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GPU: Evolution

•  Graphics : a few hundred triangles/vertices map to a few 

hundred thousand pixels

•  Process pixels in parallel. Do the same thing on a large 

number of different items.

•  Data parallel model: parallelism provided by the data


–  Thousands to millions of data elements

–  Same program/instruction on all of them


•  Hardware: 8-16 cores to process vertices and 64-128 to 
process pixels by 2005


–  Less versatile than CPU cores

–  SIMD mode of computations. Less hardware for instruction issue

–  No caching,  branch prediction, out-of-order execution, etc.

–  Can pack more cores in same silicon die area
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GPU & CPU
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CPU vs GPU

• CPU Architecture features:


– Few, complex cores


– Perform irregular operations well

•  Run an OS, control multiple IO, pointer 

manipulation, etc.


• GPU Architecture features:

– Hundreds of simple cores, operating on 

a common memory (like the PRAM 
model)


– High compute power but high memory 
latency (1:500)


– No caching, prefetching, etc


– High arithmetic intensity needed for 
good performance

•  Graphics rendering, image/signal processing, 

matrix manipulation, FFT, etc.
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What do GPUs do?

•  GPU implements the graphics 

pipeline consisting of:

–  Vertex transformations


•  Compute camera coords, lighting

–  Geometry processing


•  Primitive-wide properties

–  Rasterizing polygons to pixels


•  Find pixels falling on each 
polygon


–  Processing the pixels

•  Texture lookup, shading, Z-values


–  Writing to the framebuffer

•  Colour, Z-value


•  Computationally intensive
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Programmable GPUs

•  Parts of the GPU pipeline were 

made programmable for innovative 
shading effects


•  Vertex, pixel, & later geometry 
stages of processing could run 
user’s shaders.


•  Pixel shaders  perform Data-
parallel computations on a parallel 
hardware

–  64-128 single precision floating 

point processors

–  Fast texture access


•  GPGPU: High performance 
computing on the GPU using 
shaders. Efficient for vectors, 
matrix, FFT, etc. 
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New Generation GPUs


•  The DX10/SM4.0 model required a uniform 
shader model


•  Translated into common, unified, hardware 
cores to perform vertex, geometry, and pixel 
operations.


•  Brought the GPUs closer to a general parallel 
processor


•  A number of cores that can be reconfigured 
dynamically

– More cores: 128  240  320

– Each transforms data in a common memory for use 

by others
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Proc


Proc


Proc


Old Array Processors

•  Processor and Memory 

tightly attached

•  A network to interconnect


–  Mesh, star, hypercube

•  Local data: Memory read/

write�
Remote data: network access


•  Data reorganization is 
expensive to perform


•  Data-Parallel model works

•  Thinking Machines CM-1, 

CM-2. MasPar MP-1, etc


January 10, 2010 
 GPU Tutorial at PPoPP 2010 


Proc
 Proc


Proc
 Proc


Proc
 Proc


8




III
T 

H
yd

er
ab

ad



Current GPU Architecture

• Processors have no local memory

• Bus-based connection to the common, large, 

memory

• Uniform access to all memory for a PE


– Slower than computation by a factor of 500


• Resembles the PRAM model!

• No caches. But, instantaneous locality of 

reference improves performance

– Simultaneous memory accesses combined to a 

single transaction


• Memory access pattern determines 
performance seriously


• Compute power: Upto 3 TFLOPs on a $400 
add on card
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What is the GPU Good at?

•  The GPU is good at


 
 data-parallel processing


•  The same computation executed on many data 
elements in parallel – low control flow overhead



 
 with high SP floating point arithmetic intensity

•  Many calculations per memory access

•  Currently also need high floating point to integer ratio


•  High floating-point arithmetic intensity and many 
data elements can hide memory access latency 
without big data cache
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SIMD Multiprocessors

•  The device is a set of 16 

or 30 multiprocessors

•  Each multiprocessor is a 

set of 32-bit processors 
with a Single Instruction 
Multiple Data architecture 
– shared instruction unit


•  At each clock cycle, a 
multiprocessor executes 
the same instruction on a 
group of threads called a 
warp


•  The number of threads in 
a warp is the warp size


Device 

Multiprocessor N 

Multiprocessor 2 
Multiprocessor 1 

Instruction 
Unit 

Processor 1 … Processor 2 Processor M 
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HW Overview
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Streaming Multi-Processor
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•  Streaming Multiprocessor

