>

NVIDIA.

0:00 -- 0:10 : Introduction to the Tutorial, Theme, Speakers.

0:10 -- 0:30 : Basic Concepts -- CPU Architectures, GPUs -- evolution,
comparison to earlier models of parallel computing

0:30 -- 0:55 : GPU Architectures in Detail -- NVidia architecture, Intel Larrabee
architectural features

BREAK
1:50 -- 2:15 : Case studies of regular applications on the GPU
2:15 -- 2:45 : Case studies of irregular applications on the GPU
2:45 -- 3:20 : GPU Analytical Models

Design Space Optimization, Performance Prediction

3:20 -- 3:30 : Concluding remarks, discussion

© NVIDIA Corporation 2006

2

A A

<<< GPU Programming >>>

Suryakant Patidar
spatidar@nvidia.com

Don’t just process, Compute ! <X
NVIDIA

® Graphics Processing on GPU
® OpenGlL, DirectX ...
® Games, Visualizations ...

® Classic GPGPU : General Processing on the GPU
® OpenGL, DirectX etc. ? ?
® General Problems <faked as> Graphics Rendering Problems
® Easy — Data Parallel, image processing
® Hard — Irregular Algorithms, MST for a Sparse Graph

® Compute on GPU
® NVIDIA CUDA - C for GPUs
¢ OpenCL — Open Compute Library

Take Away

® Compute Architecture
® C, OpenCL

® Hardware/Software Model

® Processor & Memory Organization
® Execution Model

® Ar

® Language and Limitations

>

NVIDIA

Compute Architecture <

NVIDIA

® Gruas Highly Multi-Threaded Co-Processor
1000s of threads, not 2, not 4, not 8
¢ 100s of tiny processors

® Su.pports standard languages and APIs
C(CUDA)
¢ OpenCL

® Dx Compute Applications
® Supported on common C | OpenCL DX
operating systems Compute

Linux

®
® Macos CUDA Architecture
® Windows

CUDA/OpenCL Programming <X

NVIDIA

® Heterogeneous programming model

® CPU and GPU are separate devices with separate memory spaces

® CPU code is standard C/C++
® OpenCL : Look alike as OpenGL(C based)
® cuba:c/c+

® GrU code
¢ OpenCL/CUDA : Subset of C with extensions

CUDA H/W Architecture .

NVIDIA.

® SIMD Multi Processor #30

SIMD Multi Processor #2

SIMD Multi Processor #1

Shared Memory (16KB)

Registers l Registers I

Texture Cache (8KB)

Constant Cache (8KB) g™

l

Device Memory (~1GB)

Software — Terminology <X

NVIDIA

® Lost-cpu
® Device — GPU

® Kernel - code which we wish to run on the GPU

® Thread/Workltem — An Instance of a Kernel

® Block/WorkGroup — Group of Threads, bunched together
® Grid- Group of Blocks, one Grid — one Kernel

® OpenCL is very much inspired by CUDA, and given the GPU
hardware is common to both, the APIs and approach are
similar too

Kernels and Threads @2

NVIDIA

® panallel portions of an application are executed on the
device as kernels
® One kernel is executed at a time
® Many threads execute each kernel

® Differences between CUDA and CPU threads
¢ CUDA threads are extremely lightweight

® Very little creation overhead

® Fast switching
® CUDA uses 1000s of threads to achieve efficiency

® Multi-core CPUs can use only a few

CUDA S/W Architecture

<3

NVIDIA

CPU / Host

GPU / Device

Kerne| 1 e————

Blocks Blocks Blocks
(010) /" (110) \\ (2;0)

Blocks
(2,1)

Blocks
(1,1)

Blocks
(0,1)

Kernel 2 e——

Thread Thread Thread Thread
(0,0) (1,0) (2,0) (3,0)
Thread Thread Thread Thread
(0,1) (1,1) (2,1) (3,1)
1 Thread Thread Thread Thread
(0,2) (1,2) (2,2) (3,2)
Thread Thread Thread Thread
(0,3) (1,3) (2,3) (3,3)
\NT 77

(0% =)

Arrays of Parallel Threads <

NVIDIA.

