
Sparse Matrix-Matrix Multiplication on Modern
Architectures

Kiran Matam 1, Siva Rama Krishna Bharadwaj Indarapu 2, Kishore Kothapalli 3

Center for Security, Theory and Algorithmic Research (CSTAR),

International Institute of Information Technology, Hyderabad

Gachibowli, Hyderabad, India, 500 032.
{{ 1

kiranm,
2
sivaramakrishna.i}@research., 3

kkishore@}iiit.ac.in

Abstract—
Sparse matrix-sparse/dense matrix multiplications, spgemm

and csrmm, respectively, among other applications find usage in
various matrix formulations of graph problems. Considering the
difficulties in executing graph problems and the duality between
graphs and matrices, computations such as spgemm and csrmm

have recently caught the attention of HPC community. These
computations pose challenges such as load balancing, irregular
nature of the computation, and difficulty in predicting the output
size. It is even more challenging when combined with the GPU
architectural constraints such as memory accesses, limited shared
memory, strict SIMD and thread execution.

To address these challenges on a GPU, we evaluate three pos-
sible variations of matrix multiplication (Row-Column, Column-
Row, Row-Row) and perform suitable optimizations targeted at
sparse matrices. Our experiments indicate that the Row-Row
formulation, which mostly outperforms the other formulations,
is 3.5x faster on average compared to an optimized multi-
core implementation in the Intel MKL library. We extend the
Row-Row formulation to a CPU+GPU hybrid algorithm that
simultaneously utilizes the CPU also. In this direction, we present
heuristics to find the right amount of work division between
the CPU and the GPU. Our hybrid row-row formulation of
the spgemm operation performs 5.5x faster on average when
compared to the optimized multi-core implementation in the Intel
MKL library.

Our experience indicates that it is difficult to identify right
amount of work division between the CPU and the GPU. We
therefore investigate a subclass of sparse matrices, band matrices,
and present an analytical method to identify a good work division
when multiplying two band matrices.

Our GPU csrmm operation performs 2.5x faster on aver-
age when compared to a corresponding implementation in the
cusparse library, which outperforms the Intel MKL library
implementation.

Index Terms—sparse matrix multiplication, hybrid algorithms,
GPGPU, band matrices

I. INTRODUCTION

Advances in multi- and many-core architectures are driv-

ing powerful changes in computing. Presently, efficient and

scalable solutions for several challenge problems in parallel

computing such as FFT [17], sorting [18] are available on

varied architectures such as Intel CPUs [16], GPUs [18],

and also the IBM Cell [11]. Of these, CPU and GPU based

solutions stand-out for contrasting reasons. Current generation

GPUs offer the best performance per price of more than 1

TFLOP for as little as $400. Modern multicore CPUs are not

far behind, and in some computations offer a near-matching

performance compared to GPUs. In fact, in a recent work

[33], the authors show evidence to indicate that on a class of

throughput-oriented problems, the average GPU performance

is only three times faster than a 6-core CPU performance.
Sparse matrix operations are some of the fundamental

problems in parallel computing. Sparse matrix operations

are included in the original seven dwarfs of parallel com-

puting identified in the Berkeley report [1]. Of these, the

multiplication of two sparse matrices is particularly relevant

for its myriad applications. Multiplying two sparse matrices

finds several applications in varied domains such as graph

algorithms [38], [26], numerical applications such as climate

modeling, molecular dynamics, CFD solvers, and the like [14],

[25]. It is therefore not surprising that this operation is part

of several vendor supported libraries such as the Intel MKL

[15], and the NVidia cusp [22].
Implementing sparse matrix-sparse matrix multiplication,

denoted spgemm in the rest of this paper, on modern archi-

tectures is challenging for various reasons. Due to variations in

the sparsity nature of the matrices, spgemm poses severe load

balancing problems amongst threads. Variations in the sparsity

nature also introduce irregularity in memory access patterns

that are difficult to optimize. Further, it is difficult to predict

the size of the output, which poses difficulties in managing the

memory required for producing the output. While the above

problems are applicable to generic modern architectures, using

GPUs for spgemm poses further unique challenges. GPUs are

limited in the amount of shared memory available, thereby

necessitating serious workarounds. The SPMD nature of GPU

thread execution means that any divergence in the execution

paths of a warp of threads has a huge performance penalty.
Previous works on spgemm considered distributed memory

systems [3] and multicore CPUs [30], apart from optimal

algorithms [36]. The library implementation for spgemm in

cusp has a few shortcomings (see also Section IV). Further,

to the best of our knowledge there has been no previous work

on designing efficient algorithms for spgemm on a tightly

coupled hybrid platform of CPUs and GPUs1.
In this paper, we present GPU algorithms and CPU+GPU

hybrid algorithms for spgemm along with their efficient im-

1We envisage a hybrid platform as a computing platform that consists of a
collection of multicore CPUs plus a few accelerators. For more details of a
hybrid platform, please see Section II.g

978-1-4673-2371-0/12/$31.00 ©2012 IEEE

plementations. Our GPU algorithm achieves a speed-up of 3.5x

on average compared to Intel MKL running on a quad-core

CPU. It is shown in Figure 5. Our hybrid algorithm achieves an

average speedup of 30% compared to a pure GPU algorithm

thereby indicating the benefits of the hybrid approach. Our

experience indicates that designing efficient hybrid algorithms

for spgemm on general unstructured sparse matrices is very

challenging. Therefore, we focus on a subclass of sparse ma-

trices called band matrices, and show that very efficient hybrid

algorithms can be designed for multiplying band matrices.
We then consider the operation of multiplying a sparse

matrix with a dense matrix, denoted as csrmm. In this case,

we provide a GPU algorithm and its corresponding efficient

implementation that is 2.5x faster on average compared to the

csrmm implementation in cusparse. It is shown in Figure

10.
A. Related work

Matrix-matrix multiplication is an important primitive in

many areas of computer science. Considering the importance,

a lot of attention has been given to it in high performance

computing. Efficient solutions for dense matrices are proposed

on different architectures such as GPU [34], FPGA [37], and

the like.
For sparse matrix multiplication the first important work

was done by Gustavson et al. [13]. They present a Row-Row

fashion spgemm algorithm for general sparse matrices. This

algorithm is being used in CSparse [5] software. Yuster el al.

