
© NVIDIA Corporation 2006

Schedule

0:00 -- 0:10 : Introduction to the Tutorial, Theme, Speakers.

0:10 -- 0:30 : Basic Concepts -- CPU Architectures, GPUs -- evolution,

comparison to earlier models of parallel computing

0:30 -- 0:55 : GPU Architectures in Detail -- NVidia architecture, Intel Larrabee

architectural features

0:55 -- 1:30 : GPU Programming models with short examples, CUDA

B R E A K

1:50 -- 2:15 : Case studies of regular applications on the GPU

2:15 -- 2:45 : Case studies of irregular applications on the GPU

2:45 -- 3:20 : GPU Analytical Models

Design Space Optimization, Performance Prediction

3:20 -- 3:30 : Concluding remarks, discussion

<<< GPU Programming >>>

Suryakant Patidar

spatidar@nvidia.com

Don’t just process, Compute !

Graphics Processing on GPU
OpenGL, DirectX …

Games, Visualizations …

Classic GPGPU : General Processing on the GPU
OpenGL, DirectX etc. ? ?

General Problems <faked as> Graphics Rendering Problems

Easy – Data Parallel, image processing

Hard – Irregular Algorithms, MST for a Sparse Graph

Compute on GPU
NVIDIA CUDA – C for GPUs

OpenCL – Open Compute Library

Take Away

Compute Architecture
C, OpenCL

Hardware/Software Model
Processor & Memory Organization

Execution Model

API
Language and Limitations

Compute Architecture

GPU as Highly Multi-Threaded Co-Processor
1000s of threads, not 2, not 4, not 8
100s of tiny processors

Supports standard languages and APIs
C (CUDA)
OpenCL
DX Compute

Supported on common
operating systems

Linux
MacOS
Windows

CUDA/OpenCL Programming

Heterogeneous programming model
CPU and GPU are separate devices with separate memory spaces

CPU code is standard C/C++
OpenCL : Look alike as OpenGL(C based)

CUDA : C/C++

GPU code
OpenCL/CUDA : Subset of C with extensions

CUDA H/W Architecture

P1

SIMD Multi Processor #1

SIMD Multi Processor #2

SIMD Multi Processor #30

Instruction
UnitP2 P8

Texture Cache (8KB)

Constant Cache (8KB)

Device Memory (~1GB)

Registers

Shared Memory (16KB)

Registers Registers

Software – Terminology

Host – CPU

Device – GPU

Kernel – code which we wish to run on the GPU

Thread/WorkItem – An Instance of a Kernel

Block/WorkGroup – Group of Threads, bunched together

Grid – Group of Blocks, one Grid – one Kernel

OpenCL is very much inspired by CUDA, and given the GPU
hardware is common to both, the APIs and approach are
similar too

Kernels and Threads

Parallel portions of an application are executed on the
device as kernels

One kernel is executed at a time

Many threads execute each kernel

Differences between CUDA and CPU threads
CUDA threads are extremely lightweight

Very little creation overhead

Fast switching
CUDA uses 1000s of threads to achieve efficiency

Multi-core CPUs can use only a few

CUDA S/W Architecture

CPU / Host GPU / Device

Kernel 1

Kernel 2

Grid
Blocks
(0,0)

Blocks
(0,1)

Blocks
(1,0)

Blocks
(1,1)

Blocks
(2,0)

Blocks
(2,1)

Grid
Blocks
(0,0)

Blocks
(0,1)

Blocks
(1,0)

Blocks
(1,1)

Blocks
(2,0)

Blocks
(2,1)

Block (1,0)
Thread

(0,0)

Thread
(0,1)

Thread
(1,0)

Thread
(1,1)

Thread
(2,0)

Thread
(2,1)

Thread
(3,0)

Thread
(3,1)

Thread
(0,2)

Thread
(0,3)

Thread
(1,2)

Thread
(1,3)

Thread
(2,2)

Thread
(2,3)

Thread
(3,2)

Thread
(3,3)

Arrays of Parallel Threads

A CUDA kernel is executed by an array of threads
All threads run the same code

Each thread has an ID that it uses to compute memory addresses
and make control decisions

