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Synopsis
* GPUs as the main-stream computing platform.

¢ Can deliver up to 1 Teraflop at low $$.

¢ Have matured from OpenGL extensions to vendor
specific C-like extensions such as CUDA.

* GPGPU

¢ Use GPUs for also general purpose computing

¢ Lots of success stories in computer vision, sorting,
and several other domains

¢ But, applications need to re-interpreted in massively
multi-threaded form to work on GPUs.
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Synopsis

* What is the architectural model of a GPU?
* What is the programming abstraction?

* Example Programs

* Regular vs. Irregular Applications

* Performance Modelling.
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Assumptions

* Basic knowledge of computer architecture.
* Basic knowledge of sequential algorithms.

* Basic knowledge of programming.
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Schedule

0:00 -- 0:10:
0:10-- 0:30 :
0:30 -- 0:55
0:55--1:30:
BREAK
1:50 -- 2:15
2:15 -- 2:45
2:45 -- 3:20
3:20 -- 3:30

Introduction to the Tutorial, Theme, Speakers.

Basic Concepts -- CPU Architectures, GPUs -- evolution,
comparison to earlier models of parallel computing

: GPU Architectures in Detail -- NVidia architecture, Intel Larrabee

architectural features

GPU Programming models with short examples, CUDA

: Case studies of regular applications on the GPU
: Case studies of irregular applications on the GPU
: GPU Analytical Models

Design Space Optimization, Performance Prediction

: Concluding remarks, discussion
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Basic Architecture Goncepts

1 2 | 3 | 4 5|

Fetch | |Decode | [Execute | | Write

+*+ CPU Architecture

¢ 4 stages of instruction execution

» Too many cycles per instruction (CPI)
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€ Needs buffers to store results across stages.

> A cache to handle slow memory access times

Cache




t

Basic Architecture Goncepts

1

2 | 3 | 4 | 5|
Fetch | |Decode | [Execute | | Write
Fetch | [Decode | [Execute | | Write
Fetch | [Decode | [Execute | | Write
Fetch | |[Decode | |Execute| | Write

* CPU Architecture

¢ 4 stages of instruction execution

> Too many cycles per instruction (CPI)

> Needs buffers to store results across stages.

> A cache to handle slow memory access times

¢ To reduce the CPI, introduce pipelined execution

Cache

> Multilevel caches, out-of-order execution, branch prediction, ...
PPoPP 2010, Bangalore, India.




Basic Architecture Concepts

* CPU architecture getting too complex.

* Not translating to equivalent performance
benefits

¢ Need a rethink on traditional CPU architectures.

PPoPP 2010, Bangalore, India.



Basic Architecture Goncepts

* Couple with this the new wisdom in computer
architectures.

* Memory Wall — memory latencies far higher

* ILP Wall — Reducing benefits from instruction
level parallelism

* Power Wall — Increase in power consumption
with increase in clock rates.

* Multi-core is the way forward
¢ Ex: GPUs, Cell, Intel Quad core, ...

¢ Predicted that 100+ core computers would be a
reality soon.
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Multicore and Manycore Processors

* |BM Cell

* NVidia GeForce 8800 includes 128 scalar processors
and Tesla

* Sun T1 and T2

* Tilera Tile64

* Picochip combines 430 simple RISC cores
* Cisco 188

* TRIPS
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The Case for the GPUs

* GPUs are now common. They also have high computing
power per dollar, compared to the CPU

* Today’s computer system has a CPU and a GPU, with the
GPU being used primarily for graphics.

* GPUs are good at some tasks and not so good at others.
They are especially good at processing large data such as
images.

¥ Let us use the right processor for the right task.

* Goal: Increase the overall throughput of the computer system
on the given task. Use CPU and GPU synergistically.
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EvQIution of GPUs

¥+ Graphics: a few hundred triangles/vertices map to afewhundred
thousand pixels

* Process pixels in parallel. Do the same thing on a large number of
different items.

*+ Data parallel model : parallelism provided by the data

¢ Thousands to millions of data elements
@ Same program/instruction on all of them

® Hardware: 8-16 cores to process vertices and 64-128 to process
pixels by 2005

¢ Less versatile than CPU cores

¢ SIMD mode of computations. Less hardware for instruction issue
¢ No caching, branch prediction, out-of-order execution, etc.

& Can pack more cores in same silicon die area

PPoPP 2010, Bangalore, India.



GPUs as a Case Study

* GPGPU — General Purpose Programming on
GPUs

* OpenGL extensions
“Very difficult to program

* Recently manufactures started supporting C-like
programming abstraction to program GPUs

¢ CUDA from NVidia
* Other benefits of GPGPU

° Affordable cost, easy availability, computational
power

PPoPP 2010, Bangalore, India.



GPUs as a Case Study

* GPUs suited for routines with high arithmetic
intensity.

* One feature is high memory latency, depending
on the nature of access.

¢ Should overlap memory with arithmetic.
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CPU Vs GPU

* Few powerful cores Vs. lots of small cores

» GPUs: For good performance, applications
need high arithmetic intensity

* GPUs : No system managed cache.

PPoPP 2010, Bangalore, India.



GPGPU as a Case Study

’ Regular algorithms
¢ Map well to data parallel model of GPUs

¢ Each work item operates by itself or with a few
neighbors

¢ Example settings : image processing.

¢ Threads can share data, e.g., apron pixels in an
iImage processing kernel.

PPoPP 2010, Bangalore, India.



GPU as a Case Study

’ Irregular algorithms

¢ Applications with data accesses that are not regular
In nature.

¢ Occurs in settings such as graph algorithms, data
structures building, etc.

¢ Difficult to get high efficiency due to high memory
latency of accesses.

PPoPP 2010, Bangalore, India.



GPGPU Tools and APIs

* OpenGL
* CUDA
* OpenCL

* Brook

PPoPP 2010, Bangalore, India.



GPU Architecture: Overview
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GPU: Evolution

Graphics : a few hundred triangles/vertices map to a few
hundred thousand pixels

Process pixels in parallel. Do the same thing on a large
number of different items.

Data parallel model: parallelism provided by the data

— Thousands to millions of data elements

— Same program/instruction on all of them

Hardware: 8-16 cores to process vertices and 64-128 to
process pixels by 2005
Less versatile than CPU cores
— SIMD mode of computations. Less hardware for instruction issue
— No caching, branch prediction, out-of-order execution, etc.

— Can pack more cores in same silicon die area

January 10, 2010
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CPU vs GPU

e CPU Architecture features:
— Few, complex cores
— Perform irregular operations well

e Run an OS, control multiple IO, pointer
manipulation, etc.

* GPU Architecture features:

— Hundreds of simple cores, operating on

a common memory (like the PRAM
model)

— High compute power but high memory
latency (1:500)

— No caching, prefetching, etc

— High arithmetic intensity needed for
good performance

* QGraphics rendering, image/signal processing,
matrix manipulation, FFT, etc.

January 10,2010 GPU Tutorial at PPo

PP 2010
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GPU implements the graphics
pipeline consisting of:
— Vertex transformations
e Compute camera coords, lighting
— Geometry processing
e Primitive-wide properties
— Rasterizing polygons to pixels
* Find pixels falling on each
polygon
— Processing the pixels
e Texture lookup, shading, Z-values
— Writing to the framebuffer
e Colour, Z-value

Computationally intensive

January 10, 2010 GPU Tutorial at PPoPP 2010
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e Parts of the GPU pipeline were
made programmable for innovative
shading effects

e Vertex, pixel, & later geometry
stages of processing could run
user’s shaders.

* Pixel shaders perform Data-
parallel computations on a parallel
hardware

— 64-128 single precision floating
pOlIlt Processors
— Fast texture access

 GPGPU: High performance
computing on the GPU using
shaders. Efficient for vectors,
matrix, FFT, etc.

January 10, 2010
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New Generation GPUs

The DX10/SM4.0 model required a uniform
shader model

Translated into common, unified, hardware
cores to perform vertex, geometry, and pixel
operations.

Brought the GPUs closer to a general parallel
processor

A number of cores that can be reconfigured
dynamically
— More cores: 128 =» 240 = 320

— Each transforms data in a common memory for use
by others

Januar y 10,2010
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Old Array Processors

Processor and Memory
tightly attached

A network to interconnect
— Mesh, star, hypercube

Local data: Memory read/
write
Remote data: network access

Data reorganization is
expensive to perform

Data-Parallel model works

Thinking Machines CM-1,
CM-2. MasPar MP-1, etc

January 10, 2010
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Current GPU Architecture

e Processors have no local memory

e Bus-based connection to the common, large,

memory
Uniform access to all memory for a PE

— Slower than computation by a factor of 500
Resembles the PRAM model!