[36] considered spgemm for matrices over a ring. They pre-

sented algorithms which use fast dense matrix multiplication

algorithms and are near optimal. Park et al. [24] gave space-

efficient data structures and algorithms based on the proposed

data structures for a class of sparse matrices which have non-

zero elements adjacent to each other.
Buluc et al. [3] extensively worked on spgemm. They

explore scalable parallel algorithms for spgemm on distributed

memory systems. In this direction they analyse 1D and 2D

algorithms and show that existing 1D algorithms are not suit-

able for thousands of processors. They then present 2D block

distribution algorithms and data structures for hypersparse

matrices. Hypersparse matrices are where the ratio of nonzeros

to it dimensions is asymptotically zero.
Siegel et al. [28] designed a run-time framework for

spgemm on heterogeneous clusters. For addressing load bal-

ancing problem they present a task based allocation model

where multiplication of block of matrices represents a task.
Sulatycke et al. [30] present cache optimized algorithms

on sequential machines for sparse matrix multiplication. They

explore Row-Row, and Column-Row formulations of matrix

multiplications.
As the architecture and the programming model of GPUs is

very different from that of distributed systems, and other ar-

chitectures, many of the previous algorithms and optimization

strategies may not apply to spgemm on GPU. Also one has

to note that the 2D matrix multiplication algorithms [4], [9]

that are applicable in distributed systems may not be suitable

for standalone systems.

Sparse matrix dense matrix multiplication is used in blocked

versions of important iterative algorithms such as the Lanczos

method [6] and the Conjugate gradient method [6]. Consid-

ering its importance it is provided as a primitive in the Intel

MKL library [15] and the cusparse library [23].

B. Our Results

Recall that we are computing the product C = A × B
where A is an M × P matrix and B is a P × N matrix.

We explore four different approaches to perform the above

product, such as multiplying the rows/columns of A with the

rows/columns of B. We evaluate our implementations with

respect to two datasets: a standard dataset of sparse matrices

from an influential paper by Williams et al. [27], and a subset

of the sparse matrices from the University of Florida SNAP

sparse matrix collection [29]. A brief summary of our results

is given below.

• We provide efficient algorithms and implementations for

spgemm on GPU. Our implementation is 3.5x faster

on average compared to an Intel MKL running on a

quad-core CPU. Our implementation is also scalable and

can handle inputs that the NVidia cusp library cannot

handle.

• Hybrid solutions for spgemm using a CPU+GPU combi-

nation. Our hybrid solution is up to 30% faster compared

to a pure GPU solution.

• Heuristics for a proper division of work between the CPU

and the GPU. For a subclass of matrices, namely band

matrices, we identify the right work division between the

CPU and the GPU analytically.

• An algorithm and an efficient implementation for mul-

tiplying a sparse matrix with a dense matrix using the

GPU. Our implementation is 2.5x faster on average when

compared to the csrmm implementation in cusparse

library.

C. Organization of the Paper

The rest of the paper is organized as follows. In Section

II we discuss preliminary concepts. Section III describes our

GPU algorithms for spgemm . Section IV discusses imple-

mentation details and results for GPU spgemm . Section IV

also describes our hybrid approach and our hybrid algorithms

for band sparse matrices. Section V describes our GPU algo-

rithm for csrmm along with experimental results. Concluding

remarks are presented in Section VI.

II. PRELIMINARIES

In this section, we discuss some preliminary notions re-

garding matrix multiplication, sparse matrix representations

and provide a brief overview of the architectures used in our

experiments.

A. Matrix Multiplication Formulations

In this section we discuss the four formulations of matrix

multiplication. Consider the product C = A × B, where A,

B, and C are matrices of size M × P , P × N , and M × N
respectively. For a matrix A, let A(i, :), and A(:, i) denote the

ith row and the ith column of A respectively. Let Ii(A) denote
the indices of the nonzero elements in the ith row of A.

a) The Row-Column Formulation: In the Row-Column

formulation, to get one element in C, we multiply a row in

the A matrix with a column in the B matrix, i.e., C(i, j) =
A(i, :) × B(:, j) for i = 1, 2, · · · ,M and j = 1, 2, · · · , N .

This is the standard matrix multiplication approach.

For a given i,j, let I(i, j) denote the set of indices k
such that both the elements A(i, k) and B(k, j) are nonzero.

Then, C(i, j) =
∑

k∈I(i,j) A(i, k).B(k, j). However, to obtain

I(i, j), we need to access all the elements in the ith row

of A and jth column of B. In the worst case, we would

access the entire row i of A and a column j of B whereas

I(i, j) = Φ. Hence, this approach is not suited for sparse

matrices in general.

b) The Row-Row Formulation: In the Row-Row formu-

lation, to compute the ith row in C, C(i, :), we multiply each

nonzero element in A(i, :) with the corresponding row in B.

We then add all the scaled B rows to get the C(i, :). Thus,
C(i, :) =

∑
j∈Ii(A) A(i, j).B(j, :).

c) The Column-Row Formulation: In the Column-Row

formulation, for i = 1, 2, · · · , P , we multiply the ith column

of A with the ith row of B to get a matrix Ci = A(:, i)×B(i, :
). The output matrix C is sum of all such matrices obtained,

i.e., C =
∑N

i=1 Ci.

d) The Column-Column Formulation: The Column-

Column formulation is similar to the Row-Row formulation.

Here column elements of B are used to scale the correspond-

ing columns of A.

In the Row-Row formulation, the Column-Row formulation,

and the Column-Column formulation we access only the

elements which contribute to the output. As the Column-

Column and the Row-Row formulation have similar issues we

investigate the Row-Row, and the Column-Row formulations

on GPU.

B. Data Structures for Sparse Matrix Representations

To represent sparse matrices, one often uses special data

structures such as the compressed sparse row (CSR) format,

the coordinate (COO) format, the diagonal format (DIA) and

the like. For details of these representations, we refer the

reader to the work of Bell and Garland [2]. In the present work,

we represent the input sparse matrices in the CSR format and

produce output in the COO format.