1 2 3 4 5 6 70

float x = input[threadID];
float y = func(x);

output[threadID] = y;

threadID

Kernel

Thread Cooperation

The Missing Piece: threads may need to cooperate

Thread cooperation is valuable
Share results to avoid redundant computation

Share memory accesses

Bandwidth reduction

Cooperation between a monolithic array of threads is not
scalable

Cooperation within smaller batches of threads is scalable

Thread Batching

Kernel launches a grid of thread blocks
Threads within a block cooperate via shared memory

Threads within a block can synchronize

Threads in different blocks cannot cooperate

Allows programs to transparently scale to different GPUs

Transparent Scalability

Hardware is free to schedule thread blocks on any
processor

A kernel scales across parallel multiprocessors

Kernel Memory Access

Per-thread : Registers (fast)

Per-block : Shared Memory (fast, on-chip)

Per-device : Global Memory (Uncached, Off-chip, large
persistent across kernel launches)

CUDA Memory Model (H/W)

P has access to Registers (private)

P has access to Shared-Memory
(common to 8 Ps, share and have fun)

Caches (texture and constant) are not user-
managed, true caches

Device memory is for all Ps of all SMs ! Truly
Chaotic ! Texture Cache (8KB)

Constant Cache (8KB)

P

Device Memory
(~1GB)

Registers
(64KB)

Shared
Memory
(16KB)

Execution Model

Threads are executed by
thread processors

Thread blocks are executed on
multiprocessors

Several concurrent thread blocks
can reside on one
multiprocessor - limited by
multiprocessor resources
(shared memory and register
file)

A kernel is launched as a grid of
thread blocks

Only one kernel can execute on
a device at one time

Software Hardware

CUDA API

• An extension to the ANSI C programming Language
– No interference of a Graphics API (OpenGL/DirectX)

– Good learning curve

• Language Extensions in form of
– Function type qualifiers (variety of functions)

– Variable type qualifiers (types of variables)

– Execution Configuration (parameters to kernel)

– Built-In variables (block and thread Ids)

Function type qualifiers

• __device__ (internal functions needed by main device function)

– Executed on the device
– Callable from device

• __global__ (main Kernel function)

– Executed on the device
– Callable only from host

• __host__
– Executed on the host
– Callable only from host

• For functions executed on the device
– No recursion
– No static variable declarations inside the function
– No variable number of arguments

Variable type qualifiers

• __device__
– Use with one of the options mentioned below

• __constant__
– Resides in constant memory space

– Has the lifetime of an application

– Accessible from all threads and host

• __shared__
– Resides in Shared Memory Space of thread block

– Only accessible from threads within the block

– Life time of a block

Built-In Variables

• gridDim
– 3 Dimensional variable holding the dimensions of a grid

• blockIdx
– An int3 type of variable holding the block index within the grid

• blockDim
– 3 Dimensional variable holding the dimensions of a block

• threadIdx
– An int3 type of variable holding the thread index within the block

• Can not assign values to them nor can you get the address
of the above variables

Sample Code Snippets

DeclSpecs
__global__ void convolve (float *image)

__shared__ float region[M]

Keywords
region[threadIdx] = image[i]

__syncthreads()

Memory management and Kernel Launch
void *myImage = cudaMalloc(bytes)

Convolve<<<100,100>>> (myImage);

Increment Array Example

void inc_cpu (int *a, int N) {

int idx;

for (idx = 0; idx<N; idx++)

a[idx] = a[idx] + 1;

}

void main() {

…

inc_cpu(a, N);

…

}

__global__ void inc_cpu (int *a_d, int N) {

int idx = blockIdx.x * blockDim.x
+ threadIdx.x;

if (idx < N)

a_d[idx] = a_d[idx] + 1;

}

void main(){

…

dim3 dimBlock (num_threads);

dim3 dimGrid(ceil(N/(float)num_threads));

inc_gpu<<<dimGrid, dimBlock>>>(a_d, N);

…

}

Q/A

© NVIDIA Corporation 2006

Schedule

0:00 -- 0:10 : Introduction to the Tutorial, Theme, Speakers.