No caches. But, instantaneous locality of
reference improves performance

— Simultaneous memory accesses combined to a
single transaction {

Memory access pattern determines
performance seriously

Compute power: Upto 3 TFLOPs on a $400
add on card

January 10, 2010 GPU Tutorial at PPoPP 2010 9



®  What is the GPU Good at?

e The GPU i1s good at

data-parallel processing

e The same computation executed on many data
elements 1n parallel — low control flow overhead

with high SP floating point arithmetic intensity
e Many calculations per memory access

e Currently also need high floating point to integer ratio
* High floating-point arithmetic intensity and many

data elements can hide memory access latency
without big data cache

IIIT Hyderabad
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SIMD Multiprocessors

The device 1s a set of 16
or 30 multiprocessors

Each multiprocessor is a
set of 32-bit processors
with a Single Instruction
Multiple Data architecture
— shared 1nstruction unit

At each clock cycle, a

multiprocessor executes Instruction
the same inStrU.CtiOn on a Processor 1 | Processor2 ®ee Processor M

group of threads called a

warp

The number of threads in

a warp 1s the warp size

Multiprocessor N

Multiprocessor 2

Multiprocessor 1



HW Overview

Streaming Processor Array

IIIT Hyderabad
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[Texture Processor Cluster | Streaming Multiprocessor
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SM Instruction Fetch/Dispatch
[ Shared Memory
TEX
SM
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Streaming Multi-Processor

Streaming Multiprocessor
e 8 Streaming Processors (SP)
— 2 Super Function Units (SFU)
Multi-threaded instruction dispatch Streaming Multiprocessor
. Instruction L1 Data L1
e 1 to 512 threads active

* Shared instruction fetch per 32 threads

Instruction Fetch/Dispatch

Shared Memory

* Cover latency of texture/memory loads

30+ GFLOPS
e 16K registers

SFU SFU

* Partitioned among active threads

16 KB shared memory

e Partitioned among logical blocks

January 10,2010
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Multithreaded Coprocessor

The GPU i1s viewed as a compute device that:
— Is a coprocessor to the CPU or host
— Has its own DRAM (device memory)
— Runs many threads in parallel

Data-parallel portions of an application are executed

on the device as kernels which run in parallel on
many threads

Differences between GPU and CPU threads

— GPU threads are extremely lightweight
e Very little creation overhead

— GPU needs 1000s of threads for full efficiency
e Multi-core CPU needs only a few

CVIT



Thread Batching: Grids and
Blocks

e A kernel is executed as a |
orid of thread blocks Host Device

— All threads share data memory space Grid 1

e A thread block is a batch of 5 IH Block I Block I Block I

th.reads that can cooperate cioek | Brock | Brock
with each other by: (0, 1) I (1, 1) I (2, 1) I

— Synchronizing their execution

e For hazard-free shared memory
Kern
accesses I
] ) el 2
— Efficiently sharing data
through a low latency shared

memory

e Two threads from two
different blocks cannot
cooperate

Courtesy: NDVIA
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Block and Thread IDs

e Threads and blocks have
IDs

— So each thread can decide
what data to work on

— Block ID: 1D or 2D
— Thread ID: 1D, 2D, or 3D

e Simplifies memory
addressing when
processing
multidimensional data
— Image processing
— Solving PDEs on volumes

Device

Grid 1

Block Block Block
(0, 0) I (1, 0) I (2, 0) |

Block | Block [\ Block
.-7(0,1) (L1 [ (21

Block (1, 1)

Courtesy: NDVIA
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Threads, Warps, Blocks

32 threads in a Warp or a scheduling group
— Only <32 when there are fewer than 32 total threads

There are (up to) 16 Warps 1n a Block

Each Block (and thus, each Warp) executes on a
single SM

G80 has 16 SMs, G280 has 30 SMs
At least 16 Blocks required to “fill” the device

More is better

— If resources (registers, thread space, shared memory)
allow, more than 1 Block can occupy each SM

CVIT



Memory Spaces

e Each thread can:
— Read/write per-thread registers

The host can read/write
global, constant, and
texture memory

— Read/write per-thread local memory
— Read/write per-block shared memory
— Read/write per-grid global memory
— Read only per-grid constant memory
— Read only per-grid texture memory

Host

CVIT
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Thread (1, 0)
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Memory Access Times

Register — dedicated HW - single cycle

Shared Memory — dedicated HW - single cycle
Local Memory — DRAM, no cache - *slow*

Global Memory — DRAM, no cache - *slow*

(400-500 cycles)

Constant Memory — DRAM, cached, 1..
100s of cycles, depending on cache local

Texture Memory — DRAM, cached, 1...

cached

100s of cycles, depending on cache local
Instruction Memory (invisible) —- DRAM,

.10s...

ity

10s...
ity

CVIT



Thread Scheduling/Execution

Each Thread Blocks consists of 32-thread warps currently

Warps are scheduling units in SM. A warp is schedule at
one time

Multiple warps time share the SM processors

Multiple blocks can also share an SM, if resources permi

Avallable resources are vertically shared between bloc
that time-share an SM

If more blocks are needed, they use the hardware
sequentially.

IIIT Hyderabad



&5
Processors, Memory 4

e Nvidia 280GTX: 240 Streaming Processors, grouped into 30
Streaming Multiprocessors
— One instruction sequencer per SM
— 16KB of on-chip shared memory per SM
— 16K 32-bit registers per SM

— Single clock access of registers, shared memory
1 GB of common, off-chip global memory
— 130 GB/s of theoretical peak memory bandwith
— High memory access latency: 300-500 cycles
— 128 byte, 64 byte, or 32 byte memory transactions
e 10 special texture access units to the same global memory.
30 SMs grouped into 10 Texture processor clusters

* 1.3 GHz clock, 933 GFLOPs peak

* Integer and single-precision float operations in one clock cycle.
Slower double-precision support

January 10,2010
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e 20 SIMD engines with 16

stream cores each

— Each SC with 5 PEs
(1600 Pes in total)

— Each with IEEE754 and
integer support

— Each with local data share
memory

e 32 kb shared low latency
memory

¢ 32 banks with hardware conflict
management

* 32 integer atomic units 80 Read
Address Probes

— 4 addresses per SIMD engine

— 4 filter or convert logic per
SIMD Global Memory access

* 153 GB/sec GDDRS5
memory interface
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Pertormance Considerations

e Thread divergence

— SIMD width is 32 threads. They should execute the same
very instruction

— Serialization otherwise
e Memory access coherence

— A half-warp of 16 threads should read from a local block
(128, 64, or 32 bytes) for speed

— Random memory access very expensive

e Occupancy or degree of parallelism

— Optimum use of registers and shared memory for maximum
exploitation of parallelism

— Memory latency hidden best with high parallelism
e Atomic operations
— Global and shared memory support slow atomic operations

January 10,2010
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Tools and APIs

* OpenGL/Direct3D for older, GPGPU exposure

— Shaders operating on polygons, textures, and
framebuffer

e CUDA: an alternate interface from Nvidia
— Kernel operating on grids using threads
— Extensions of the C language
e DirectX Compute Shader: Microsoft’s version

 OpenCL: A promising open compute standard
— Apple, Nvidia, AMD, Intel, TI, etc.

— Support for task parallel, data parallel, pipeline-parallel,
etc.

— Exploit the strengths of all available computing
resources

Januar vy 10,2010
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- Massively Multithreaded Model

* Hiding memory latency: Overlap computation & memory
access

— Keep multiple threads in flight simultaneously on each core

— Low-overhead switching. Another thread computes when one is
stalled for memory data

— Alternate resources like registers, context to enable this
e A large number of threads in flight
— Nvidia GPUs: up to 128 threads on each core on the GTX280
— 30K time-shared threads on 240 cores
 Common instruction 1ssue units for a number of cores
— SIMD model at some level to optimize control hardware
— Inefficient for if-the-else divergence

e Threads organized in multiple tiers

January 10, 2010
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" Multi-tier Thread Structure &m

e Data parallel model: A kernel on
each data element

— A kernel runs on a core

— CUDA: an invocation of the kernel is
called a thread

— OpenCL: the same is called a work item
» Group data elements based on

simultaneous scheduling

— Execute truly in parallel, SIMD mode

— Memory access, instruction divergence,
etc., affect performance

— CUDA: a warp of threads
* Group elements for resource usage
— Share memory and other resources
— May synchronize within group
— CUDA: Blocks of threads
— OpenCL: Work groups

Januar y 10,2010 GPU Tuto
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e Data elements provide
parallelism
— Think of many data

clements, each being
processed simultaneously

Januar y 10,2010 GPU Tutorial at PPoPP 2010
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Data-Parallelism

* Data elements provide ol ol o
parallelism 2 2
— Think of many data elements, ®@ ® ®
each being processed e o o
simultaneously N
e o o
— Thousands of threads to 4 9 4
process thousands of data ¢ o o
clements | ol ol o
e Not necessarily SIMD, most o ol o
are SIMD or SPMD S Bt
— Each kernel knows its & &
location, identical otherwise o ol @
— Work on different parts using = R:
: e o o
the location = M= =

Januar y 10,2010 GPU Tutorial at PPoPP 2010
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Thinking Data-Parallel

Launch N data locations, each of which gets a kernel of code
Data follows a domain of computation.