C. A Brief Overview of Architectures

e) NVidia GPUs: NVidias unified architecture for its

current line of GPUs supports both graphics and general

computing. In general purpose computing, the GPU is viewed

as a massively multi-threaded architecture containing hundreds

of processing elements (cores). Each core comes with a

four stage pipeline. Eight cores, also known as Symmetric

Processors (SPs) are grouped in an SIMD fashion into a

Symmetric Multiprocessor (SM), so that each core in an SM

executes the same instruction. Each core can store a number of

thread contexts. Data fetch latencies are tolerated by quickly

switching between threads. The GPU also has various memory

types at each level. A set of 32-bit registers is evenly divided

among the threads in each SM. In Tesla C2050, the size

of L1 cache in every SM is 64KB. This L1 cache can be

configured as either 48 KB of user managed cache and 16 KB

of hardware managed cache, or vice versa. It also features a

unified L2 cache of 768kB that services all load, store, and

texture read/write requests. A maximum of 48 Kilobyte of

shared memory per SM acts as a user-managed cache and is

available for all the threads in a block. The Tesla C2050 is

equipped with 3 GB of off-chip global memory which can be

accessed by all the threads in the grid, but may incur hundreds

of cycles of latency for each fetch/store.

f) The Intel i7 920 CPU: The Intel i7 920 CPU that

we use in our experiments is a quad-core Intel CPU. The i7

920 has four cores and with active SMT eight logical threads.

Maximum clock speed of i7 920 is 2.66 GHz. The i7 920

has a three level, L1, L2, L3, cache hierarchy of sizes 64KB,

256KB, and 8MB respectively. The L3 cache is shared by

all the four cores. The memory bandwidth is up to 25.6 GB/s

MHz.

g) Our Hybrid Platform: Our hybrid platform is a

combination of an Intel i7 920 CPU and the NVidia Tesla

C2050 GPU. The CPU and the GPU are connected via a PCI

Express version 2.0 link. This link supports a data transfer

bandwidth of 8 GB/s between the CPU and the GPU. To

program the GPU we use the CUDA API Version 4.0 [20].

For programming the CPU, we use OpenMP 4.2 and ANSI

C [10]. The CUDA API Version 4.0 supports asynchronous

concurrent execution model so that a GPU kernel call does not

block the CPU thread that issued this call. This also means that

execution of CPU threads can overlap a GPU kernel execution.

Asynchronous transfer of data from the CPU to the GPU is

also supported through streams. This facility allows one to

overlap not only executions on the CPU and the GPU but also

data transfers between the CPU and the GPU.

III. GPU ALGORITHMS

In this section we describe our GPU algorithms for the Row-

Row and the Column-Row formulations. Recall that in C =
A × B we have that A is an M × P matrix, B is a P × N
matrix and C is an M × N matrix.

A. The Row-Row Formulation

Recall that in the Row-Row formulation of sparse matrix

multiplication, we produce rows of the matrix C. For i =
1, 2, · · · ,M , we have that C(i, :) =

∑
j∈Ii(A) A(i, j).B(j, :).

For our GPU algorithm, we consider matrices A and B in

CSR format and produce C in the COO format.

The basic approach of our GPU algorithm is as follows.

We construct C(i, :) as a row of N elements of which only

a few are nonzero. We then copy only the nonzero values of

C(i, :) to the output. On the GPU, we launch a fixed number

of warps, W . Each row of A is assigned to one warp. If

M > W , then we iterate over the rows of A in multiples

of W . Warp i computes the ith row of C. For this, warp

Fig. 1. Diagram illustrating our Row-Row method. i,j,k,l,m denote column
indices of non-zeroes in Xth row of A. In each iteration a part of length TRb

of ith,jth,kth,lth,mth rows in B are scaled by element present at column
index i,j,k,l,m of Xth row of A respectively. Addition of these scaled rows
of length TRb will give a portion of TRb size of Xth row of C.

i accumulates the non-zero values and their indices in C(i, :)
using auxiliary arrays PartialOutput and NonZeroIndices.
The array PartialOutput is used to accumulate the nonzero

elements of C(i, :). The array NonZeroIndices is used to

store the indices of nonzero elements in the PartialOutput.

From the above, we can see that the size of the array

PartialOutput should be N . We should create this array in

the global memory of the GPU as it is not feasible to create

this in the shared memory. It can be also noted that because

of this reason, writes to PartialOutput may be uncoalesced

in nature. Even then, the size of the global memory of the

GPU is not enough to store the PartialOutput and the

NonZeroIndices arrays for all the W warps that are all

active at the same time. Hence, we consider groups of TRb

columns of B in an iterative manner. In this case, the size of

the auxiliary arrays PartialOuput and NonzeroIndices is

TRb for each warp. This is illustrated in Figure 1.

To improve efficiency, we use shared memory to store the

elements of A. Given that also shared memory is limited, we

iterate over the elements of a row of A in units of PartRow.

If the number of elements in a row of A is less than the

PartRow, we bring the elements in to the shared memory

only once and use them in the next iterations over B columns.

Suppose that a warp has brought in PartRow nonzero

elements of A(i, :) into the shared memory. For each such

element, say A(i, j), the warp accesses the jth row of B
in groups of nonzero elements with column indices in TRb

range. Each of these nonzero elements with column index in

TRb range of the jth row of B are multiplied with A(i, j).
The resultant elements are added to the array PartialOutput
at the appropriate indices. Then the non-zero indices are

updated in the NonZeroIndices array. As threads in the

warp may simultaneously add the new nonzero indices into

the NonZeroIndices array, we use atomic operations.

Notice that the array PartialOutput is sparse in nature.