® A CUDA kernel is executed by an array of threads
® All threads run the same code

® Each thread has an ID that it uses to compute memory addresses
and make control decisions

threadlD

float x = input[threadID];
float y = func(x);
Kernel output[threadID] = y;

Thread Cooperation <X

NVIDIA

® The Missing Piece: threads may need to cooperate

® Thread cooperation is valuable
® Share results to avoid redundant computation

® Share memory accesses
® Bandwidth reduction

® Cooperation between a monolithic array of threads is not
scalable
¢ Cooperation within smaller batches of threads is scalable

Thread Batching <3

NVIDIA

® Kernel launches a grid of thread blocks
® Threads within a block cooperate via shared memory
® Threads within a block can synchronize
® Threads in different blocks cannot cooperate

® Allows programs to transparently scale to different GPUs

Thread Block 0 Thread Block 1 Thread Block N-1

Transparent Scalability <X

NVIDIA

® Hardware is free to schedule thread blocks on any
processor
® A kernel scales across parallel multiprocessors

Kemel grid

s _
Block 2 Block 3

Block 4 Block 5

Block D | Block1 | Block 2 | Block 3

Block 0 | Block 1

Block 6 Block T

Block 4 | Block 5 || Block 6 | Block T

Block 2 | Block 3

Block 4 || Block 5

Block 6 || Block T

Kernel Memory Access <X

NVIDIA

® per-thread : Registers (fast)
® per-block : Shared Memory (fast, on-chip)

® per-device : Global Memory (Uncached, Off-chip, large
persistent across kernel launches)

CUDA Memory Model (H/W) <X

NVIDIA

Shared
Memory
(16KB)

® b hasaccess to Registers (private)

Registers
(64KB)

® b hasaccess to Shared-Memory
(common to 8 Ps, share and have fun)

® Caches (texture and constant) are not user-
managed, true caches

® Device memory is for all Ps of all SMs ! Truly
Chaotic!

Constant Cache (BKB)

Device Memory
(~1GB)

Execution Model @2

NVIDIA
Software Hardware
® Threads are executed by
thread processors
]
Thread
Thread Processor

® Thread blocks are executed on
multiprocessors

C1Cd
EE ® Several concurrent thread blocks
] can reside on one
—— [| multiprocessor - limited by
Block Multiprocessor multiprocessor resources
(shared memory and register
Odo||ogo|ogojjE0oljao|co file)
=[x |[=[=||[=/=]} (1=[=}|1=[=]||=[= . .
eeezz zzzzz 22222 ® A kernel is launched as a grid of
CHO i
Grid Device thread blocks

® Only one kernel can execute on
a device at one time

CUDA API

® An extension to the ANSI C programming Language
— No interference of a Graphics APl (OpenGL/DirectX)
— Good learning curve

® |anguage Extensions in form of
= Function type qualifiers (variety of functions)
— Variable type qualifiers (types of variables)
— Execution Configuration (parameters to kernel)
— Built-In variables (block and thread Ids)

>

NVIDIA

Function type qualifiers <X

NVIDIA

¢ __device__ (internal functions needed by main device function)

— Executed on the device

— Callable from device
__global __ (main Kernel function)

— Executed on the device

— Callable only from host
__host__

— Executed on the host

— Callable only from host

® For functions executed on the device

= No recursion
= No static variable declarations inside the function
— No variable number of arguments

Variable type qualifiers <X

NVIDIA

® device

— Use with one of the options mentioned below
® constant__

— Resides in constant memory space

— Has the lifetime of an application
— Accessible from all threads and host

® shared

— Resides in Shared Memory Space of thread block
— Only accessible from threads within the block
— Life time of a block

Built-In Variables @2

NVIDIA

® oridDim
— 3 Dimensional variable holding the dimensions of a grid

® blockldx
— Anint3 type of variable holding the block index within the grid

® blockDim

— 3 Dimensional variable holding the dimensions of a block

® threadldx
— An int3 type of variable holding the thread index within the block

Can not assign values to them nor can you get the address
of the above variables

Sample Code Snippets

® DeclSpecs

® __global__ void convolve (float *image)
® __shared__ float region[M]

® Keywords
® region[threadldx] = image][i]
® __syncthreads()

® Memory management and Kernel Launch
® void *mylmage = cudaMalloc(bytes)
¢ Convolve<<<100,100>>> (mylmage);

<3

NVIDIA

Increment Array Example <X

NVIDIA
inc_cpu (int *a, int N) { __global__ void inc_cpu (int *a_d, int N) {
idx; int idx = blockldx.x * blockDim.x
+ threadidx.x;
for (idx = 0; idx<N; idx++) if (idx<N)

a_d[idx] = a_d[idx] + 1;
}

void main(){
main() {
dim3 dimBlock (num_threads);
inc_cpu(a, N); dim3 dimGrid(ceil(N/(float)num_threads));
inc_gpu<<<dimGrid, dimBlock>>>(a_d, N);

>

NVIDIA.

>

NVIDIA.

0:00 -- 0:10 : Introduction to the Tutorial, Theme, Speakers.

