
III
T

H
yd

er
ab

ad

GPU Architecture: Overview

P J Narayanan�
Centre for Visual Information Technology�

IIIT, Hyderabad

PPoPP Tutorial on
GPU Architecture, Programming and Performance Models

III
T

H
yd

er
ab

ad

GPU: Evolution

•  Graphics : a few hundred triangles/vertices map to a few

hundred thousand pixels

•  Process pixels in parallel. Do the same thing on a large

number of different items.

•  Data parallel model: parallelism provided by the data

–  Thousands to millions of data elements

–  Same program/instruction on all of them

•  Hardware: 8-16 cores to process vertices and 64-128 to
process pixels by 2005

–  Less versatile than CPU cores

–  SIMD mode of computations. Less hardware for instruction issue

–  No caching, branch prediction, out-of-order execution, etc.

–  Can pack more cores in same silicon die area

January 10, 2010
 GPU Tutorial at PPoPP 2010
 2

III
T

H
yd

er
ab

ad

GPU & CPU

January 10, 2010
 GPU Tutorial at PPoPP 2010

Nvidia GTX280

3

III
T

H
yd

er
ab

ad

CPU vs GPU

• CPU Architecture features:

– Few, complex cores

– Perform irregular operations well

•  Run an OS, control multiple IO, pointer

manipulation, etc.

• GPU Architecture features:

– Hundreds of simple cores, operating on

a common memory (like the PRAM
model)

– High compute power but high memory
latency (1:500)

– No caching, prefetching, etc

– High arithmetic intensity needed for
good performance

•  Graphics rendering, image/signal processing,

matrix manipulation, FFT, etc.

January 10, 2010
 GPU Tutorial at PPoPP 2010

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

4

III
T

H
yd

er
ab

ad

What do GPUs do?

•  GPU implements the graphics

pipeline consisting of:

–  Vertex transformations

•  Compute camera coords, lighting

–  Geometry processing

•  Primitive-wide properties

–  Rasterizing polygons to pixels

•  Find pixels falling on each
polygon

–  Processing the pixels

•  Texture lookup, shading, Z-values

–  Writing to the framebuffer

•  Colour, Z-value

•  Computationally intensive

January 10, 2010
 GPU Tutorial at PPoPP 2010

Vertex�
Processing

Geometry�
Processing

Rasterization

Pixel�
Processing

Framebuffer

Vertex

Image

5

III
T

H
yd

er
ab

ad

Programmable GPUs

•  Parts of the GPU pipeline were

made programmable for innovative
shading effects

•  Vertex, pixel, & later geometry
stages of processing could run
user’s shaders.

•  Pixel shaders perform Data-
parallel computations on a parallel
hardware

–  64-128 single precision floating

point processors

–  Fast texture access

•  GPGPU: High performance
computing on the GPU using
shaders. Efficient for vectors,
matrix, FFT, etc.

January 10, 2010
 GPU Tutorial at PPoPP 2010

Vertex�
Processing

Geometry�
Processing

Rasterization

Pixel�
Processing

Framebuffer

Vertex�
Shader

Geometry�
Shader

Pixel�
Shader

6

III
T

H
yd

er
ab

ad

New Generation GPUs

•  The DX10/SM4.0 model required a uniform
shader model

•  Translated into common, unified, hardware
cores to perform vertex, geometry, and pixel
operations.

•  Brought the GPUs closer to a general parallel
processor

•  A number of cores that can be reconfigured
dynamically

– More cores: 128  240  320

– Each transforms data in a common memory for use

by others

January 10, 2010
 GPU Tutorial at PPoPP 2010
 7

III
T

H
yd

er
ab

ad

Proc

Proc

Proc

Old Array Processors

•  Processor and Memory

tightly attached

•  A network to interconnect

–  Mesh, star, hypercube

•  Local data: Memory read/

write�
Remote data: network access

•  Data reorganization is
expensive to perform

•  Data-Parallel model works

•  Thinking Machines CM-1,

CM-2. MasPar MP-1, etc

January 10, 2010
 GPU Tutorial at PPoPP 2010

Proc
 Proc

Proc
 Proc

Proc
 Proc

8

III
T

H
yd

er
ab

ad

Current GPU Architecture

• Processors have no local memory

• Bus-based connection to the common, large,

memory

• Uniform access to all memory for a PE

– Slower than computation by a factor of 500

• Resembles the PRAM model!