When producing the output matrix, we need to copy only

the nonzero items in the PartialOutput array. Each warp

therefore compacts the PartialOutput array using the array

NonZeroIndices and writes the result to OutputBuffer
in the GPU global memory as tuples of 〈row index, col-

umn index, value〉. Recall that during compaction of the

PartialOutput array, if we produce the output matrix in

the COO format as tuples of the form 〈row index, column

index, value〉, warps have to synchronize with each other so

as to produce the correct output. This synchronization requires

Fig. 2. Diagram illustrating our Column-Row method. Each strip of TCa

rows in A matrix is multiplied with B matrix iterating over TCb size strip
of columns. The multiplication is done in column-row fashion as described
in II-A. i, j, k, l, m indicate the column indices of columns in A which have
non-zero elements. These columns are multiplied with corresponding rows in
B to get the output.

coordination in the global memory across warps from different

blocks. Such global synchronization, though can be achieved

using global atomic operations, is however very expensive on

the GPU. To reduce the need of global atomic operations,

in our GPU algorithm each block stores the output in global

memory and the final output is accumulated in the CPU.

Since the GPU global memory is also limited and the

available storage on CPU is typically large enough to hold the

output matrix, our choice of storing the output in CPU helps

in handling larger matrices. Otherwise, our implementation

would be limited by the amount of available GPU global

memory, which constrains us to handle sparse matrices of

a very small limited output size only. For instance on the

Tesla C2050 GPU, spgemm in CUSP library which stores

the output in global memory of GPU cannot handle four

matrices in the dataset shown in Figure 3. The GPU Row-

Row Algorithm is shown as Algorithm 1.

To continue with the rest of the rows of A, we need to free

up the global memory by copying the output tuples of the

form 〈row index, column index, value〉 to the CPU storage.

However, this copying can be overlapped in a double buffering

fashion with the GPU executing on the rest of the rows of A.

As it is difficult to determine the size of the output prior to the

computation, we store the output of each iteration in a buffer

at CPU, and finally combine them to produce the output in

the COO format.

B. Column Row Formulation

In the Column-Row formulation of spgemm , recall that

we accumulate all the partial output matrices obtained by

multiplying a column of A with the corresponding row of B.

When the ith column of A consisting of nai non-zero elements

is multiplied with the ith row of B consisting of nbi non-zero

elements we get a matrix of size nai × nbi. It is not feasible

to store all the partial output matrices and then add them to

get the output matrix. Therefore, we compute output matrices

in blocks of TCa × TCb. We multiply TCa × P part of A
matrix with P × TCb part of B to get non-zero elements in

block of TCa × TCb matrix. See Figure 2 for an illustration.

If a portion of the rows of A fit in the registers of the

GPU, then these can be reused across multiple iterations

over the columns of B. This motivates us to divide the A
matrix into parts of contiguous rows. To improve efficiency,

we consider up to TCa rows of A with the total number

of nonzero elements not exceeding the block size. We also

Algorithm 1 Row-Row GPU Algorithm

OutputBuffer = Buf [0];
TransferBuffer = Buf [1];
repeat

Assign each row in A to a warp.

//warpid is the index of the warp in the launched kernel.

//rowid is the row index that the warp numbered warpid

operates on

for warpid = 1 to W warps do

for ℓ = 0 to N in increments of TRb do

repeat

Load PartRow elements of the rowid row of A
into the shared memory.

for Each element A(rowid, k) in PartRow do

j = ℓ;
repeat

PartialOutput[j]+=A(rowid, k)×B(k, j)
NonZeroIndices ∪= j, atomically

j = j + 1;
until j < ℓ + TRb

end for

Write tuples 〈rowid, column id, value〉 to the

OutputBuffer using PartialOutput and

NonZeroIndices.
until A(rowid, :) is processed

end for

end for

Swap pointers of OutputBuffer,TransferBuffer.
Transfer from TransferBuffer to CPU storage;

until all rows of A are processed

process rows with more than BlockSize number of non-zeros

in an individual block of GPU.

In a given GPU block, we assign a thread to each element of

A. Each thread multiples the element with the corresponding

row elements in B in iterations of TCb column indices.

Similar to the row-row formulation, we use auxiliary matrices

PartialOutput, and NonZeroIndices. We use atomic op-

erations on matrices PartialOutput and NonZeroIndices
as threads in the block may simultaneously access these

matrices. As in Row-Row method, if the output does not fit

into global memory we launch kernels in iterations. In each

iteration, the computed output is written to OutputBuffer in

global memory from which the CPU copies. A similar double

buffering technique used here. The GPU Algorithm is shown

as Algorithm 2.

IV. IMPLEMENTATION DETAILS, RESULTS, AND

DISCUSSION

In this section we discuss implementation issues and also

identify the values we should use for parameters used in our

GPU algorithms. For finding the best configuration parameters

of the GPU kernel, we performed several experiments.

Profiling the Row-Row method, we noticed that each thread

is using about 34 registers. So it limits the block size to

Algorithm 2 Column-Row GPU Algorithm

OutputBuffer = buf [0];
TransferBuffer = buf [1];
repeat

Assign each part of A matrix to a block in GPU.

//blockId, threadId indicate the index of the block

in the launched kernel, and thread index in the block

respectively.

for i = blockId to number of parts in A in increments

of TotalNumberOfBlocks do

k′ = starting index of this part of A rows

for j = 0 to N in increments of TCb do

for k = threadId to #nonzeros in this part of A
in increments of BlockSize do

//Data and Indices refer to the data structures used

in the CSR format representation of A
aitem = Data[k′ + k];
acolumn = Indices[k′ + k];
arow = row number of the element aitem
ℓ = j;
repeat

bitem = B(acolumn, ℓ)
PartialOutput(arow, ℓ) += aitem × bitem;

atomically

NonzroIndices ∪= {arow, ℓ}; atomically

ℓ = ℓ + 1
until ℓ ≤ j + TCb

end for

end for

end for

Swap pointers of OutputBuffer,TransferBuffer.
Transfer from TransferBuffer to CPU storage;

until all parts of A are processed

approximately 960. So we varied the BlockSize from 128 to

960. In most of the cases assigning BlockSize to 768 gives

best performance. As we are allocating auxiliary memory for

each warp we launch only 14 blocks (one per SM) and warps

in these blocks iterate over all the rows in A. For each block

to store its auxiliary data we need about 768 · TRb × 12/32
Bytes of storage. Since this storage has to be given for each

of the 14 blocks that run simultaneously, the total space for

auxiliary data is about 4000TRb Bytes. The OutputBuffer
and the TransferBuffer is each given a space of 24×106B

per block of threads. Choosing TRb = 2 × 105, the overall

space used for all the auxiliary data is about 1 GB.