• 8 Streaming Processors (SP)


– 2 Super Function Units (SFU)

•  Multi-threaded instruction dispatch


• 1 to 512 threads active

• Shared instruction fetch per 32 threads

• Cover latency of texture/memory loads


•  30+ GFLOPS

•  16K registers


•  Partitioned among active threads

•  16 KB shared memory


•  Partitioned among logical blocks
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Streaming Multiprocessor 
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Multithreaded Coprocessor


•  The GPU is viewed as a compute device that:

–  Is a coprocessor to the CPU or host

– Has its own DRAM (device memory)

– Runs many threads in parallel


•  Data-parallel portions of an application are executed 
on the device as kernels which run in parallel on 
many threads


•  Differences between GPU and CPU threads 

– GPU threads are extremely lightweight


•  Very little creation overhead

– GPU needs 1000s of threads for full efficiency


•  Multi-core CPU needs only a few
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Thread Batching: Grids and 

Blocks

•  A kernel is executed as a 

grid of thread blocks

–  All threads share data memory space


•  A thread block is a batch of 
threads that can cooperate 
with each other by:

–  Synchronizing their execution


•  For hazard-free shared memory 
accesses


–  Efficiently sharing data 
through a low latency shared 
memory


•  Two threads from two 
different blocks cannot 
cooperate


Host 

Kern
el 1 

Kern
el 2 

Device 
Grid 1 

Block 
(0, 0) 

Block 
(1, 0) 

Block 
(2, 0) 

Block 
(0, 1) 

Block 
(1, 1) 

Block 
(2, 1) 

Grid 2 

Blk 

Blk 

Courtesy: NDVIA 
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Block and Thread IDs


• Threads and blocks have 
IDs

–  So each thread can decide 

what data to work on

– Block ID: 1D or 2D

– Thread ID: 1D, 2D, or 3D 


• Simplifies memory�
addressing when 
processing�
multidimensional data

–  Image processing

–  Solving PDEs on volumes

– …


Courtesy: NDVIA 
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Threads, Warps, Blocks


•  32 threads in a Warp or a scheduling group

– Only <32 when there are fewer than 32 total threads


•  There are (up to) 16 Warps in a Block

•  Each Block (and thus, each Warp) executes on a 

single SM

•  G80 has 16 SMs, G280 has 30 SMs

•  At least 16 Blocks required to “fill” the device

•  More is better


–  If resources (registers, thread space, shared memory) 
allow, more than 1 Block can occupy each SM
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Memory Spaces


• Each thread can:

– Read/write per-thread registers

– Read/write per-thread local memory

– Read/write per-block shared memory

– Read/write per-grid global memory

– Read only per-grid constant memory

– Read only per-grid texture memory


Grid 

Constant 
Memory 

Texture 
Memory 

Global 
Memory 

Block (0, 0) 

Shared Memory 

Local 
Memory 

Thread (0, 0) 

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Local 
Memory 

Thread (0, 0) 

Registers 

Local 
Memory 

Thread (1, 0) 

Registers 

Host The host can read/write 
global, constant, and 
texture memory 
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Memory Access Times


•  Register – dedicated HW - single cycle

•  Shared Memory – dedicated HW - single cycle

•  Local Memory – DRAM, no cache - *slow*

•  Global Memory – DRAM, no cache - *slow*�

(400-500 cycles)

•  Constant Memory – DRAM, cached, 1…10s…

100s of cycles, depending on cache locality

•  Texture Memory – DRAM, cached, 1…10s…

100s of cycles, depending on cache locality

•  Instruction Memory (invisible) – DRAM, 

cached
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Thread Scheduling/Execution

Each Thread Blocks consists of 32-thread warps currently 

Warps are scheduling units in SM. A warp is schedule at 
one time 

Multiple warps time share the SM processors 

Multiple blocks can also share an SM, if resources permit. 
Available resources are vertically shared between blocks 
that time-share an SM 

If more blocks are needed, they use the hardware 
sequentially. 
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Processors, Memory