• No caches. But, instantaneous locality of

reference improves performance

– Simultaneous memory accesses combined to a

single transaction

• Memory access pattern determines
performance seriously

• Compute power: Upto 3 TFLOPs on a $400
add on card

January 10, 2010
 GPU Tutorial at PPoPP 2010

P
 P
 P
 P
 P

Memory Access

9

III
T

H
yd

er
ab

ad

What is the GPU Good at?

•  The GPU is good at

 data-parallel processing

•  The same computation executed on many data
elements in parallel – low control flow overhead

 with high SP floating point arithmetic intensity

•  Many calculations per memory access

•  Currently also need high floating point to integer ratio

•  High floating-point arithmetic intensity and many
data elements can hide memory access latency
without big data cache

III
T

H
yd

er
ab

ad

SIMD Multiprocessors

•  The device is a set of 16

or 30 multiprocessors

•  Each multiprocessor is a

set of 32-bit processors
with a Single Instruction
Multiple Data architecture
– shared instruction unit

•  At each clock cycle, a
multiprocessor executes
the same instruction on a
group of threads called a
warp

•  The number of threads in
a warp is the warp size

Device

Multiprocessor N

Multiprocessor 2
Multiprocessor 1

Instruction
Unit

Processor 1 … Processor 2 Processor M

III
T

H
yd

er
ab

ad

HW Overview

TPC TPC TPC TPC TPC TPC TPC TPC

TEX

SM

SP
SP
SP
SP

SFU

SP
SP
SP
SP

SFU

Instruction Fetch/Dispatch
Instruction L1 Data L1

Texture Processor Cluster Streaming Multiprocessor

SM
Shared Memory

Streaming Processor Array

III
T

H
yd

er
ab

ad

Streaming Multi-Processor

January 10, 2010
 GPU Tutorial at PPoPP 2010
 13

•  Streaming Multiprocessor

• 8 Streaming Processors (SP)

– 2 Super Function Units (SFU)

•  Multi-threaded instruction dispatch

• 1 to 512 threads active

• Shared instruction fetch per 32 threads

• Cover latency of texture/memory loads

•  30+ GFLOPS

•  16K registers

•  Partitioned among active threads

•  16 KB shared memory

•  Partitioned among logical blocks

SP
SP
SP
SP

SFU

SP
SP
SP
SP

SFU

Instruction Fetch/Dispatch
Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

III
T

H
yd

er
ab

ad

Multithreaded Coprocessor

•  The GPU is viewed as a compute device that:

–  Is a coprocessor to the CPU or host

– Has its own DRAM (device memory)

– Runs many threads in parallel

•  Data-parallel portions of an application are executed
on the device as kernels which run in parallel on
many threads

•  Differences between GPU and CPU threads

– GPU threads are extremely lightweight

•  Very little creation overhead

– GPU needs 1000s of threads for full efficiency

•  Multi-core CPU needs only a few

III
T

H
yd

er
ab

ad

Thread Batching: Grids and

Blocks

•  A kernel is executed as a

grid of thread blocks

–  All threads share data memory space

•  A thread block is a batch of
threads that can cooperate
with each other by:

–  Synchronizing their execution

•  For hazard-free shared memory
accesses

–  Efficiently sharing data
through a low latency shared
memory

•  Two threads from two
different blocks cannot
cooperate

Host

Kern
el 1

Kern
el 2

Device
Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Blk

Blk

Courtesy: NDVIA

III
T

H
yd

er
ab

ad

Block and Thread IDs

• Threads and blocks have
IDs

–  So each thread can decide

what data to work on

– Block ID: 1D or 2D

– Thread ID: 1D, 2D, or 3D

• Simplifies memory�
addressing when
processing�
multidimensional data

–  Image processing

–  Solving PDEs on volumes

– …

Courtesy: NDVIA

Device
Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

III
T

H
yd

er
ab

ad

Threads, Warps, Blocks

•  32 threads in a Warp or a scheduling group

– Only <32 when there are fewer than 32 total threads

•  There are (up to) 16 Warps in a Block

•  Each Block (and thus, each Warp) executes on a

single SM

•  G80 has 16 SMs, G280 has 30 SMs

•  At least 16 Blocks required to “fill” the device

•  More is better

–  If resources (registers, thread space, shared memory)
allow, more than 1 Block can occupy each SM