Similar calculations were considered for the Column-Row

formulation. In the Column-Row method, the BlockSize is

constrained by the number of registers available. In most of the

cases setting BlockSize to 768 gives best performance. For

the Column-Row method we kept the Buffersize to 24×106

per block of threads. Given the limits on the available global

memory, we choose TCa = 100 and TCb = 24000 so that

the the auxiliary memory for each block is about 1 GB.

Matrix Rows NNZ NNZ/Row

Dense 2,000 4,000,000 2000.0

Protein 36,417 4,344,765 119.3

FEM/Spheres 83,334 6,010,480 72.1

FEM/Cantilever 62,451 4,007,383 64.1

Wind Tunnel 217,918 11,634,424 53.3

FEM/Harbor 46,835 2,374,001 50.6

QCD 49,152 1,916,928 39.0

FEM/Ship 140,874 7,813,404 55.4

Economics 206,500 1,273,389 6.1

Epidemiology 525,825 2,100,225 3.9

FEM/Accelerator 121,192 2,624,331 21.6

Circuit 170,998 958,936 5.6

Webbase 1,000,005 3,105,536 3.1

LP 4,284 11,279,748 2632.9

Fig. 3. List of sparse matrices. Number of columns and rows are equal for
all the matrices except for the matrix LP, where the number of columns is
equal to 1, 092, 610.

Collection Instance Rows NNZ/Row

Road Networks roadNet-CA 1,971,281 2.8

Web Graphs web-Google 916,428 5.57

Communication

networks

email-Enron 36,692 10.02

Product co-

purchasing

networks

amazon0312 400,727 7.98

Collaboration

networks

ca-CondMat 23,133 8.08

Internet peer-to-

peer networks

p2p-Gnutella 62,586 2.36

Social networks wiki-Vote 8,297 12.49

Citation networks cit-Patents 3,774,768 4.37

Autonomous sys-

tems graphs

as-Skitter 1,696,415 13.08

Fig. 4. List of sparse matrices from SNAP dataset

A. Results

In this section, we report the results of our experiments. The

experiments were run on the systems described in Section II.

In the rest of this paper, when we refer to the label CPU,

we mean the Intel i7 920 CPU described in Section II.6 and

when we use the label GPU, we refer to the GPU described

in Section II.5.

a) Datasets: Our experiments consider two datasets for

sparse matrices. The first dataset is a popular dataset for sparse

matrices from the work of Williams et al. [27]. These instances

are shown in Figure 3. Another dataset we use is a subset of the

sparse matrices under the SNAP sparse matrix collection [29]

maintained by the University of Florida. The SNAP collection

contains 9 different classes of sparse matrices. We considered

one instance from each class as shown in Figure 4.

b) Results: We compare the performance of Row-Row

formulation on GPU with Column-Row formulation on GPU,

Intel MKL routine running on the CPU and the cusp library

routine running on the GPU. These comparisions are shown

in Figure 5 for the dataset from Figure 3 and in Figure 6 for

the dataset in Figure 4. We multiply each matrix with itself

except for the case LP where we multiply the matrix with its

transpose as it is a rectangular matrix.

We see that in most of the cases both our Row-Row, and

Column-Row methods outperform the Intel MKL implementa-

tion. Our Row-Row method outperforms the Column-Row in

most of the cases. Our Row-Row, and Column-Row methods

perform up to 6x, and 2.5x faster respectively when compared

to spgemm in Intel MKL. Such a behaviour can be observed

in the instances from both the datasets considered.

In the Epidemiology, roadNet-CA, and p2p-Gnutella matri-

ces where many rows have uniformly fewer non-zero elements

the Row-Row method does not perform well because in our

Row-Row method each warp acting on a row in A matrix

brings it corresponding rows in B matrix. So for rows with

fewer non-zero elements many threads are idle which degraded

the performance. Unlike the Column-Row method, the Row-

Row method takes advantage of coalescing accesses. Hence it

performs better in instances such as FEM/Harbour, FEM/Ship,

Wind Tunnel, and Protein. In the Column-Row method each

threads brings its corresponding elements from row in B.

After each iteration over columns in B all the threads in

the block need to be synchronized. Due to this, variation in

row sizes has effect on the performance of the Column-Row

method. As instances Webbase, LP, Scircuit introduce load

balancing problems, the column-Row method does not work

well compared to the Row-Row method.

1) Comparison with cusp: We now present a comparison

of our method with the NVidia cusp library routine for the

spgemm kernel. The cusp library routine stores the entire

output on the GPU itself. So, there is no need to copy output

to the CPU which we do in our GPU algorithms. For this

reason, for instances with a smaller output size, the library

routine performs better than our GPU algorithms. Examples

of such instances include the Economics and the Epidemiology

instances from the dataset of Figure 3 and the roadnet-CA and

p2p-Gnutella31 instances in the dataset from Figure 4. The

cusp library approach of storing the output on the GPU works

only on instances whose output size fits in the available global

memory. On instances whose output size exceeds the available

global memory, e.g. instances from Figures 5–6 where no

bar is shown for cusp time/Row-Row time, our approach is

clearly advantageous. On other instances, our method rarely

fails to outperform the cusp library routine.

B. Towards an Hybrid Approach

GPU algorithms tend to outperform best known CPU imple-

mentations in most cases. However, as multicore CPUs evolve,

it is not beneficial to keep the CPUs idle in the computation

process. More so, in cases where the GPU performance is only

a small factor away from the CPU performance, as it happens

in most irregular computations. The spgemm computation

is an example of irregular computations and hence we seek

ways to simultaneously utilize the CPU and the GPU in our

computation. We call this as hybrid computing. Such hybrid

approaches are studied for other matrix operations in the works

Fig. 5. Performance comparision of MKL routine, cusp library routine, and Column-Row methods w.r.t Row-Row method on the dataset shown in Figure 3.
X-axis represents instances in dataset and Y- axis represents performance w.r.t Row-Row formulation. No bar line is shown for instances where the routine
failed to work. The last instance Average shows the average value of the series.