Each invocation of the kernel is aware of its location loc within the
domain

— Can access different data elements using the loc
— May perform different computations also
Variations of SIMD processing

— Abstain from a compute step: if ( f(loc) ) then ... else ...
» Divergence can result in serialization

— Autonomous addressing for gather: a:= b[ f(loc) |

— Autonomous addressing for scatter: a[ g(loc) | := b
e GPGPU model supports gather but not scatter

— OQOperation autonomy: Beyond SIMD.

e GPU hardware uses it for graphics, but not exposed to users

January 10, 2010
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A kernel for each location of
the 2D domain of pixels

— Embarrassingly parallel for
simple operations

Each work element does its
own operations

— Point operations, filtering,
transformations, etc.

Process own pixels, get
neighboring pixels, etc
Work groups can share data

— Get own pixels and “apron”
pixels that are accessed
multiple times

January 10, 2010
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Regular Domains

Regular ID, 2D, and nD

domains map very well to

data-parallelism

Each work-1tem operates

by itself or with a few
neighbors

Need not be of equal
dimensions or length

A mapping from loc to
each domain should exist

Januar y 10,2010
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Irregular Domains cviT

A regular domain generates
varying amounts of data

) Irregular Domain
— Convert to a regular domain

A B C D E F

— Process using the regular
domain

— Mapping to original domain
using new location possible

Needs computations to do
this B ’ i
Occurs frequently in data Regular Domain

structure building ,work
distribution, etc.

January 10, 2010



Data-Parallel Primitives

e Deep knowledge of
architecture needed to get 1 32 06 2 5 2 4’
high performance

— Use primitives to build other
algorithms Add Reduce

ek ik el el sk el ek i

— Efficient implementations on
the architecture by experts

* reduce, scan, segmented

Scan or prefix sum

scan: Aggregate or
progressive results from L e a8 e e
distributed data
— Ordering distributed info Segmented Scan
e split, sort: 1/0/{0|1|0|0|0 |1
— Mapping distributed data ol11alololel8lo0!2

[Blelloch 1989]

January 10,2010 GPU Tutorial at PPoPP 2010 34
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Rearrange data according to its category. Categories could be
anything.

Generalization of sort. Categories needn’t ordered themselves
Important in distributing or mapping data

January 10,2010 GPU Tutorial at PPoPP 2010 35



Handling Irregular Domains

* Convert from 1rregular A s ¢ b BT

to a regular domain

e Each old domain
element counts its
elements in new domain

Counts
2 3 1 2 3 1

» Scan
* Scan the counts to get Progressive Counts

. 0| (2] (4] |5 7, (10
the progressive counts or
the starting points

* Copy data elements to _ |
. Regular Domain
own location

January 10, 2010
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Graph Algorithms

* Not the prototypical data-
parallel application; an '
irregular application. Adjacency

: Matri
e Source of data-parallelism: e
Data structure (adjacency
matrix or adjacency list)

e A 2D-domain of V?2

elements or a 1D-domain of
E elements

* A thread processes each

edge 1n parallel. Combine
the results

Vertices

Adjacency List

January 10,2010 GPU Tutorial at PPoPP 2010 37
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Example: Find the minimum
outgoing edge of each vertex

Soln 1: Each node-kernel loops
over its neighbors, keeping track
of the minimum weight and the
edge

Soln 2: Segmented min-scan of

the weights array + a kernel to
identify min vertex

Soln 3: Sort the tuple (u, w, v)
using the key (w, v) for all edges
(u, v) of the graph of weight w.
Take the first entry for each u.

Find min edge for each vertex &Em

for each node in parallel
for all neighbours v
if wlv] < min
min = wlv]
my =y

BEEE ' TEEN

u
\%%

[
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Task Parallel Computing

e The problem is divided into a
number of tasks; Data may also
be partitioned or shared

e Some can be done in parallel,
others depend on previous
results

e Combine the results finally

e CPU cores and GPU can be
doing task-parallel computing

* OpenCL supports this model of

computation as well as the
pipelined model

* More on OpenCL later today

January 10, 2010
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Summary

 GPU can be an essential computing platform with a
massively multithreaded programming model

e Data-parallel model fits the GPUs best.

e High performance requires deep knowledge of the
architecture. High-level primitives can alleviate
this greatly.

e Think of CPU and GPU together achieving your
computing goals. Not one instead of the other

 OpenCL is an exciting new development that can
make this possible and portable!

IIIT Hyderabad
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For More Information

» GPGPU: gpgpu.org

e SIGGRAPH Courses:

— SIGGRAPH 2008: Available at UC, Davis.
http://s08.1dav.ucdavis.edu/

— SIGGRAPH Asia 2008: Available at UC, Davis
http://sa08.1dav.ucdavis.edu/

— Upcoming course at SIGGRAPH 2009
e CudaZone for Nvidia

e And more ...

IIIT Hyderabad
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Thank you!

Image credits to owners such as Intel,
Nvidia, AMD/ATI, etc.
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NVIDIA.

0:00 -- 0:10 : Introduction to the Tutorial, Theme, Speakers.

0:10 -- 0:30 : Basic Concepts -- CPU Architectures, GPUs -- evolution,
comparison to earlier models of parallel computing

0:30 -- 0:55 : GPU Architectures in Detail -- NVidia architecture, Intel Larrabee
architectural features

BREAK
1:50 -- 2:15 : Case studies of regular applications on the GPU
2:15 -- 2:45 : Case studies of irregular applications on the GPU
2:45 -- 3:20 : GPU Analytical Models

Design Space Optimization, Performance Prediction

3:20 -- 3:30 : Concluding remarks, discussion
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<<< GPU Programming >>>

Suryakant Patidar
spatidar@nvidia.com



Don’t just process, Compute ! <X
NVIDIA

® Graphics Processing on GPU
® OpenGlL, DirectX ...
® Games, Visualizations ...

® Classic GPGPU : General Processing on the GPU
® OpenGL, DirectX etc. ? ?
® General Problems <faked as> Graphics Rendering Problems
® Easy — Data Parallel, image processing
® Hard — Irregular Algorithms, MST for a Sparse Graph

® Compute on GPU
® NVIDIA CUDA - C for GPUs
¢ OpenCL — Open Compute Library



Take Away

® Compute Architecture
® C, OpenCL

® Hardware/Software Model

® Processor & Memory Organization
® Execution Model

® Ar

® Language and Limitations

>

NVIDIA



Compute Architecture <

NVIDIA

® Gruas Highly Multi-Threaded Co-Processor
1000s of threads, not 2, not 4, not 8
¢ 100s of tiny processors

® Su.pports standard languages and APIs
C(CUDA)
¢ OpenCL

® Dx Compute Applications
® Supported on common C | OpenCL DX
operating systems Compute

Linux

®
® Macos CUDA Architecture
® Windows




CUDA/OpenCL Programming <X

NVIDIA

® Heterogeneous programming model

® CPU and GPU are separate devices with separate memory spaces

® CPU code is standard C/C++
® OpenCL : Look alike as OpenGL(C based)
® cuba:c/c+

® GrU code
¢ OpenCL/CUDA : Subset of C with extensions



CUDA H/W Architecture .

NVIDIA.