III
T

H
yd

er
ab

ad

Memory Spaces

• Each thread can:

– Read/write per-thread registers

– Read/write per-thread local memory

– Read/write per-block shared memory

– Read/write per-grid global memory

– Read only per-grid constant memory

– Read only per-grid texture memory

Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host The host can read/write
global, constant, and
texture memory

III
T

H
yd

er
ab

ad

Memory Access Times

•  Register – dedicated HW - single cycle

•  Shared Memory – dedicated HW - single cycle

•  Local Memory – DRAM, no cache - *slow*

•  Global Memory – DRAM, no cache - *slow*�

(400-500 cycles)

•  Constant Memory – DRAM, cached, 1…10s…

100s of cycles, depending on cache locality

•  Texture Memory – DRAM, cached, 1…10s…

100s of cycles, depending on cache locality

•  Instruction Memory (invisible) – DRAM,

cached

III
T

H
yd

er
ab

ad

Thread Scheduling/Execution

Each Thread Blocks consists of 32-thread warps currently

Warps are scheduling units in SM. A warp is schedule at
one time

Multiple warps time share the SM processors

Multiple blocks can also share an SM, if resources permit.
Available resources are vertically shared between blocks
that time-share an SM

If more blocks are needed, they use the hardware
sequentially.

III
T

H
yd

er
ab

ad

Processors, Memory

•  Nvidia 280GTX: 240 Streaming Processors, grouped into 30

Streaming Multiprocessors

–  One instruction sequencer per SM

–  16KB of on-chip shared memory per SM

–  16K 32-bit registers per SM

–  Single clock access of registers, shared memory

•  1 GB of common, off-chip global memory

–  130 GB/s of theoretical peak memory bandwith

–  High memory access latency: 300-500 cycles

–  128 byte, 64 byte, or 32 byte memory transactions

•  10 special texture access units to the same global memory.�
30 SMs grouped into 10 Texture processor clusters

•  1.3 GHz clock, 933 GFLOPs peak

•  Integer and single-precision float operations in one clock cycle.�

Slower double-precision support

January 10, 2010
 GPU Tutorial at PPoPP 2010
 21

III
T

H
yd

er
ab

ad

AMD 5870 Architecture

January 10, 2010
 GPU Tutorial at PPoPP 2010
 22

• 20 SIMD engines with 16
stream cores each

– Each SC with 5 PEs �

(1600 Pes in total)

– Each with IEEE754 and

integer support

– Each with local data share

memory

•  32 kb shared low latency

memory

•  32 banks with hardware conflict

management

•  32 integer atomic units 80 Read

Address Probes

–  4 addresses per SIMD engine

–  4 filter or convert logic per

SIMD Global Memory access

• 153 GB/sec GDDR5
memory interface

III
T

H
yd

er
ab

ad

Nvidia 280GTX: Architecture

January 10, 2010
 GPU Tutorial at PPoPP 2010
 23

III
T

H
yd

er
ab

ad

Performance Considerations

•  Thread divergence

–  SIMD width is 32 threads. They should execute the same

very instruction

–  Serialization otherwise

•  Memory access coherence

–  A half-warp of 16 threads should read from a local block

(128, 64, or 32 bytes) for speed

–  Random memory access very expensive

•  Occupancy or degree of parallelism

–  Optimum use of registers and shared memory for maximum

exploitation of parallelism

–  Memory latency hidden best with high parallelism

•  Atomic operations

–  Global and shared memory support slow atomic operations

January 10, 2010
 GPU Tutorial at PPoPP 2010
 24

III
T

H
yd

er
ab

ad

Tools and APIs

•  OpenGL/Direct3D for older, GPGPU exposure

– Shaders operating on polygons, textures, and

framebuffer

•  CUDA: an alternate interface from Nvidia

– Kernel operating on grids using threads

– Extensions of the C language

•  DirectX Compute Shader: Microsoft’s version

•  OpenCL: A promising open compute standard

– Apple, Nvidia, AMD, Intel, TI, etc.

– Support for task parallel, data parallel, pipeline-parallel,

etc.