Fig. 6. Performance comparison of MKL routine, cusp library routine, and Column-Row methods w.r.t Row-Row method on the dataset shown in Figure 4.
X-axis represents instances in dataset and Y- axis represents performance w.r.t Row-Row formulation. No bar line is shown for instances where the routine
failed to work. The last instance Average shows the average value of the series.

of [31], [32], [19]. One of the standard approaches to design

hybrid algorithms is to compute on a portion of the input on

the CPU and perform the remaining part of the computation

on the GPU, (cf. also [7], [8] for more examples).

To this end, we now extend our Row-Row algorithm to

work as a hybrid algorithm. In our hybrid algorithm for

spgemm ,we choose a threshold t% and assign the compu-

tation corresponding to t% of the rows of A to the CPU.

The remaining computation is performed on the GPU. The

challenge in designing efficient hybrid algorithms then lies in

finding the right threshold. A good value of t can be obtained

by exhaustive experimentation. We call the corresponding time

as Best hybrid time. The results of the best hybrid times

are given in Figure 7. However, exhaustive experimentation

is not an ideal solution. Hence, we start with identifying

heuristics to find a good value for t. We experiment with two

different heuristics.

a) Heuristic I: In our first heuristic, we find the threshold

based on the number of multiplications involved in an instance

of spgemm when using the Row-Row formulation. For a

sparse matrix A, let Ni(A) to denote the number of nonzero

elements in the ith row of A. Let Ii(A) denote the indices

of the nonzero elements in the ith row of A. According to

the Row-Row formulation, the number of multiplications for

processing the ith row of A in A × B is
∑

j∈Ii(A) |Nj(B)|.
From Figure 5, we see that the average GPU performance on

Fig. 7. Performance comparison of Hybrid method w.r.t Row-Row method
on datasets shown in Figure 3, Figure 4.

the dataset from Figure 3 is around 3x. So, we set t to be 25%

of the total number of multiplications. We find r which refers

to the row number by which t% of the multiplications occur.

We then assign rows indexed 1 to r to be processed on the

CPU and rows r + 1 to M are processed on the GPU. The

results of this heuristic are presented in Figure 8.

As can be observed, the best hybrid run time using the

hybrid approach outperforms the hybrid run time obtained by

using the proposed heuristic. Our heuristic considers only the

average speedup to arrive at a value of t and the weakness of

our heuristic can be attributed to that. To remedy this situation,

we propose a better heuristic that takes the run time of Intel

Fig. 8. Performance comparision of two presented heuristics w.r.t the best
hybrid timings on the dataset shown in Figure 3. X-axis represents instances
in dataset and Y-axis represents performance w.r.t best hybrid time. The last
instance Average shows the average value of the series.

MKL and the GPU Row-Row formulation into account.

b) Heuristic II: In this heuristic, we delve a bit into each

instance. We take the run time of the instance on CPU and

also the GPU. Let these run times be tc and tg . We take the

threshold t to be
tg

tc+tg
%. As earlier, we find a value of r

so that the first r rows account for t% of the multiplication

operations. The results of using this heuristic are shown in

the last column of Figure 8. As can be observed, this heuristic

performs better than Heuristic I in general but still cannot meet

the performance of the best possible hybrid approach.

The difficulty can be partly explained by the fact that

spgemm is a highly irregular computation. Moreover, it is

difficult to estimate the number of rows that are required to

make up a given percentage of the total number of operations.

Knowing this, one can indeed estimate the size of the output

matrix, which is one of the difficulties of the spgemm com-

putation. Further, the highly unstructured sparsity nature of

the matrices in the dataset from Figure 3 makes the tasks of

estimating the threshold very difficult. It may therefore help if

there is any prior knowledge on the nature of sparsity of the

input matrices, which we explore in the coming section.

C. A Hybrid Approach for Band Matrices

Band matrices are a kind of sparse matrices where nonzero

entries appear uniformly in a diagonal band. This allows one

to use more efficient data structures to store band matrices

and also arrive at suitable algorithms that work better than

formulations such as the Row-Row and the Column-Row.

We store band matrix in the diagonal format (DIA) [2]. The

diagonal format consists of two arrays: for a matrix A, the

data A array stores the nonzero values, the offset A array

stores the offset of each diagonal from the main diagonal.

The ith column of data A indicates ith diagonal of matrix

and offset A[i] indicates the offset of ith diagonal. In our

implementation data is stored in column-major order so that

diagonals placed adjacently from left to right. notice that

multiplying two band matrices results in another band matrix.

Let A, B, and C be band matrices with C = A × B. Let

Adiagonals, Bdiagonals, and Cdiagonals indicate number

of diagonals in A, B, and C respectively. We can see that

Cdiagonals = Adiagonals + Bdiagonals − 1. In general,

multiplying the ith diagonal elements of A with jth diagonal

elements of B contribute output to the diagonal whose offset

is offset A[i]+offset B[j].
The DIA format allows for more efficient algorithms to

multiply two band matrices on the CPU and also on the GPU.

The CPU Algorithm and the GPU Algorithm are presented as

Algorithm 3 and Algorithm 4 respectively. Algorithm 3 iterates

over the diagonals of A and the diagonals of B. For a given

pair of such diagonals, all the applicable multiplications are

done in parallel.

Algorithm 3 CPU Algorithm

for i = 1 to Adiagonals do

for j = 1 to Bdiagonals do

outDiagoffset = offset A[i] + offset B[j]
outDiagNumber = outDiagoffset −
offset A[0] − offset B[0]
{writing output to the diagonal computed above}
for k = 1 to Crows do in parallel do

data C(k, outDiagNumber) += data A(k, i) ×
data B(k + i + offset A[0], j)

end for

end for

end for

In the GPU algorithm, each block of threads processes

BlockSize rows of the A matrix. Every block of threads

brings the applicable portion of the B matrix into the shared

memory. We use variables such as Arow to denote the

starting row number of A corresponding to the block in

GPU, startBRow and endBrow to denote starting row value

and ending row value of the applicable portion of B. Every

block computes a portion of the output and writes to C. The

computation is similar to that of the CPU algorithm, except

for calculating the indices and offsets used.
Our experimental results on synthetically generated band

matrices indicate that the CPU and the GPU algorithms pre-

sented above for band matrices outperform the corresponding

CPU and GPU algorithms for spgemm as expected. The

hybrid approach we study is similar to the hybrid approach

of the Row-Row formulation where a certain t% of the rows

of A are processed on the CPU and the remaining (100− t)%
rows of A are processed on the GPU. We now show how

to use the prior knowledge of inputs being band matrices to

obtain the right threshold, t, for a hybrid spgemm algorithm

for band matrices.
c) Heuristic for Band Matrices: To identify the correct

threshold to use in the hybrid approach, we proceed as follows.

