

∣
∣ <

∣
∣p(x) − r(x)

∣
∣. (10)

See Fig. 8. Consider the chain of rectangle visible points
for r in its southwest quadrant. As p does not form a 4-d
point with r, by step 8 of Section 3.2, there has to be
a point below p which forms a 4-d point with r during
YSWEEP. This is because, in any quadrant for the point r,
YSWEEP starts from a point p′ in the chain of rectangle
visible points such that |p′(x) − r(x)| is minimum. Let t be
the last point below p which forms a 4-d point with r.

262 A.S. Das et al. / Information Processing Letters 114 (2014) 256–263
Fig. 7. The points z, z′ are in region R7.

Fig. 8. The chain of rectangle visible points for r in its southwest quadrant.

Once t forms a 4-d point with r, hthreshold is set to
|t(y) − r(y)|. As (p, r) do not form a 4-d point,

∣
∣p(y) − r(y)

∣
∣ >

hthreshold

2
. (11)

Thus, |p(y) − t(y)| < |p(y) − r(y)|. Notice that the point t
cannot be in q. This is because, if t is in q, then |t(x) −
p(x)|+ |t(y)− p(y)| < |p(x)− r(x)|+ |p(y)− r(y)|. In other
words, (t, p) are closer than (p, r), a contradiction to our
assumption.

Let max(a,b) (respectively min(a,b)) denote the max-
imum (respectively the minimum) of the two values.
Since z, z′ are in region R7, p(y) > max(z(y), z′(y)). Also
min(z(y), z′(y)) > t(y) as the point t is not in q. Thus,

∣
∣z(y) − z′(y)

∣
∣ <

∣
∣t(y) − p(y)

∣
∣ <

∣
∣r(y) − p(y)

∣
∣. (12)

Hence, z, z′ are closer than p, r which is a contradic-
tion. Thus, if p, r are the closest points in the query
rectangle, then there cannot be any point in the regions
R1, R2, R3, R4, R6 and R8 and there can be at most one
point in the region R7 (respectively R5). �
Lemma 6. Given an axes parallel query rectangle q = [a,b] ×
[c,d], let p = (p(x), p(y)) and r = (r(x), r(y)) be the two
points that are closest in the query rectangle. Then, the query
algorithm returns the pair (p, r).

Proof. We divide the proof into two parts.
Part (i): Let the point p′ = (p(x), r(x), p(y), r(y), w(p′)) be
not present in D . Then, by Lemma 5, there can be at
most four points in the query rectangle and by step 2 of
Section 3.5 (Query Algorithm), our query algorithm finds
all the points and return the pair (p, r) that realizes the
empty axes parallel rectangle with smallest Manhattan dis-
tance in between.
Part (ii): Let the point p′ = (p(x), r(x), p(y), r(y), w(p′)) be
present in D . By construction, the data structure D com-
prises of a primary tree Tx (step 2 of Section 3.3). Each
internal node μ ∈ Tx is associated with an auxiliary sec-
ondary tree Tμ,x (step 4 of Section 3.3). Each internal node
φ ∈ Tμ,x has an instance of the data structure of Lemma 2
and is denoted by Wφ . Since the point p is present in the
query rectangle and the point (p(x), r(x), p(y), r(y), w(p′))
is present in D , by step 2 of Section 3.3 and step 3a
of Section 3.5, it is ensured that there exists a node
μ ∈ Tx such that p(x) ∈ int(μ) and int(μ) ⊂ [a,b] but
int(parent(μ)) � [a,b]. By step 3 of Section 3.3, the node
μ has a set S ′′ where the point (r(x), p(y), r(y), w(p′))
is stored. Similarly, by step 4 of Section 3.3 and step 3b
of Section 3.5, it is ensured that there exists a node
φ ∈ Tμ,x such that r(x) ∈ int(φ) and int(φ) ⊂ [a,b] but
int(parent(φ)) � [a,b]. By step 5 of Section 3.3, the node
φ has a set Sφ where the point (p(y), r(y), w(p′)) is
stored. At the node φ, we search the data structure Wφ

with the query [c,d] × [c,d] to find the smallest weighted
2-d point. By step 6 of Section 3.3, the data structure
Wφ is built on the weighted points of the set Sφ . The
correctness of the data structure Wφ which follows from
Lemma 2 ensures that the point (p(y), r(y), w(p′)) is re-
ported. Along with the point (p(y), r(y), w(p′)), the point
(p(x), r(x), p(y), r(y), w(p′)) is stored. Thus, the query al-
gorithm returns the pair (p, r). �
Lemma 7. Finding the canonical nodes in the primary tree Tx

needs O (log m) time for m = O (n log U) time.

Proof. Given a query rectangle [a,b] × [c,d], finding the
two leaves leaf 1 and leaf 2 respectively storing the small-
est value � a and the largest value � b can be found in
O (log m) time. Finding the least common ancestor (lca)
for leaf 1 and leaf 2 takes O (log m) time. Let π1 (respec-
tively π2) be the path from lca to leaf 1 (respectively to
leaf 2). For any node μ1 ∈ π1 (respectively in π2), if it is a
left child (respectively right child) of its parent, allocate the
segment [a,b] to its sibling. Since the length of the paths
π1 and π2 can be at most O (log m), finding the canonical
nodes in the primary tree Tx needs O (log m) time. �
Lemma 8. The above data structure needs O (mf (m) log2 m)

storage space and can be queried in time O ((g(m)+ log log m)×
log3 m) for m = O (n log U) and (i) f (m) = O (1) and g(m) =
O (logε m); (ii) f (m) = O (log log m) and g(m) = O (log log m)

and (iii) f (m) = O (logε m) and g(m) = O (1).