0:10 -- 0:30 : Basic Concepts -- CPU Architectures, GPUs -- evolution,
comparison to earlier models of parallel computing

0:30 -- 0:55 : GPU Architectures in Detail -- NVidia architecture, Intel Larrabee
architectural features

0:55 -- 1:30 : GPU Programming models with short examples, CUDA
BREAK

2:15 -- 2:45 : Case studies of irregular applications on the GPU
2:45 -- 3:20 : GPU Analytical Models
Design Space Optimization, Performance Prediction

3:20 -- 3:30 : Concluding remarks, discussion

© NVIDIA Corporation 2006

2

A A

<<< Data Primitives >>>

Suryakant Patidar
spatidar@nvidia.com

Histogram Computation

® Counting data based on a given property
® Counting frequency of words in a book

® Large number of input data
® Easy to parallelize

® Requires to access common memory areas
® Memory operations on common area
® Language provided Atomic Operations

® Widely used

<3

NVIDIA

Global Memory Histogram <X

NVIDIA

® Using Atomic operations on Global Memory

® 4Bins’ sized array used in global memory to hold the
histogram data

for each thread in parallel
for each element ‘x’ assigned

to the thread, sequentially
ABCDEFGH.I {

bin = category[x];
atomiclnc(&globalHist[bin]);

Blocks #n

Blocks #0 Blocks #N

Global Memory Histogram (2) <X

NVIDIA

* Low Memory requirement — one copy of
histogram

e Number of Clashes a Number of Active Threads

* Highly data dependent, low number of bins
tend to perform really bad

* Global Memory is high-latency, ~500cc I/O

Shared Memory Histograms <X

NVIDIA

® A copy of the histogram for each Block
® Each Block counting its own data

® onceall done, we add the sub-histograms to get the final
histogram as needed

Shared Memory Histograms (2) <X

NVIDIA

® | ocal Shared Memory
used to store the sub-
histograms

Blocks #0 Blocks #n Blocks #N

® Fast to update and
less number of

conflicts (N times less
L AP] conflicts)
B
[

® Experimentally found

ﬂ to be faster

Split Operation >

NVIDIA.

Split can be defined as performing ::
append(x,List[category(x)])
for each x, List holds elements of same category together

H:ENEN - BN -
2

[Split Operation]

N
- IINEEEEEEEEE

Split Sequential Algorithm S

NVIDIA

I. Count the number of elements falling into each bin
® for each element x of list L do

® histogram[category(x)]++ [Requires Atomic]

Il. Find starting index for each bin (Prefix Sum : Scan Primitive)
® foreach category ‘m’ do

® startindex[m] = startindex[m — 1]+histogram[m-1]

lll. Assign each element to the output
¢ for each element x of list L do [Initialize localindex[x]=0]

® itemindex-= localindex[category(x)]++ [Requires Atomic]
® globallindex = startindex[category(x)]
® outArray[globallndex+itemiIndex] = x

Split using Shared Atomic

® shared Atomic Operations
used to build Block-level

histograms
® Parallel Prefix Sum used to Local Histograms arranged in Column Major Order
compute Startlng index Local Histograms arranged in Column Major Order
A s e le e fclclc
.

Split is performed by each
block for same set of
elements used in Step 1

Blocks #0 Blocks #n Blocks #N

Matrix Multiplication <X

NVIDIA

® Each thread block is
responsible for
computing one square
sub-matrix Csub of C

BLOCK_SIZE BLOCK_SIZE

|
|

o Each thread within the
block is responsible
for computing one
element of Csub

S
BLOCK_SIZE
-
b-J

i

< —<4 —ip Al
BLOCK_SIZE BLOCK_SIZE BLOCK_SIZE

wA wB
+«

Host Implementation <X
NnVIDIA

// Matrix multiplication on the (CPU)
void MatrixMulOnHost(const Matrix M, const Matrix N,

Matrix P)
{
for (inti = 0; i < A.height; ++i)
for (int j = 0; j < B.width; ++j) {
float sum = 0;
for (int k = 0; k < A.width; ++k) {
float a = A.elements][i * A.width + k];
float b = B.elements[k * B.width + j];
sum+=a* b;

}

C.elements[i * B.width + j] = sum;

Device Implementation <X
NVIDIA

// Matrix multiplication kernel — thread specification
__global__ void MatrixMulKernel(Matrix A, Matrix B, Matrix C)
{
// 2D Thread ID
int tx = threadldx.x;
int ty = threadldx.y;
// cvalue is used to store the element of the matrix that is computed by the thread
float Cvalue = 0;
for (int k = 0; k < A.width; ++k)

{
float Aelement = A.elements[ty * A.pitch + k];
float Belement = B.elements[k * B.pitch + tx];
Cvalue += Aelement * Belement;

}

// Write the matrix to device memory; each thread writes one element
C.elements[ty * C.pitch + tx] = Cvalue;

>

NVIDIA.