® SIMD Multi Processor #30

SIMD Multi Processor #2

SIMD Multi Processor #1

Shared Memory (16KB)

Registers l Registers I

Texture Cache (8KB)

Constant Cache (8KB) g™

l

Device Memory (~1GB)




Software — Terminology <X

NVIDIA

® Lost-cpu
® Device — GPU

® Kernel - code which we wish to run on the GPU

® Thread/Workltem — An Instance of a Kernel

® Block/WorkGroup — Group of Threads, bunched together
® Grid- Group of Blocks, one Grid — one Kernel

® OpenCL is very much inspired by CUDA, and given the GPU
hardware is common to both, the APIs and approach are
similar too



Kernels and Threads @2

NVIDIA

® panallel portions of an application are executed on the
device as kernels
® One kernel is executed at a time
® Many threads execute each kernel

® Differences between CUDA and CPU threads
¢ CUDA threads are extremely lightweight

® Very little creation overhead

® Fast switching
® CUDA uses 1000s of threads to achieve efficiency

® Multi-core CPUs can use only a few



CUDA S/W Architecture

<3

NVIDIA

CPU / Host

GPU / Device

Kerne| 1 e————

Blocks Blocks Blocks
(010) /" (110) \\ (2;0)

Blocks
(2,1)

Blocks
(1,1)

Blocks
(0,1)

Kernel 2 e——

Thread Thread Thread Thread
(0,0) (1,0) (2,0) (3,0)
Thread Thread Thread Thread
(0,1) (1,1) (2,1) (3,1)
1 Thread Thread Thread Thread
(0,2) (1,2) (2,2) (3,2)
Thread Thread Thread Thread
(0,3) (1,3) (2,3) (3,3)
\NT 77

(0% =)




Arrays of Parallel Threads <

NVIDIA.

® A CUDA kernel is executed by an array of threads
® All threads run the same code

® Each thread has an ID that it uses to compute memory addresses
and make control decisions

threadlD

float x = input[threadID];
float y = func(x);
Kernel output[threadID] = y;




Thread Cooperation <X

NVIDIA

® The Missing Piece: threads may need to cooperate

® Thread cooperation is valuable
® Share results to avoid redundant computation

® Share memory accesses
® Bandwidth reduction

® Cooperation between a monolithic array of threads is not
scalable
¢ Cooperation within smaller batches of threads is scalable



Thread Batching <3

NVIDIA

® Kernel launches a grid of thread blocks
® Threads within a block cooperate via shared memory
® Threads within a block can synchronize
® Threads in different blocks cannot cooperate

® Allows programs to transparently scale to different GPUs

Thread Block 0 Thread Block 1 Thread Block N-1




Transparent Scalability <X

NVIDIA

® Hardware is free to schedule thread blocks on any
processor
® A kernel scales across parallel multiprocessors

Kemel grid

s _
Block 2 Block 3

Block 4 Block 5

Block D | Block1 | Block 2 | Block 3

Block 0 | Block 1

Block 6 Block T

Block 4 | Block 5 || Block 6 | Block T

Block 2 | Block 3

Block 4 || Block 5

Block 6 || Block T




Kernel Memory Access <X

NVIDIA

® per-thread : Registers (fast)
® per-block : Shared Memory (fast, on-chip)

® per-device : Global Memory (Uncached, Off-chip, large
persistent across kernel launches )



CUDA Memory Model (H/W) <X

NVIDIA

Shared
Memory
(16KB)

® b hasaccess to Registers (private)

Registers
(64KB)

® b hasaccess to Shared-Memory
(common to 8 Ps, share and have fun)

® Caches (texture and constant) are not user-
managed, true caches

® Device memory is for all Ps of all SMs ! Truly
Chaotic!

Constant Cache (BKB)

Device Memory
(~1GB)




Execution Model @2

NVIDIA
Software Hardware
® Threads are executed by
thread processors
]
Thread
Thread Processor

® Thread blocks are executed on
multiprocessors

C1Cd
EE ® Several concurrent thread blocks
] can reside on one
—— [ | multiprocessor - limited by
Block Multiprocessor multiprocessor resources
(shared memory and register
Odo||ogo|ogojjE0oljao|co file)
=[x |[=[=||[=/=]} (1=[=}|1=[=]||=[= . .
eeezz zzzzz 22222 ® A kernel is launched as a grid of
CHO i
Grid Device thread blocks

® Only one kernel can execute on
a device at one time



CUDA API

® An extension to the ANSI C programming Language
— No interference of a Graphics APl (OpenGL/DirectX)
— Good learning curve

® |anguage Extensions in form of
= Function type qualifiers (variety of functions)
— Variable type qualifiers (types of variables)
— Execution Configuration (parameters to kernel)
— Built-In variables (block and thread Ids)

>

NVIDIA



Function type qualifiers <X

NVIDIA

¢ __device__ (internal functions needed by main device function)

— Executed on the device

— Callable from device
__global __ (main Kernel function)

— Executed on the device

— Callable only from host
__host__

— Executed on the host

— Callable only from host

®  For functions executed on the device

= No recursion
= No static variable declarations inside the function
— No variable number of arguments



Variable type qualifiers <X

NVIDIA

®  device

— Use with one of the options mentioned below
®  constant__

— Resides in constant memory space

— Has the lifetime of an application
— Accessible from all threads and host

®  shared

— Resides in Shared Memory Space of thread block
— Only accessible from threads within the block
— Life time of a block



Built-In Variables @2

NVIDIA

® oridDim
— 3 Dimensional variable holding the dimensions of a grid

® blockldx
— Anint3 type of variable holding the block index within the grid

® blockDim

— 3 Dimensional variable holding the dimensions of a block

® threadldx
— An int3 type of variable holding the thread index within the block

Can not assign values to them nor can you get the address
of the above variables



Sample Code Snippets

® DeclSpecs

® __global__ void convolve (float *image)
® __shared__ float region[M]

® Keywords
® region[threadldx] = image][i]
® __syncthreads()

® Memory management and Kernel Launch
® void *mylmage = cudaMalloc(bytes)
¢ Convolve<<<100,100>>> (mylmage);

<3

NVIDIA



Increment Array Example <X

NVIDIA
inc_cpu (int *a, int N) { __global__ void inc_cpu (int *a_d, int N) {
idx; int idx = blockldx.x * blockDim.x
+ threadidx.x;
for (idx = 0; idx<N; idx++) if (idx<N)

a_d[idx] = a_d[idx] + 1;
}

void main(){
main() {
dim3 dimBlock (num_threads);
inc_cpu(a, N); dim3 dimGrid(ceil(N/(float)num_threads));
inc_gpu<<<dimGrid, dimBlock>>>(a_d, N);
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NVIDIA.

0:00 -- 0:10 : Introduction to the Tutorial, Theme, Speakers.

0:10 -- 0:30 : Basic Concepts -- CPU Architectures, GPUs -- evolution,
comparison to earlier models of parallel computing

0:30 -- 0:55 : GPU Architectures in Detail -- NVidia architecture, Intel Larrabee
architectural features

0:55 -- 1:30 : GPU Programming models with short examples, CUDA
BREAK

2:15 -- 2:45 : Case studies of irregular applications on the GPU
2:45 -- 3:20 : GPU Analytical Models
Design Space Optimization, Performance Prediction

3:20 -- 3:30 : Concluding remarks, discussion

© NVIDIA Corporation 2006
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<<< Data Primitives >>>
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Histogram Computation

® Counting data based on a given property
® Counting frequency of words in a book

® Large number of input data
® Easy to parallelize

® Requires to access common memory areas
® Memory operations on common area
® Language provided Atomic Operations

® Widely used

<3

NVIDIA



Global Memory Histogram <X

NVIDIA

® Using Atomic operations on Global Memory

® 4Bins’ sized array used in global memory to hold the
histogram data

for each thread in parallel
for each element ‘x’ assigned

to the thread, sequentially
ABCDEFGH.I {

bin = category[x];
atomiclnc(&globalHist[bin]);

Blocks #n

Blocks #0 Blocks #N




Global Memory Histogram (2) <X

NVIDIA

* Low Memory requirement — one copy of
histogram

e Number of Clashes a Number of Active Threads

* Highly data dependent, low number of bins
tend to perform really bad

* Global Memory is high-latency, ~500cc I/O



Shared Memory Histograms <X

NVIDIA

® A copy of the histogram for each Block
® Each Block counting its own data

® onceall done, we add the sub-histograms to get the final
histogram as needed



Shared Memory Histograms (2) <X

NVIDIA

® | ocal Shared Memory
used to store the sub-
histograms

Blocks #0 Blocks #n Blocks #N

® Fast to update and
less number of

conflicts (N times less
L AP ] conflicts)
B
[

® Experimentally found

ﬂ to be faster



Split Operation >

NVIDIA.

Split can be defined as performing ::
append(x,List[category(x)])
for each x, List holds elements of same category together

H:ENEN - BN -
2

[ Split Operation ]

N
- IINEEEEEEEEE




Split Sequential Algorithm S

NVIDIA

I. Count the number of elements falling into each bin
®  for each element x of list L do

® histogram[category(x)]++ [Requires Atomic]

Il. Find starting index for each bin (Prefix Sum : Scan Primitive)
®  foreach category ‘m’ do

® startindex[m] = startindex[m — 1]+histogram[m-1]

lll. Assign each element to the output
¢ for each element x of list L do [Initialize localindex[x]=0]

® itemindex-= localindex[category(x)]++ [Requires Atomic]
® globallindex = startindex[category(x)]
® outArray[globallndex+itemiIndex] = x



Split using Shared Atomic

® shared Atomic Operations
used to build Block-level

histograms
® Parallel Prefix Sum used to Local Histograms arranged in Column Major Order
compute Startlng index Local Histograms arranged in Column Major Order
A s e le e fclclc
.