Let Ar denote the number of rows in the A matrix, Ad and

Bd denote the number of diagonals in the A matrix and the

B matrix respectively. Let R = Ar · Ad · Bd and S = Ar ·
(Ad + Bd − 1). It can be seen that the time taken by the

Algorithm 4 GPU Algorithm

Every BlockSize rows of A is assigned to a block of GPU

threads.

for each thread with index tid in the Block do

startBrow = Arow + offset A[0]
endBrow=startBrow +Adiagonals − 1 + BlockSize
Bring rows of B from startBrow to endBrow into

shared memory.

for i = 1 to Adiagonals do

for j = 1 to Bdiagonals do

outDiagoffset = offset A[i] + offset B[j]
outDiagNumber = outDiagoffset −
offset A[0] − offset B[0]
data C(tid, outDiagNumber) +=
data A(tid, i)× data B(tid + i + offset A[0], j)

end for

end for

end for

CPU Algorithm (see also Algorithm 3) is proportional to R.

If we process t% of the rows on the CPU, then the number

of operations performed on the CPU is proportional to t·R
100 .

Similarly, time taken by the GPU is proportional to
(100−t)·R

100 .

Let us assume that the final output would be available on the

CPU by transferring the output from the GPU to the CPU in

time proportional to S.
For a few input matrices, we evaluate the performance of

the CPU Algorithm, the GPU Algorithm and the copy time of

the output from the GPU to the CPU. This helps us identify

the parameters α, β, and γ such that: CPUtime = α × R,

GPUtime = β × R, and Copytime = γ × S.
In the above, the parameter α is a constant that depends on

the CPU, β is a constant that depends on the GPU, and γ de-

pends on the bandwidth of the PCI Express link connection the

CPU and the GPU. The Copytime in the above refers to the

time taken to transfer the GPU part of the output to the CPU. If

we use t% as the threshold, to minimize the hybrid execution

time, we require: CPUtime = GPUtime+Copytime. This
translates to t ·αR = (100− t) · (βR+γS). Solving the above

equation for t gives us that t = 100(βR+γS)
(α+β)R+γS

.

To study our methodology we experimented on a set of

synthetic matrices with varying Ar, Ad, and Bd. The synthetic

dataset is generated with different combinations of Ar, Ad,

and Bd sizes, so as to study the effect of varying one or more

values among Ar, Ad, and Bd. The results of the study are

shown in Figure 9. We observed that predicted time is nearer

to best time.

V. SPARSE MATRIX AND DENSE MATRIX

MULTIPLICATION

In this section we discuss a GPU algorithm and implemen-

tation for multiplying a sparse matrix with a dense matrix

(csrmm). In the matrix product C = A × B, we consider

the case where A is sparse and B is dense in row major

format. csrmm is widely used in Krylov subspace methods

Fig. 9. Graph showing the performance comparison of best time, predicted
time using formulae, for various combinations of Ar , Ad, and Bd. A tuple
〈l, m, n〉 in the x-axis indicates 〈Ar, Ad, Bd〉. The last instance Average

shows the average value of the series.

such as the block Lanczos method [6] and the conjugate

gradient method [6]. For tall and skinny dense matrices, i.e.,

dense matrices with very few columns, one possibility is to

use spmv with A and each column of B. The large body

of research on computing spmv on GPUs can be used [2],

[21], [35]. However, in the case of sparse matrix-dense matrix

multiplication, we can perform optimizations such as reusing

the A matrix for each column in B. This suggests that one

can indeed think of a separate GPU algorithm for csrmm.

In our algorithm, we assign a half-warp of threads to process

a row in A. Each half-warp brings its elements of the A matrix

and the corresponding rows from B into the shared memory.

The computation is performed in the shared memory and the

output is written to the global memory of the GPU. As the

shared memory is limited, we iterate over B in chunks of

TRB . The algorithm is similar to Algorithm 1, with a few

simplifications as the B matrix is dense.

A. Results

We experimented with assigning half-warp / warp to a row

in A matrix. We see that assigning a half-warp performs better.

We implement the above algorithm on our GPU and evaluate

it on the sparse matrices from the dataset in Figure 3. The

B matrix is chosen as follows. The number of rows in a B
matrix is bound by the number of columns in the A matrix

we consider. We vary the number of columns of B from 8 to

64 in multiples of 2. The results are shown in Figure 10.

We compare our results with the cusparse library imple-

mentation for multiplying a sparse matrix with a dense matrix.

The comparison shown in Figure 10. It can be seen that we

outperform the cusparse library implementation in most

cases. We also observe that our method performs better as

the number of columns in B increases. This can be attributed

to the possibility that GPU memory transactions are done in

sizes of 128 bytes and for smaller column sizes of B, all the

128 bytes fetched by the half-warp may not be utilized. This

effect can also be seen from our results where our method

performs better as the column size of B increases. Also as

memory transactions are done in sizes of 128 bytes and half-

warp is given to a row we expect our implementation to change

Fig. 10. Performance comparison of our csrmm with implementation in CUSPARSE on the dataset shown in Figure 3. Each bar line shows the speedup of
our csrmm when compared to the implementation in CUSPARSE. The last instance Average shows the average value of the series.

timings for every 16 column sizes of B. We can observe this

pattern in the timings for B column sizes of 8, 16, and 32.