•  Nvidia 280GTX: 240 Streaming Processors, grouped into 30 

Streaming Multiprocessors

–  One instruction sequencer per SM

–  16KB of on-chip shared memory per SM

–  16K 32-bit registers per SM

–  Single clock access of registers, shared memory


•  1 GB of common, off-chip global memory

–  130 GB/s of theoretical peak memory bandwith

–  High memory access latency: 300-500 cycles

–  128 byte, 64 byte, or 32 byte memory transactions


•  10 special texture access units to the same global memory.�
30 SMs grouped into 10 Texture processor clusters


•  1.3 GHz clock, 933 GFLOPs peak

•  Integer and single-precision float operations in one clock cycle.�

Slower double-precision support
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AMD 5870 Architecture
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• 20 SIMD engines with 16 
stream cores each

– Each SC with 5 PEs �

(1600 Pes in total)

– Each with IEEE754 and 

integer support

– Each with local data share 

memory

•  32 kb shared low latency 

memory

•  32 banks with hardware conflict 

management

•  32 integer atomic units 80 Read 

Address Probes

–  4 addresses per SIMD engine

–  4 filter or convert logic per 

SIMD Global Memory access


• 153 GB/sec GDDR5 
memory interface
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Nvidia 280GTX: Architecture
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Performance Considerations


•  Thread divergence

–  SIMD width is 32 threads. They should execute the same 

very instruction

–  Serialization otherwise


•  Memory access coherence

–  A half-warp of 16 threads should read from a local block 

(128, 64, or 32 bytes) for speed

–  Random memory access very expensive


•  Occupancy or degree of parallelism

–  Optimum use of registers and shared memory for maximum 

exploitation of parallelism

–  Memory latency hidden best with high parallelism


•  Atomic operations

–  Global and shared memory support slow atomic operations
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Tools and APIs


•  OpenGL/Direct3D for older, GPGPU exposure

– Shaders operating on polygons, textures, and 

framebuffer

•  CUDA: an alternate interface from Nvidia


– Kernel operating on grids using threads

– Extensions of the C language


•  DirectX Compute Shader: Microsoft’s version 

•  OpenCL: A promising open compute standard


– Apple, Nvidia, AMD, Intel, TI, etc.

– Support for task parallel, data parallel, pipeline-parallel, 

etc.

– Exploit the strengths of all available computing 

resources
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Massively Multithreaded Model

•  Hiding memory latency: Overlap computation & memory 

access

–  Keep multiple threads in flight simultaneously on each core

–  Low-overhead switching. Another thread computes when one is 

stalled for memory data

–  Alternate resources like registers, context to enable this


•  A large number of threads in flight

–  Nvidia GPUs: up to 128 threads on each core on the GTX280 

–  30K time-shared threads on 240 cores


•  Common instruction issue units for a number of cores

–  SIMD model at some level to optimize control hardware

–  Inefficient for if-the-else divergence


•  Threads organized in multiple tiers
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Multi-tier Thread Structure

• Data parallel model: A kernel on 

each data element

– A kernel runs on a core

– CUDA: an invocation of the kernel is 

called a thread

– OpenCL: the same is called a work item


• Group data elements based on 
simultaneous scheduling

– Execute truly in parallel, SIMD mode

– Memory access, instruction divergence, 

etc., affect performance

– CUDA: a warp of threads  


• Group elements for resource usage

– Share memory  and other resources

– May synchronize within group

– CUDA: Blocks of threads

– OpenCL: Work groups
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Data-Parallelism

•  Data elements provide 

parallelism

– Think of many data 

elements, each being 
processed simultaneously
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Data-Parallelism

•  Data elements provide 

parallelism

– Think of many data elements, 

each being processed 
simultaneously


– Thousands of threads to 
process thousands of data 
elements


•  Not necessarily SIMD, most 
are SIMD or SPMD

– Each kernel knows its 

location, identical otherwise

– Work on different parts using 

the location
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Thinking Data-Parallel

•  Launch N data locations, each of which gets a kernel of code

•  Data follows a domain of computation.

•  Each invocation of the kernel is aware of its location loc within the 

domain

–  Can access different data elements using the loc

–  May perform different computations also


•  Variations of SIMD processing

–  Abstain from a compute step:  if ( f(loc) ) then … else …


•  Divergence can result in serialization

–  Autonomous addressing for gather:   a :=  b[ f(loc) ] 

–  Autonomous addressing for scatter:   a[ g(loc) ] :=  b


•  GPGPU model supports gather but not scatter

–  Operation autonomy: Beyond SIMD.