Split is performed by each
block for same set of
elements used in Step 1

Blocks #0 Blocks #n Blocks #N



Matrix Multiplication <X

NVIDIA

® Each thread block is
responsible for
computing one square
sub-matrix Csub of C

BLOCK_SIZE BLOCK_SIZE

|
|

o Each thread within the
block is responsible
for computing one
element of Csub

S
BLOCK_SIZE
-
b-J

i

< —<4 —ip Al
BLOCK_SIZE BLOCK_SIZE BLOCK_SIZE

wA wB
+«




Host Implementation <X
NnVIDIA

// Matrix multiplication on the (CPU)
void MatrixMulOnHost(const Matrix M, const Matrix N,

Matrix P)
{
for (inti = 0; i < A.height; ++i)
for (int j = 0; j < B.width; ++j) {
float sum = 0;
for (int k = 0; k < A.width; ++k) {
float a = A.elements][i * A.width + k];
float b = B.elements[k * B.width + j];
sum+=a* b;

}

C.elements[i * B.width + j] = sum;



Device Implementation <X
NVIDIA

// Matrix multiplication kernel — thread specification
__global__ void MatrixMulKernel(Matrix A, Matrix B, Matrix C)
{
// 2D Thread ID
int tx = threadldx.x;
int ty = threadldx.y;
// cvalue is used to store the element of the matrix that is computed by the thread
float Cvalue = 0;
for (int k = 0; k < A.width; ++k)

{
float Aelement = A.elements[ty * A.pitch + k];
float Belement = B.elements[k * B.pitch + tx];
Cvalue += Aelement * Belement;

}

// Write the matrix to device memory; each thread writes one element
C.elements[ty * C.pitch + tx] = Cvalue;
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Irregular Algorithms on the GPU

P. J. Narayanan
Centre for Visual Information Technology

International Institute of Information Technology
Hyderabad

PPoPP Tutorial on GPUs. Jan 10, 2010
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Graph Cuts for Computer Vision
on the GPU

Work done with Vibhav Vineet
(CVGPUOS8 Workshop)

PPoPP Tutorial on GPUs. Jan 10, 2010




Graph Cuts in Computer Vision

* Several optimization problems have been mapped to
maxflow on a graph built from the pixels with a special s
node and ¢ node.

— Segmentation: Assign binary labels to pixels

» Pixels connected to s after cut is foreground and the rest are
background.

— Stereo matching: Assign integer labels to pixels
 Disparity is the standard label.
» Framework works for many problems

« Many sequential algorithms exist. Goldberg-Tarjan (push-
relabel) and Edmonds-Karp (augmenting path based) are
popular.

— Former is more parallelizable

[T Hyderabad



The st-Mincut Problem

Graph (V, E, C)
Vertices V = {vy, v, ... V,}}
Edges E = {(v;, v») ...}
Costs C={c( 2) ...}

[T Hyderabad



The st-Mincut Problem

What is an st-cut?

[T Hyderabad



The st-Mincut Problem

What is an st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges
going from S to T

IIIT Hyderabad



The st-Mincut Problem

What is an st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges
going from S to T

What is the st-mincut?

st-cut with the
minimum cost

[T Hyderabad
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Max{tlow Algorithms
Flow=0
o Goldberg's generic Push-
| | Relabel Algorithm
5 9 1. Intialize-Preflow(G,s)
1 2. Perform an applicable push or
< relabel operation

5 3. Repeat untill there exists no
5\/; applicable push or relabel
operation

Algorithms assume non-negative capacity

CVIT



Maxflow Algorithms cvit
Flow=0
o Height h Push Oper'a‘rion
[ | o
v, 1. V2 is overflowing
% 2. Height h(V,) == h(V;) + 1
¢ 2 4 3. Push as much unit of flows from
5 VZ to V1

[T Hyderabad

Algorithms assume non-negative capacity



Max{tlow Algorithms

[T Hyderabad

Relabel Operation

.V, is overflowing and

is in residual graph

. Height h(V,) <= h(V,)
. Increase the height of V,

CVIT
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* Specialized algorithms for
vision problems

— Grnid graphs

— Low connectivity; typically
limited to 4, 8 or 27

GraphCuts on Images
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Mapping Image On CUDA

00O
©O0O
©O0O
©O0O
00O
Q0O

Q00000
Q00000
Q00000

Image ¢ Grid

Image/Grid O 0|0 0|00
divided into oXoloXoloXe
II:)IOCkS L)OOOOOO
|O O|O 0|0 O
O O|O0 OO0 O
O O[O O|Q. O
Block sub-
divided into
threads © O
O e )
© O

thread < pixel

Block




Push Relabel Algorithm on
CUDA

1. Push is an local operation with each node sending
flows to its neighbors

2. Relabel is also a local operation
3. Problems faced:
1. RAW problems: (Read after write)

2. Synchronization is limited to the threads of a
block.

[T Hyderabad



Push Relabel Algorithm on
CUDA

1. Push operation is divided into source
two phases: Push Phase and
Pull Phase

2. Relabel is also local operation

3. Naive Solution: Three Kernels

4

/

1. Push Kernel
2. Pull Kernel
3. Relabel Kernel

[T Hyderabad
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O1

. Load h(u) from the global memory

to shared memory of the block.

. Synchronize threads to ensure

completion of load

. Push flow to the eligible nodes

without violating the preflow
conditions.

. Update the residual capacities of

edges(u,v) in the residual graphs.

. Store the flow pushed to each edge

in a special global memory array F.

Push Kernel (node u)

!

Height required
by 9 nodes

CVIT
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Pull Kernel (node u)

1. Read the flows pushed to u from
the F array of its neighbors.

2. Compute the final excess flow by
aggregating all incoming flows.
Store it as the e(u) value in global
memory.



[T Hyderabad

Relabel Kernel (node u)

. Load h(u) from the global memory

to the shared memory.

. Synchronize to ensure the

completion of load of heights.

. Compute the minimum heights of

neighbors of node u.

. Write the new height to global

memory location h(u).

!

Height required
by 9 nodes

CVIT
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Memory)

1. Load h(u) from the global memor
to shared memory of the block.

YJ

Shared Memory Used:
[— Each Block has MxN threads. J

Internal Nodes:

g Each Internal Node (@) requires

heights of 4 other nodes (@)
from the same block.

g J

© 000

Push and Relabel Kernels (Shared

CVIT

©O 00O



Push and Relabel Kernels (Shared

CVIT
Memory)
1. Load h(u) from the global memory
to shared memory of the block. M
®@ O 0O
Shared Memory Used: Ol® ® © O |0
[— Each Block has MxN threads. J N Ol® © O OO
e oloo ool
orfer odes: N olo oo ole
Each Border Node( @ ) ires
hcelicgh‘rso I(ﬂn"ec:.fheor' ﬁodes( ;e;ﬁlr':)em 00060
the different blocks.
- J

[T Hyderabad



[T Hyderabad

Memory)

1. Load h(u) from the global memor
to shared memory of the block.

YJ

Shared Memory Used:

- Each Block has MxN threads.
- Total Shared Memory Used:
- (M+2)x(N+2)x(sizeof(element))

Q0O06e

Push and Relabel Kernels (Shared

CUDA Block

CVIT

©O 00O



.
Push Relabel Algorithm cvir

1. Push operation is divided into source
two phases: Push Phase and
Pull Phase

2. Relabel is also local operation

3. Different Solution : Two <—J—>
kernels {,‘4_
1. Push Kernel 4
2. Pull + Relabel Kernel \

[T Hyderabad



Pull + Relabel Kernel (node u) SiE

1. Load h(u) from the global memory to the
shared memory.

2. Synchronize threads to ensure the
completion of load.

3. Update the excess flow e(u) and residual
capacities of edges (u,v) in the residual
graph with the flows from the global
memory array F.

4. Synchronize to ensure completion of
updation of edge-weights and excess flow.

5. Compute the minimum heights of neighbors ;

of node u.

o

Write the new height to global memory Height required
location h(u). by 9 nodes

[T Hyderabad



" On Hardware with Atomic Capabilities =

[T Hyderabad

. Push and Pull operations can source

performed without any RAW
problem.