0:10 -- 0:30 : Basic Concepts -- CPU Architectures, GPUs -- evolution,

comparison to earlier models of parallel computing

0:30 -- 0:55 : GPU Architectures in Detail -- NVidia architecture, Intel Larrabee

architectural features

0:55 -- 1:30 : GPU Programming models with short examples, CUDA

B R E A K

1:50 -- 2:15 : Case studies of regular applications on the GPU

2:15 -- 2:45 : Case studies of irregular applications on the GPU

2:45 -- 3:20 : GPU Analytical Models

Design Space Optimization, Performance Prediction

3:20 -- 3:30 : Concluding remarks, discussion

<<< Data Primitives >>>

Suryakant Patidar

spatidar@nvidia.com

Histogram Computation

Counting data based on a given property
Counting frequency of words in a book

Large number of input data
Easy to parallelize

Requires to access common memory areas
Memory operations on common area

Language provided Atomic Operations

Widely used

Global Memory Histogram

Using Atomic operations on Global Memory

‘#Bins’ sized array used in global memory to hold the
histogram data

Global Memory (Common Histogram)

A B C D E F G H I

Blocks #0 Blocks #n Blocks #N

Data 0 Data n Data N

for each thread in parallel
for each element ‘x’ assigned
to the thread, sequentially

{
bin = category[x];
atomicInc(&globalHist[bin]);

}

Global Memory Histogram (2)

• Low Memory requirement – one copy of
histogram

• Number of Clashes ἀ Number of Active Threads

• Highly data dependent, low number of bins
tend to perform really bad

• Global Memory is high-latency, ~500cc I/O

Shared Memory Histograms

A copy of the histogram for each Block

Each Block counting its own data

Once all done, we add the sub-histograms to get the final
histogram as needed

Shared Memory Histograms (2)

Local Shared Memory
used to store the sub-
histograms

Fast to update and
less number of
conflicts (N times less
conflicts)

Experimentally found
to be faster

Blocks #0

X1 Y1 Z1

Blocks #n

Xn Yn Zn

Blocks #N

XN YN ZN

X1 Y1 Z1Xn Yn ZnXN YN ZN

A

B CA

B C

Split Operation

Split can be defined as performing ::

append(x,List[category(x)])

for each x, List holds elements of same category together

Split Operation

A ICB G OJ L

K

H NFD ME

AI CB G O D FH

K

N J L M E

Split Sequential Algorithm

I. Count the number of elements falling into each bin
for each element x of list L do

histogram[category(x)]++ [Requires Atomic]

II. Find starting index for each bin (Prefix Sum : Scan Primitive)
for each category ‘m’ do

startIndex[m] = startIndex[m – 1]+histogram[m-1]

III. Assign each element to the output
for each element x of list L do [Initialize localIndex[x]=0]

itemIndex = localIndex[category(x)]++ [Requires Atomic]

globalIndex = startIndex[category(x)]

outArray[globalIndex+itemIndex] = x

Split using Shared Atomic

Shared Atomic Operations
used to build Block-level
histograms

Parallel Prefix Sum used to
compute starting index

Split is performed by each
block for same set of
elements used in Step 1

Blocks #0

X1 Y1 Z1

Blocks #n

Xn Yn Zn

Blocks #N

XN YN ZN

X1 Y1 Z1Xn Yn ZnXN YN ZN

A1 B1 C1An Bn CnAN BN CN

Local Histograms arranged in Column Major Order

Local Histograms arranged in Column Major Order

Blocks #0

A1 B1 C1

Blocks #n

An Bn Cn

Blocks #N

AN BN ZN

Matrix Multiplication

Each thread block is
responsible for
computing one square
sub-matrix Csub of C

Each thread within the
block is responsible
for computing one
element of Csub

Host Implementation

// Matrix multiplication on the (CPU)
void MatrixMulOnHost(const Matrix M, const Matrix N,
Matrix P)
{

for (int i = 0; i < A.height; ++i)

for (int j = 0; j < B.width; ++j) {

float sum = 0;

for (int k = 0; k < A.width; ++k) {

float a = A.elements[i * A.width + k];

float b = B.elements[k * B.width + j];

sum += a * b;

}

C.elements[i * B.width + j] = sum;

}

}

Device Implementation

// Matrix multiplication kernel – thread specification

__global__ void MatrixMulKernel(Matrix A, Matrix B, Matrix C)

{

// 2D Thread ID

int tx = threadIdx.x;

int ty = threadIdx.y;

// cvalue is used to store the element of the matrix that is computed by the thread

float Cvalue = 0;

for (int k = 0; k < A.width; ++k)

{

float Aelement = A.elements[ty * A.pitch + k];

float Belement = B.elements[k * B.pitch + tx];

Cvalue += Aelement * Belement;

}

// Write the matrix to device memory; each thread writes one element

C.elements[ty * C.pitch + tx] = Cvalue;

}

Q/A