Proof. The height of the primary tree Tx is O (log m). Let
le(T μ

x) be the count of leaf nodes present in the subtree
of Tx rooted at the internal node μ ∈ Tx . At the node μ,
there is a secondary tree Tμ,x associated with the node.
The height of the tree Tμ,x is O (log(le(T μ

x))). At any in-
ternal node φ ∈ Tμ,x , we have associated an instance of
the data structure of Lemma 2 which is denoted by Wφ .

Wφ needs a storage space of O (le(T φ
μ,x) f (le(T φ

μ,x))). Thus,

A.S. Das et al. / Information Processing Letters 114 (2014) 256–263 263
the total storage space needed by all the Wφs across
all the internal nodes φs at a particular level h in Tμ,x

is
∑

O (le(T φ
μ,x) f (le(T φ

μ,x))) = O (le(T μ
x) f (le(T μ

x))). This is
because Tμ,x is the secondary tree associated with the
node μ in the primary tree Tx . Therefore, the total stor-
age space needed by all the Wφs across all the levels in
Tμ,x is O (le(T μ

x) f (le(T μ
x)) log(le(T μ

x)). This is the storage
space needed by the secondary tree Tμ,x . Thus, the sum of
storage space needed by all the secondary trees at a par-
ticular level l in Tx is

∑
O (le(T μ

x) f (le(T μ
x)) log(le(T μ

x)).
Since

∑
le(T μ

x) = O (m) for all the internal nodes μ ∈
Tx at a particular level h in Tx ,

∑
O (le(T μ

x) f (le(T μ
x))×

log(le(T μ
x)) = O (mf (m) log(m)). Since the height of the

primary tree Tx is O (log m), the total storage space needed
by all the secondary trees across all the levels of the tree
Tx is O (mf (m) log2 m).

By step 3c of Section 3.5, finding the closest pair in
L1 metric for the points in the query rectangle involves
identifying O (log2 m) canonical nodes. This involves find-
ing O (log m) canonical nodes μ in the primary tree Tx and
for each such canonical node μ, finding O (log m) canon-
ical nodes φ in the secondary tree Tμ,x . By Lemma 7,
finding the O (log m) canonical nodes μ in the primary
tree needs O (log m) time. Finding the O (log m) canoni-
cal nodes φ in the secondary tree Tμ,x needs another
O (log m) time. Thus, finding all the O (log2 m) canonical
nodes φ needs O (log2 m) time. At each canonical node φ,
the data structure Wφ is queried to find the point with
smallest weight. Let the number of point stored in Wφ is
denoted by |Wφ |. While querying Wφ , O (log |Wφ |) nodes
of Wφ are searched. From the proof of Lemma 2, we can
see that this step needs O (g(|Wφ |) + log log(|Wφ |)) time
per node and hence O (g(|Wφ |) + log log(|Wφ |) log(|Wφ |))
time in total. Since the number of points stored in Wφ
is less than or equal to O (m), the total time needed at
the node φ to search Wφ is O ((g(m) + log log m) logm).
Since there are O (log2 m) canonical nodes, the total time
needed is O ((g(m)+ log log m) log3 m). Also, the data struc-
ture RA supports reporting points in a query rectangle in
O (logε m+k logε m) time where k is the output size. In our
case, k is at most five. Therefore, the total time needed to
query RA is O (logε m). Hence the claim. �
4. Conclusion

Combining Lemma 6 and Lemma 8, we conclude to Theo-
rem 1.

References

[1] P. Bose, M. He, A. Maheshwari, P. Morin, Succinct orthogonal range
search structures on a grid with applications to text indexing, in:
WADS, in: Lecture Notes in Computer Science, vol. 6552, Springer,
2007, pp. 52–63.

[2] T.M. Chan, K.G. Larsen, M. Patrascu, Orthogonal range searching on
the ram, revisited, in: Symposium on Computational Geometry, 2011,
pp. 1–10.

[3] A.S. Das, P. Gupta, A.K. Kalavagattu, J. Agarwal, K. Srinathan, K. Kotha-
palli, Range aggregate maximal points in the plane, in: WALCOM,
2012, pp. 52–63.

[4] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Com-
putational Geometry: Algorithms and Applications, second edition,
Springer-Verlag, 2000.

[5] J. Fischer, Optimal succinctness for range minimum queries, in: LATIN,
2010, pp. 158–169.

[6] R. Janardan, P. Gupta, Y. Kumar, M.H.M. Smid, Data structures for
range-aggregate extent queries, in: CCCG, 2008, pp. 7–10.

[7] G. Navarro, Y. Nekrich, Top-k document retrieval in optimal time and
linear space, in: SODA, 2012, pp. 1066–1077.

[8] Y. Nekrich, G. Navarro, Sorted range reporting, in: SWAT, 2012,
pp. 271–282.

http://refhub.elsevier.com/S0020-0190(13)00309-8/bib7062s1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib7062s1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib7062s1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib7062s1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib636C703131s1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib636C703131s1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib636C703131s1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib6173647265706F7274s1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib6173647265706F7274s1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib6173647265706F7274s1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib6D6D6D6Fs1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib6D6D6D6Fs1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib6D6D6D6Fs1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib66697368s1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib66697368s1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib706779s1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib706779s1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib6E61766E656Bs1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib6E61766E656Bs1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib6E656B69s1
http://refhub.elsevier.com/S0020-0190(13)00309-8/bib6E656B69s1

	On reporting the L1 metric closest pair in a query rectangle
	1 Introduction
	1.1 Our contribution

	2 Preliminaries
	3 Proposed solution for range aggregate closest pair in L1 metric
	3.1 An overview of the algorithm
	3.2 Selecting the 4-d weighted points
	3.3 Construction of data structure D
	3.4 Construction of RA
	3.5 Query algorithm

	4 Conclusion
	References