. Relabel is also local operation

. Third Solution on Hardware ® 9
with Atomic Capabilities: Two //
kernels

1. Push + Pull Kernel
2. Relabel Kernel

sink



Push + Pull Kernel (node u) SiE

1. Load h(u) from the global memory to
the shared memory. source

2. Synchronize threads to ensure the
completion of load.

3. Push flows to eligible neighbors
atomically without violating the

preflow condition. ®—9

4. Update the edge-weights of (u,v) and //
(v,u) atomically in the residual graph.

5. Update the excess flow of e(u) and
e(v) atomically in the residual graph.

sink

[T Hyderabad



Results cvIT
\ ¥ >
ol T . B .
) " s
>

Image Size Time (CPU) Time Time Time
(millisecond) (Non-Atomic) (Atomic) (Stochastic)
Sponge 640x480 142 28 16 11
Flower 608x456 188 33 26 16
Person 608x456 140 31 27 20
Synthetic 1Kx1K 655 19 10 7

Vibhav Vineet and P J Narayanan. “CudaCuts”. IEEE CVPR Workshop
on Computer Vision on the GPUs. Alaska, June 2008.

[T Hyderabad
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Fast and Scalable List Ranking
on the GPU

M. Suhail Rehman, Kishore Kothapalli, P. J. Narayanan

Center for Security, Theory, and Algorithmic Research
Center for Visual Information Technology
International Institute of Information Technology, Hyderabad

-
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The List Ranking Problem

* (G1ven a list of N elements, rank each
element based on the distance of that
element with the end of the list.

* A sequential algorithm is trivial and runs on
O(n)

* Many parallel algorithms exist for various
models.

CVIT
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Types of Linked Lists

Ordered List

 pOEnaEDDED

Unordered List
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Baseline Implementation

Wyllie’s Algorithm uses Pointer Jumping
Initialize Ranks to 1

For each element 1n Array, set 1t’s rank to
rank + rank of Successor

Reset the Successor value to the successor
of 1it’s successor (effectively jumping over
and contracting the list)

CVIT
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GPU-Specific Optimizations

Load the data elements when needed
Bitwise operations to pack and unpack data

Block-level thread synchronization to force
threads to write 1n a coalesced manner

Current best implementation of Pointer
Jumping on the GPU

CVIT
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Time (milliseconds)

100000

10000

1000

100

10

1

0.1

0.01

Results

e==CPU
e=\Wylie-64

IK2K4K 8K 16 32 64 1282565121 M2M4M8M 16 32 64
K K K K K K M M M

List Size
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Helman JaJa Algorithm

Wyllie’s algorithm is work suboptimal at O (n log n)

Helman JaJa is based on sparse ruling set approach
from Reid-Miller

Originally devised for Symmetric multiprocessor
systems with low processor count.

Algorithm of choice for all recent work 1n this field

CVIT

Worst Case runtime 1s O( log n + n/p) and O(n) work.
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Helman-JaJa (Contd.)

Helman J4Ja algorithm originally devised for
SMP with low processor count

Splits a list into smaller sublists, computes
local rank of each sublist and stores 1t into a
smaller, new list.

Perform prefix sum on the new list
Recombine the global prefix sum of the new

list with the local ranks of the original list.

CVIT
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Successor
Array

Step 1. Select Splitters at equal intervals



CVIT
Successor
Array 4 8 1 3 ! -
Local Ranks| 0O 0 0 0 0 0 0

Step 2. Traverse the List until the next splitter is met
and increment local ranks as we progress

[T Hyderabad



Successor
Array

Local Ranks

Step 2. Traverse the List until the next splitter is met
and increment local ranks as we progress

[T Hyderabad



Successor
Array

Local Ranks | 0 0 1 2 0 1 2 0 0 1

Step 2. Traverse the List until the next splitter is met
and increment local ranks as we progress

[T Hyderabad



Successor
Array

Local Ranks | 0 3 1 2 0 1 2 3 0 1

Step 3. Stop When all elements have been assigned a local
rank

IIIT Hyderabad



Successor
Array

Local Ranks | 0 3 1 2 0 1 2 3 0 1

Step 4. Create a new list of splitters which contains a prefix
value that is equal to the local rank of it's predecessor

[T Hyderabad



Successor
Array

Local Ranks | 0 3 1 2 0 1 2 3 0 1

Step 4. Create a new list of splitters which contains a prefix
value that is equal to the local rank of it's predecessor

New List
Successor Array

Global Ranks

[T Hyderabad



Successor
Array

Local Ranks | 0 3 1 2 0 1 2 3 0 1

Step 5. Scan the global ranks array sequentially

New List
Successor Array

Global Ranks 0 6 2 | After Ranking

IIIT Hyderabad
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Successor
Array

Local Ranks | 0 3 1 2 0 1 2 3 0 1

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

New List
Successor Array

Global Ranks After Ranking

Local Ranks

Final Ranks
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Successor
Array

Local Ranks | 0 3 1 2 0 1 2 3 0 1

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

New List
Successor Array

Global Ranks After Ranking

Local Ranks

Final Ranks
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Successor
Array

Local Ranks | 0 3 1 2 0 1 2 3 0 1

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

New List
Successor Array

Global Ranks 0 6 2 | After Ranking

Local Ranks

Final Ranks | 0 0 1 0 0 0 2 0 0 0
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Successor
Array

Local Ranks | 0 3 1 2 0 1 2 3 0 1

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

New List
Successor Array

Global Ranks 2 | After Ranking

Local Ranks

Final Ranks | 0 5 1 0 0 0 2 0 0 0




[T Hyderabad

Successor
Array

Local Ranks | 0 3 1 2 0 1 2 3 0 1

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

New List
Successor Array

Global Ranks 0 6 2 | After Ranking

Local Ranks

Final Ranks | 0 5 1 4 0 0 2 0 0 0
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Successor
Array

Local Ranks | 0 3 1 2 0 1 2 3 0 1

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

New List
Successor Array

Global Ranks 0 6 2 | After Ranking

Local Ranks

Final Ranks | 0 5 1 4 0 3 2 0 0 0
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Successor
Array

Local Ranks | 0 3 1 2 0 1 2 3 0 1

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

New List
Successor Array

Global Ranks 0 6 2 | After Ranking

Local Ranks

Final Ranks | 0 5 1 4 0 3 2 0 1 0
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Successor
Array

Local Ranks | 0 3 1 2 0 1 2 3 0 1

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

New List
Successor Array

Global Ranks 0 6 2 | After Ranking

Local Ranks

Final Ranks | 0 5 1 4 6 3 2 0 1 0
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Successor
Array

Local Ranks | 0 3 1 2 0 1 2 3 0 1

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

New List
Successor Array

Global Ranks 0 6 2 | After Ranking

Local Ranks

Final Ranks | 0 5 1 4 6 3 2 9 1 0
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Successor
Array

Local Ranks | 0 3 1 2 0 1 2 3 0 1

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

New List
Successor Array

Global Ranks 0 6 2 | After Ranking

Local Ranks

Final Ranks | 0 5 1 4 6 3 2 9 1 7
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Successor
Array

Local Ranks | 0 3 1 2 0 1 2 3 0 1

Step 6. Add the global ranks to the corresponding local ranks
to get the final rank of the list.

New List
Successor Array

Global Ranks 0 6 2 | After Ranking

Local Ranks

Final Ranks | 0 5 1 4 6 3 2 9 1 7
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IIIII
oy

» Step 5 1s a sequential ranking step.

 When we choose log n splitters, we reduce
the list to n/log n, which 1s still large
amount of sequential work

By Amdahl’s law, this 1s a bottleneck for
parallel speedup. More so 1n the case of

GPU.

CVIT



Successor
Array

Local Ranks | 0 3 1 2 0 1 2 3 0 1

Make step 5 recursive to allow the GPU to continue
processing the list in parallel

New List
Successor Array

Global Ranks 0 6 2 | After Ranking
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Successor
Array

Local Ranks | 0 3 1 2 0 1 2 3 0 1

Make step 5 recursive to allow the GPU to continue
processing the list in parallel

New List
Successor Array

Global Ranks 0 6 2 | After Ranking

|

Process this list again
using the algorithm and
reduce it further.

[T Hyderabad
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GPU Implementation

Each phase 1s coded as separate GPU kernel
— Since each step requires global synchronization.
Splitter Selection
— Each thread chooses a splitter
Local Ranking

— Each thread traverses its corresponding sublist and get
the global ranks

Recursive Step

Recombination Step

— Each thread adds the global and local ranks for each
clement

CVIT
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When do we stop?

e Convergence can be met until list size 1s 1

* We also have the option to send a small list
to CPU or Wyllie’s algorithm so that it can
be processed faster than on this algorithm.

* May save about 1% time

CVIT



Choosing the right amount of
splitters

* Notice that choosing splitters in a random
list yields uneven sublists

* We can attempt to load balance the
algorithm by varying the no. of splitters we
choose.