– Exploit the strengths of all available computing

resources

January 10, 2010
 GPU Tutorial at PPoPP 2010
 25

III
T

H
yd

er
ab

ad

Massively Multithreaded Model

•  Hiding memory latency: Overlap computation & memory

access

–  Keep multiple threads in flight simultaneously on each core

–  Low-overhead switching. Another thread computes when one is

stalled for memory data

–  Alternate resources like registers, context to enable this

•  A large number of threads in flight

–  Nvidia GPUs: up to 128 threads on each core on the GTX280

–  30K time-shared threads on 240 cores

•  Common instruction issue units for a number of cores

–  SIMD model at some level to optimize control hardware

–  Inefficient for if-the-else divergence

•  Threads organized in multiple tiers

January 10, 2010
 GPU Tutorial at PPoPP 2010
 26

III
T

H
yd

er
ab

ad

Multi-tier Thread Structure

• Data parallel model: A kernel on

each data element

– A kernel runs on a core

– CUDA: an invocation of the kernel is

called a thread

– OpenCL: the same is called a work item

• Group data elements based on
simultaneous scheduling

– Execute truly in parallel, SIMD mode

– Memory access, instruction divergence,

etc., affect performance

– CUDA: a warp of threads

• Group elements for resource usage

– Share memory and other resources

– May synchronize within group

– CUDA: Blocks of threads

– OpenCL: Work groups

January 10, 2010
 GPU Tutorial at PPoPP 2010

Scheduling groups

Resource groups

27

III
T

H
yd

er
ab

ad

Data-Parallelism

•  Data elements provide

parallelism

– Think of many data

elements, each being
processed simultaneously

January 10, 2010
 GPU Tutorial at PPoPP 2010
 28

III
T

H
yd

er
ab

ad

Data-Parallelism

•  Data elements provide

parallelism

– Think of many data elements,

each being processed
simultaneously

– Thousands of threads to
process thousands of data
elements

•  Not necessarily SIMD, most
are SIMD or SPMD

– Each kernel knows its

location, identical otherwise

– Work on different parts using

the location

January 10, 2010
 GPU Tutorial at PPoPP 2010
 29

III
T

H
yd

er
ab

ad

Thinking Data-Parallel

•  Launch N data locations, each of which gets a kernel of code

•  Data follows a domain of computation.

•  Each invocation of the kernel is aware of its location loc within the

domain

–  Can access different data elements using the loc

–  May perform different computations also

•  Variations of SIMD processing

–  Abstain from a compute step: if (f(loc)) then … else …

•  Divergence can result in serialization

–  Autonomous addressing for gather: a := b[f(loc)]

–  Autonomous addressing for scatter: a[g(loc)] := b

•  GPGPU model supports gather but not scatter

–  Operation autonomy: Beyond SIMD.

•  GPU hardware uses it for graphics, but not exposed to users

January 10, 2010
 GPU Tutorial at PPoPP 2010
 30

III
T

H
yd

er
ab

ad

Image Processing

•  A kernel for each location of

the 2D domain of pixels

–  Embarrassingly parallel for

simple operations

•  Each work element does its

own operations

–  Point operations, filtering,

transformations, etc.

•  Process own pixels, get

neighboring pixels, etc

•  Work groups can share data

–  Get own pixels and “apron”
pixels that are accessed
multiple times

January 10, 2010
 GPU Tutorial at PPoPP 2010

3 x 3 Filtering

31

III
T

H
yd

er
ab

ad

Regular Domains

•  Regular 1D, 2D, and nD

domains map very well to
data-parallelism

•  Each work-item operates
by itself or with a few
neighbors

•  Need not be of equal
dimensions or length

•  A mapping from loc to
each domain should exist

January 10, 2010
 GPU Tutorial at PPoPP 2010

b c d e f g h i a

b	

 c	

 d	

 e	

 f	

 g	

 h	

a	

32

III
T

H
yd

er
ab

ad

Irregular Domains

•  A regular domain generates

varying amounts of data

– Convert to a regular domain

– Process using the regular

domain

– Mapping to original domain

using new location possible

•  Needs computations to do

this

•  Occurs frequently in data

structure building,work
distribution, etc.