As the arithmetic intensity is low in our computation, one

can note that the computation is bound by the available band-

width. We notice from our experiments that our computation

utilizes close to the empirical peak bandwidth of 102 GB/s,

reported by the CUDA SDK bandwidthTest benchmark

[20]. Since our results from Figure 10 are in general better than

the cusparse implementation, we can infer from [23] that

our implementation outperforms Intel MKL implementations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have studied the spgemm kernel exten-

sively and provided GPU algorithms and CPU+GPU algo-

rithms for the same. It would be interesting to seek further

optimizations of the spgemm computation for specific classes

of sparse matrices. Another direction to extend our work is to

analytically obtain efficient hybrid algorithms for classes of

sparse matrices.

REFERENCES

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick. The Landscape of Parallel Computing Research: A View
from Berkeley Technical Report No. UCB/EECS-2006-183, UC Berkeley.

[2] N. Bell and M. Garland. 2009. Implementing sparse matrix-vector mul-
tiplication on throughput-oriented processors. In Proc. of SC ’09.

[3] A. Buluc and J. R. Gilbert. Challenges and advances in parallel sparse
matrix-matrix multiplication. In Proc. ICPP’08, pp 503–510, 2008.

[4] L. E. Cannon. A cellular computer to implement the kalman filter
algorithm. PhD thesis, Montana State University, 1969.

[5] T. A. Davis. Direct Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematics, 2006.

[6] J. W. Demmel, Applied Numerical Linear Algebra. Society for Industrial
and Applied Mathematics, 1997.

[7] D. S. Banerjee and K. Kothapalli. Hybrid Algorithms for List Ranking
and Graph Connected Components, in the Proc. of HiPC, 2011.

[8] A. Deshpande, I. Misra, P. J. Narayanan, Hybrid Implementation of Error
Diffusion Dithering, in Proc. HiPC, 2011.

[9] R. A. V. D. Geijn and J. Watts. SUMMA: Scalable universal matrix
multiplication algorithm. Concurrency: Practice and Experience, 9(4):255-
274, 1997.

[10] Brian W. Kernighan. 1988. The C Programming Language (2nd ed.).
Prentice Hall Professional Technical Reference.

[11] B. Gedik, R. R. Bordawekar, and P. S. Yu. CellSort: high performance
sorting on the cell processor. In Proc. VLDB, pp. 1286–1297, 2007.

[12] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in Matlab:
Design and implementation. SIAM J. Mat. Anal. & App., 333-356, 1992.

[13] F. Gustavson. Two fast algorithms for sparse matrices: Multiplication
and permuted transposition. ACM T. Math. Soft.,4(3):250-269, 1978.

[14] G.H. Golub, C.F. Van Loan. Matrix Computations. 2nd ed. 1989.
[15] Intel Math Kernel Library, http://software.intel.com/en-us/articles/intel-

mkl/.
[16] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y. Chen,

A. Baransi, S. Kumar, and P. Dubey. Efficient implementation of sorting
on multi-core SIMD CPU architecture. Proc. VLDB, 2008,

[17] L. Chen, Z. Hu, J. Lin, G. R. Gao. Optimizing the Fast Fourier Transform
on a Multi-core Architecture, in Proc. of IEEE IPDPS 2007, pp.1-8, 26-30.

[18] N. Satish, M. Harris, and M. Garland. Designing efficient sorting
algorithms for manycore GPUs. In Proc. of IPDPS ’09.

[19] H. Ltaief, S. Tomov, R. Nath, and J. Dongarra, Hybrid Multicore
Cholesky Factorization with Multiple GPU Accelerators, IEEE T. on Par.
and Dist. Comp, 2010.

[20] NVIDIA Corporation. CUDA: Compute unified device architecture
programming guide. Technical report, NVIDIA.

[21] A. Monakov, A. Avetisyan, and A. Lokhmotov. Automatically tuning
sparse matrix-vector multiplication for GPU Architectures, in Proc. of
HiPEAC, pp. 111–125, 2010.

[22] Nvidia cusp-library, http://code.google.com/p/cusp-library/
[23] Nvidia cusparse Library, http://developer.nvidia.com/cusparse
[24] S. C. Park, J. P. Draayer, and S.-Q. Zheng. Fast sparse matrix multipli-

cation. Computer Physics Communications, 70:557-568, July 1992.
[25] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical

Recipes, The Art of Scientific Computing. 2nd ed., 1992.
[26] M. O. Rabin and V. V. Vazirani. Maximum matchings in general graphs

through randomization. Journal of Algorithms, 10(4):557-567, 1989.
[27] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel.

Optimization of sparse matrix-vector multiplication on emerging multicore
platforms. In Proc. of SC ’07.

[28] Siegel, J.; Villa, O.; Krishnamoorthy, S.; Tumeo, A.; Xiaoming Li;
, Efficient sparse matrix-matrix multiplication on heterogeneous high
performance systems, IEEE CLSUTER, pp.1–8, 2010.

[29] Stanford Network Analysis Platform dataset ,
http://www.cise.ufl.edu/research/sparse/matrices/SNAP/

[30] Sulatycke, P.D.; Ghose, K.; , Caching-efficient multithreaded fast mul-
tiplication of sparse matrices, in Proc. of IPDPS, pp.117-123, 1998.

[31] S. Tomov, J. Dongarra, and M. Baboulin, Towards Dense Linear Algebra
for Hybrid GPU Accelerated Manycore Systems, Parallel Computing,
Volume 36, Issues 5-6, pp:232-240, 2010.

[32] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, Dense Linear Algebra
Solvers for Multicore with GPU Accelerators, Proceedings of IPDPS 2010.

[33] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey. Debunking the 100X GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU. In Proc. ISCA, 2010.

[34] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense linear
algebra. In Proc. SC, 2008.

[35] X. Yang, S. Parthasarathy, and P. Sadayappan, Fast Sparse Matrix-Vector
Multiplication on GPUs: Implications for Graph Mining, 12 pp. OSU-
CISRC-2/10-TR05.

[36] R. Yuster and U. Zwick. Fast sparse matrix multiplication. ACM Trans.
Algorithms, 1(1):2-13, 2005.

[37] Zhuo, L.; Prasanna, V.K.; , Scalable and modular algorithms for floating-
point matrix multiplication on FPGAs, in Proc. IPDPS, 2004.

[38] U. Zwick. All pairs shortest paths using bridging sets and rectangular
matrix multiplication. Journal of the ACM, 49(3):289-317, 2002.