* n/log n works for small lists, n/2 log? n
works well for lists > 1 M.

[T Hyderabad
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Significant Speedup over
sequential algorithm on

CPU ~ 10x

Wylie’s algorithm works
best for small lists <512
K

GPU RHJ works well for
large lists

2 log 2N works well for
lists > IM

40386
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Results
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Ordered Lists

* Perform significantly
faster than random
lists.

e Data locality 1s
automatically taken
advantage of by the
global memory access
hardware

e Compared with GPU
ordered scan.

1000

100

10

0.1

=== CPU (Ordered) ==GPU RHJ (Ordered)
=== CUDPP Scan == GPU RHJ (Random)



Other Irregular Applications

CVIT

e Graph Algorithms:
— Shortest path
— Breadth-First Search
— Spanning Tree, etc.
— Etc

* Many others

[T Hyderabad
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General Graph Algorithms — GiB

1. General Graph Algorithms:
 Breadth First Search

ST- Connectivity

Single Source Shortest Paths

All Pairs Shortest Path

Minimum Spanning Tree

Max Flow

2. Randomness in the graph posses great difficulty in utilizing
the hardware resources.

3. Connectivity is unknown.
4. Graph Representation is not trivial.

[T Hyderabad



[T Hyderabad

Singular Value Decomposition

Work with Sheetal Lahabar

Appeared in IEEE IPDPS.
Rome. June 2009.

PPoPP Tutorial on GPUs. Jan 10, 2010

-




Problem Statement

CVIT

e SVD on GPU

SVD of matrix 4 for m>n

(mxn)

A=U2V

U and V are orthogonal and X is a diagonal
matrix

[T Hyderabad
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Motivation

SVD has many applications
High computational complexity

GPUs have high computing power

— Teraflop performance

Exploit the GPU for high performance

CVIT
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Methods

* SVD algorithms
— Golub Reinsch
(Bidiagonalization and Diagonalization)

— Hestenes algorithm(Jacobi)

 Golub Reinsch method

— Simple and compact
— Maps well to the GPU

— Popular in numerical libraries
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Golub Reinsch algorithm

* Bidiagonalization:

— Series of householder transformations

B QT

A P

* Diagonalization:
— Implicitly Shifted QR iterations

~ENE
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SVD

* Overall algorithm
— B =0'4P
Bidiagonalization of 4 to B
1X=X'BY
Diagonalization of B to 2
~U=0X,VT=wPY)?"
Compute orthogonal matrices U and V' !

« Complexity: O(mn?) for m>n
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Results

e Intel 2.66 GHz Dual Core CPU used

e Speedup on NVIDIA GTX 280:
— 3-8 over MKL LAPACK
— 3-60 over MATLAB

"~ Partial Bidiag. ——

SVD —-x--
20 | Diag. -
2 2
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Matrix dimension



Contd...

* CPU outperforms for smaller matrices
* Speedup increases with matrix size
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Matrix dimension
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Contd...

* SVD timing for rectangular matrices
(m=8K)
— Speedup increases with varying dimension
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Contd... cvIT

 SVD of upto 14K x 14K on Tesla S1070
takes 76 mins on GPU

10K x 10K SVD takes 4.5 hours on CPU,
25.6 minutes on GP
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Contd. ..
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* Yamamoto achieved a speedup of 4 on
CSX600 for very large matrices

« Bobda report the time for 10° x 10° matrix
which takes 17 hours

* Bondhugula report only the partial
bidiagonalization time

[T Hyderabad
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Timing for Partial Bidiagonalization

e Speedup:1.5-16.5 over Intel MKL
* CPU outperforms for small matrices

* Timing comparable to Bondhugula (11
secs on GTX 280 compared to 19 secs

CVIT

o1 7900) Time 1n secs
SI1ZE Bidiag. gallg[lle?é geilg[ii;é
GTX 280 GTX 280 | Intel MKL
512 x 512 0.57 0.37 0.14
IK x 1K 2.40 1.06 3.81
2K x 2K 14.40 4.60 47.9
4K x 4K 92.70 21.8 361.8
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Timing for Diagonalization — S

Speedup:1.5-18 over Intel MKL
Maximum Occupancy: 83%
Data coalescing achieved
Performance increases with matrix size
Performs well even for small matrices

Diag. Diag.
SIZE
GTX 280 Intel MKL
512x 512 0.38 0.54
2K x 2K 5.14 49.1
4K x 4K 20 354
8K x 2K 8.2 100

Time 1n secs



[Limitations

Limited double precision support
High performance penalty
» Discrepancy due to reduced precision

140 F

120

100 |

80

60

No of singular values

40

20 F |

- .

(- 1 L. . L 1 1
-0.003 -0.00z2 -0.001 a 0.001 0.002 0.003

_ 7 Error percentage
m=2ix, ri—oix P °
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CVIT

* Max singular value discrepancy = 0.013%
Average discrepancy < 0.00005%

* Average discrepancy < 0.001% for U and
\%4!

e Limited by device memory

[T Hyderabad
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Regular Algorithms on CUDA

PPoPP Tutorial on GPUs. Jan 10, 2010
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Mapping an Image on CUDA

O O O O O O| Image divided |O OO OO O
OO OO O ) intoblocks OC0000O0
O OOO0OO0O0O0] OO OOOO
Q00000 Q00000
ONONONONOX® OO0O0O0O0O0
O0O0O00O0 OO000QO
Image ¢ Grid
Block sub-
divided into
Kernel runs on threads QO O
each pixel :
O O

thread < pixel

Block



[T Hyderabad

* Thread accesses its pixel data
using thread to pixel mapping
— Read is efficient: Coalesced

— Process each pixel independently
and write results

2D Filtering: Keep block
values + neighbouring rows
and cols 1n shared memory
— Coalesced access to bring to SM

— Synchronize threads of block to
ensure loading

— A thread computes its pixel’s
output value from shared memory

— Write results coalesced

Image Processing, Filtering

CVIT
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Mean filtering

float *shMem = (float *) &sharedMem/[(0] // Pointer
// Computer image coordinates

x = blockldx.x*blockDim.x + threadldx.x

y = blockldx.y*blockDim.y + threadldx.y

// Compute a local coordinate within block
locallndex = threadldx.x+threadldx.y*blockDim.x
// Copy own portion to shared memory
shMem[locallndex] = globallmage/[y*width + x]
__syncthreads() // Wait till all copying is done

// Compute the required output and copy back

g odatal[y*width + x] = meanGreyValue()
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Mean Computation

float meanValue = 0.0
// Compute the average of the 9 pixels
for (int i=0; i<3; i++)
for (int j=0, j<3, j++)
indx = (threadldx.x — i) + (threadldx.y — j)*blockDim.x
meanValue += shMem/[indx]
meanValue /= 9.0

Note:
» Borders are not handled properly.
* Needs 1f-then-else to process borders specially
» Divergence: Different threads doing different actions
« Always suffers in performance on SIMD architectures
 Intra-warp divergence only for CUDA
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Image Rotation

Rotate by angle 0.
X’=Xxcos0-ysin0 4
y’=xsn0+ycosH

Fractional coordinates!

Think reverse and
interpolate

X=X cos0O+y’ sin0
y=Xx’sin 6 -y’ cos 0

Can use texture memory
to get interpolation



Image Rotation
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// image/texture coordinates
x = blockldx.x*blockDim.x + threadldx.x
y = blockldx.y*blockDim.y + threadldx.y,
u = x/ (float) width
v =y /(float) height,
// transform coordinates
u-=20.5f, v-= 0.5,
tu = u*cosf(theta) + v*sinf(theta) + 0.5f
tv = v*cosf(theta) - u*sinf(theta) + 0.5f,
// read from texture and write to global memory
g odata[y*width + x] = tex2D(tex, tu, tv)

// Interpolation.: img[i,j] (1-b) (1-c) + img[i,j+1] (I-b) c +
// img[i+1,j] (I -b) c + img[i+1,j+1] bc




Data-Parallel Computation

CVIT

« Kernels operate on data elements

— Little interaction between data elements
— Simple model. Think like data elements. Know little!

 Also called

— Stream computing
— Throughput computing
* Application areas
— Signal processing, Image processing
— (Large) matrix operations

— Scientific computing with large data
* Molecues, fluid flow, ....

[T Hyderabad
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Thank you!




Towards a Model

* The GPGPU benefit

¢ Low cost (order of hundreds of $)
¢ Widely available

¢ High computational power of roughly 1 TFLOP

¢ C like programming model called CUDA

PPoPP 2010, Bangalore, India.