•  GPU hardware uses it for graphics, but not exposed to users
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Image Processing

•  A kernel for each location of 

the 2D domain of pixels

–  Embarrassingly parallel for 

simple operations

•  Each work element does its 

own operations

–  Point operations, filtering, 

transformations, etc.

•  Process own pixels, get 

neighboring pixels, etc

•  Work groups can share data


–  Get own pixels and “apron” 
pixels that are accessed 
multiple times
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Regular Domains

•  Regular 1D, 2D, and nD 

domains map very well to 
data-parallelism


•  Each work-item operates 
by itself or with a few 
neighbors


•  Need not be of equal 
dimensions or length


•  A mapping from loc to 
each domain should exist   
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Irregular Domains

•  A regular domain generates 

varying amounts of data

– Convert to a regular domain

– Process using the regular 

domain

– Mapping to original domain 

using new location possible

•  Needs computations to do 

this

•  Occurs frequently in data 

structure building,work 
distribution, etc. 
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Data-Parallel Primitives

•  Deep knowledge of 

architecture needed to get 
high performance

–  Use primitives to build other 

algorithms

–  Efficient implementations on 

the architecture by experts

•  reduce, scan, segmented 

scan: Aggregate or 
progressive results from 
distributed data

–  Ordering distributed info


•  split, sort:

–  Mapping distributed data�

[Blelloch  1989]
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Split Primitive


•  Rearrange data according to its category. Categories could be 
anything.


•  Generalization of sort. Categories needn’t ordered themselves

•  Important in distributing or mapping data
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Handling Irregular Domains

•  Convert from irregular 

to a regular domain

•  Each old domain 

element counts its 
elements in new domain


•  Scan the counts to get 
the progressive counts or 
the starting points


•  Copy data elements to 
own location 
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Graph Algorithms

•  Not the prototypical data-

parallel application; an 
irregular application.


•  Source of data-parallelism: 
Data structure (adjacency 
matrix or adjacency list)


•  A 2D-domain of  V2 
elements or a 1D-domain of 
E elements


•  A thread processes each 
edge in parallel. Combine 
the results
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Find min edge for each vertex

Example: Find the minimum 
outgoing edge of each vertex

Soln 1: Each node-kernel loops 

over its neighbors, keeping track 
of the minimum weight and the 
edge
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for each node in parallel

  for all neighbours v�
     if w[v] < min�
          min = w[v]

          mv = v


0
 0
 1
 1
 0
 1
 1
1
 0
 1
 1
 1
 0
0


u

w

v


Soln 2: Segmented min-scan of 
the weights array + a kernel to 
identify min vertex


Soln 3: Sort the tuple (u, w, v) 
using the key (w, v) for all edges 
(u, v) of the graph of weight w. 
Take the first entry for each u.
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Task Parallel Computing

•  The problem is divided into a 

number of tasks; Data may also 
be partitioned or shared


•  Some can be done in parallel, 
others depend on previous 
results


•  Combine the results finally

•  CPU cores and GPU can be 

doing task-parallel computing

•  OpenCL supports this model of 

computation as well as the 
pipelined model


•  More on OpenCL later today
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Summary

•  GPU can be an essential computing platform with a 

massively multithreaded programming model

•  Data-parallel model fits the GPUs best.

•  High performance requires deep knowledge of the 

architecture. High-level primitives can alleviate 
this greatly.


•  Think of CPU and GPU together achieving your 
computing goals. Not one instead of the other


•  OpenCL is an exciting new development that can 
make this possible and portable!
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For More Information


• GPGPU:  gpgpu.org

•  SIGGRAPH Courses:


– SIGGRAPH 2008: Available at UC, Davis.�
http://s08.idav.ucdavis.edu/


– SIGGRAPH Asia 2008: Available at UC, Davis�
http://sa08.idav.ucdavis.edu/


– Upcoming course at SIGGRAPH 2009

•  CudaZone for Nvidia

• And more …
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Thank you!


Image credits to owners such as Intel, 
Nvidia, AMD/ATI, etc.
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Thank you!


Image credits to owners such as Intel, 
Nvidia, AMD/ATI, etc.
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