January 10, 2010
 GPU Tutorial at PPoPP 2010

A
 B
 C
 D
 E
 F

Regular Domain

Irregular Domain

33

III
T

H
yd

er
ab

ad

Data-Parallel Primitives

•  Deep knowledge of

architecture needed to get
high performance

–  Use primitives to build other

algorithms

–  Efficient implementations on

the architecture by experts

•  reduce, scan, segmented

scan: Aggregate or
progressive results from
distributed data

–  Ordering distributed info

•  split, sort:

–  Mapping distributed data�

[Blelloch 1989]

January 10, 2010
 GPU Tutorial at PPoPP 2010

1 3 2 0 6 2 5 2 4

1 4 6 6 12 14 19 21 0
Scan or prefix sum

Add Reduce

25

1 4 0 0 6 8 0 2 0

Segmented Scan

0 0 1 0 0 0 1 0 1

34

III
T

H
yd

er
ab

ad

Split Primitive

•  Rearrange data according to its category. Categories could be
anything.

•  Generalization of sort. Categories needn’t ordered themselves

•  Important in distributing or mapping data

January 10, 2010
 GPU Tutorial at PPoPP 2010

Split

35

III
T

H
yd

er
ab

ad

Handling Irregular Domains

•  Convert from irregular

to a regular domain

•  Each old domain

element counts its
elements in new domain

•  Scan the counts to get
the progressive counts or
the starting points

•  Copy data elements to
own location

January 10, 2010
 GPU Tutorial at PPoPP 2010

A
 B
 C
 D
 E
 F

2 3
 1
 2
 3
 1

Counts

0 2
 4
 5
 7
 10

Progressive Counts

Regular Domain

Scan

36

III
T

H
yd

er
ab

ad

Graph Algorithms

•  Not the prototypical data-

parallel application; an
irregular application.

•  Source of data-parallelism:
Data structure (adjacency
matrix or adjacency list)

•  A 2D-domain of V2
elements or a 1D-domain of
E elements

•  A thread processes each
edge in parallel. Combine
the results

January 10, 2010
 GPU Tutorial at PPoPP 2010

Adjacency�
Matrix

Adjacency List

Vertices

37

III
T

H
yd

er
ab

ad

Find min edge for each vertex

Example: Find the minimum
outgoing edge of each vertex

Soln 1: Each node-kernel loops

over its neighbors, keeping track
of the minimum weight and the
edge

January 10, 2010
 GPU Tutorial at PPoPP 2010

for each node in parallel

 for all neighbours v�
 if w[v] < min�
 min = w[v]

 mv = v

0
 0
 1
 1
 0
 1
 1
1
 0
 1
 1
 1
 0
0

u

w

v

Soln 2: Segmented min-scan of
the weights array + a kernel to
identify min vertex

Soln 3: Sort the tuple (u, w, v)
using the key (w, v) for all edges
(u, v) of the graph of weight w.
Take the first entry for each u.

38

III
T

H
yd

er
ab

ad

Task Parallel Computing

•  The problem is divided into a

number of tasks; Data may also
be partitioned or shared

•  Some can be done in parallel,
others depend on previous
results

•  Combine the results finally

•  CPU cores and GPU can be

doing task-parallel computing

•  OpenCL supports this model of

computation as well as the
pipelined model

•  More on OpenCL later today

January 10, 2010
 GPU Tutorial at PPoPP 2010

A

B
 C
 D

F
E

G

39

III
T

H
yd

er
ab

ad

Summary

•  GPU can be an essential computing platform with a

massively multithreaded programming model

•  Data-parallel model fits the GPUs best.

•  High performance requires deep knowledge of the

architecture. High-level primitives can alleviate
this greatly.

•  Think of CPU and GPU together achieving your
computing goals. Not one instead of the other

•  OpenCL is an exciting new development that can
make this possible and portable!

January 10, 2010
 GPU Tutorial at PPoPP 2010
 40

III
T

H
yd

er
ab

ad

For More Information

• GPGPU: gpgpu.org

•  SIGGRAPH Courses:

– SIGGRAPH 2008: Available at UC, Davis.�
http://s08.idav.ucdavis.edu/

– SIGGRAPH Asia 2008: Available at UC, Davis�
http://sa08.idav.ucdavis.edu/

– Upcoming course at SIGGRAPH 2009

•  CudaZone for Nvidia

• And more …

January 10, 2010
 GPU Tutorial at PPoPP 2010
 41

III
T

H
yd

er
ab

ad

Thank you!

Image credits to owners such as Intel,
Nvidia, AMD/ATI, etc.

January 10, 2010
GPU Tutorial at PPoPP 2010

III
T

H
yd

er
ab

ad

Thank you!

Image credits to owners such as Intel,
Nvidia, AMD/ATI, etc.

January 10, 2010
GPU Tutorial at PPoPP 2010