GPGPU Success Stories

* Image processing
« FFT, filters

* Graph Algorithms

¢« BFS, Shortest Paths, Graph Cuts
* Linear algebra

* Primitives
- Scan, Split, list ranking (speed up < 10)
- Physics (n-body simulation)

¢ speed up of 200

PPoPP 2010, Bangalore, India.



The Missing Link

* Speed up varies across problems and
implementations.

- Can the speed-up be analyzed?
- Can one predict the speed up?

¢ How much of architectural details have to be

included?

PPoPP 2010, Bangalore, India.



Benefits of an Analytical Model

* Limits of GPU parallelizability

¢ augment the PRAM model
* Program profiling

¢ An informative profile identifying performance

bottlenecks

* A software simulator for GPU

“ Help future architectural proposals for the GPU

PPoPP 2010, Bangalore, India.



Why PRAM does not suffice

P1 P2 P3 00 Pn

*+ PRAM is a purely algorithmic model.
¢ Very good at identifying the extent of parallelism
* |Ignores architectural costs such as memory hierarchy,
memory latencies.

* |Ignores programming costs such as synchronization.

PPoPP 2010, Bangalore, India.



Few Available Models

* Plenty of models in the parallel algorithms community

« PRAM
« BSP, QRQW, LogP, ...,

* Design space optimization [Ryoo et al. 2008]

¢ A structured way to handle parameter optimization

¢ Two parameters: utilization and efficiency

¢ Extended to multi-GPU design space [Schaa et al. 2009]

PPoPP 2010, Bangalore, India.



Few Available Models

* A very similar work [Hong and Kim, 2009]

¢ independent work

¢ Introduces two parameters

> Memory warp parallelism
» Compute warp parallelism

* A related work in this conference

PPoPP 2010, Bangalore, India.



Highlights of Our Model

’ A'performance prediction model for GPGPU

¢ Uses extensions to existing models such as BSP,
PRAM, and QRQW

* Static runtime prediction
¢ Analogous to asymptotic analysis
¢ Done at the CUDA code level.

* Experimental validation by targeted experiments

* Three case-studies
¢ Matrix multiplication, List ranking, Histogram
¢ More case studies in our other works, e.g., AES

PPoPP 2010, Bangalore, India.



Overview of the Model [HIPC 2009]

* Use three existing models

¢ BSP [Valiant, 1990]
* PRAM [Fortune and Wyllie, 1978]
* QRQW [Gibbons, Mathias, Ramachandran,1996 ]

* Small extensions to each of the three models

* Separate memory and computation in a kernel

PPoPP 2010, Bangalore, India.



BSP Model

*+ Proposed as a bridging model for

parallel computation. ___ Virual Processors |
* Computation organized as I Local
superstieps. Computation

* Threads synchronized at the end
of each superstep.

- Maps to kernels in GPGPU, Global
o _ _ Communication
with explicit synchronization.

Barrier
Synchronization

¢ Consider each kernel at a

time, and |
¢ Express the runtime of a program as the sum of the run

times of supersteps (kernels).

PPoPP 2010, Bangalore, India.



Measuring Computation in a Kernel

* GPU is not a very versatile
architecture

* Number of cycles varies a = b + ¢ //4 cycles

heavily even for simple & ~ P © ¢ //4 cveles
Y P a % 8 //40cycles
operations.

¢ 4 cycles for a multiply

)
|

¢ 40 cycles for integer modulo

* Hence, add up the cycles for

all the compute operations in
a kernel.



Measuring Memory Access in a Kernel

* GPU has a deep memory hierarchy

¢ Global Memory
¢ Shared Memory
¢ Constant Memory

¢ Texture Memory

* In this model, we'll focus only on the global and

the shared memory.

PPoPP 2010, Bangalore, India.



PRAM Model for Global Memory Accesses

P1 P2 P3 LA A Pn

* An extension of the RAM model

- Uniform cost for each memory access and computation.

* For the GPU, we need to think of a non-uniform
PRAM model.

¢ Non-uniformity depends'orthe nature of global access.



PRAM Model for Global Memory Accesses

v
_— e
HEEEEEREEEEEN ]
Thread 1

Thread 2
Thread 3

Thread 14
Thread 15

Thread 16

Segment 1 Segment 2 Segment 3

GLOBAL MEMORY

Segment n-2 Segment n-1 Segment n

* On the GPU however global memory access cost varieS

¢ About 20 cycles for coalesced access [Nvidia manual]

PPoPP 2010, Bangalore, India.



PRAM Model for Global Memory Accesses

Thread 1
Thread 2
Thread 3

Segment 1 Segment 2 Segment 3

Thread 14

Thread 15
Thread 16

GLOBAL MEMORY

Segment n-2 Segment n-1 Segment n

* On the GPU however global memory access cost
varies

¢ 400 — 600 cycles for non-coalesced access [Nvidia
mMmanua |] PPoPP 2010, Bangalore, India.



QRQW Model For Shared Memory Accesses
____

®
M
e
m
0]
I
» A variant of PRAM S v

* Cost function based on number of access

conflicts
¢ |dentity function - CRCW PRAM
¢ Linear — GPU, and other existing parallel
CO m D ute rS . PPoPP 2010, Bangalore, India.



The Overall Model

SM1 SM2 SM3 SM30

T1]T2 132

PPoPP 2010, Bangalore, India.




An Equation

* T(P) = Time for executing a program P

* T(P) = > Time for executing a kernel K

* T(K) = No. of Cycles in the kernel K x (1/Clock Rate)

e C(K) = N_(K) x N_(K) x N(K) x C_(K)x(1/D x N)

 How to obtain C_(K)? N, : No. of blocks/SM

N : No. of warps/blocks
N. : No. of threads/block

PPoPP 2010, Bangalore, India.



How to Obtain C_(k)

* Separately computing the compute cycles (N ) and the
memory cycles (N

memory) )

+ Which of these dominates the other?

¢ Depends on several factors: application, implementation,
scheduling, ...

* But can use two possible scenarios

- Application has good latency hiding: Take MAX
- Poor latency hiding: Take SUM

* Each scenario gives rise to a model
& The models place upper and lower bounds on the runtime.

« |[lustrated further in the case studies that follow.

PPoPP 2010, Bangalore, India.



Case Study 1 — Matrix Multiplication

E— §

* A popular parallel computing case study

* Typically, compute intensive benefiting from
coalesced reads and shared memory accesses.

* Each thread computes a block of the product
matrix.

* See Nvidia manual for more detalils.

PPoPP 2010, Bangalore, India.




Case Study 1 — Matrix Multiplication

= MAX v
“* ACTUAL
Y suUM

* Actual time mostly follows MAX at most places.

PPoPP 2010, Bangalore, India.



Case Study 2 — List Ranking

s —> @ — @ —» @ — @ —» @@ ——» @ ——  ——» — @ ——

Rank

* Given a list of elements, as a successor array,
find the distance of the elements from one end of

the list.
* A fundamental primitive for parallel computing.
* In sequential computation, not a serious problem.

PPoPP 2010, Bangalore, India.



Case Study 2 — List Ranking

+ Use a recursive variation to
the algorithm of Hellman-
JaJa (H) s
¢ HJ Specifically -
designed for symmetric

multiprocessors. o
. . . . Local Ranks
+ Basic idea is to sub-lists
and compute local ranks. ik
(c) Successor Array
+ Finally rank a smaller list Slonalenks

and compute global ranks.

Local Ranks |1}

(d)

+ [Rehman et al. 2009] for reirente
more detalils.

PPoPP 2010, Bangalore, India.



HJ

i eV

Pseudocode for H

The local ranking kernel

while (p>=0) {
temp=p;
p=SUC[p]; // read uncoa
SUC [temp]=-(index); // write uncoa
]

VAL [temp]=++prefix; // write uncoa
count++;

PPoPP 2010, Bangalore, India.



Analyzing the Local Ranking Kernel

*Local ranking kernel: Each thread has three
read/writes and one compute.
* All three read/writes are uncoalesced.

= Per element ranked locally
* Ncomp =4

* Nmemory = 1500

* How many elements does a thread rank?
¢ Not deterministically fixed.
¢ Need to analyze probabilistically.

PPoPP 2010, Bangalore, India.



Analyzing the Local Ranking Kernel

» Some observations:
¢ Let input be chosen uniformly at random

¢ Estimate the probability that a thread ranks k
elements locally.

¢ Similarly, what is the number of elements ranked by
a thread with high probability.

* Analysis suggest that the answer is close to 4 log
N elements w.h.p. when using N/log n splitters.

PPoPP 2010, Bangalore, India.



Analyzing the Local Ranking Kernel

> Therefore, time taken can be estimated as:

(N/512x30xlog N) x 16 x (32/8x4) x 4log N x 1500
cycles.

= At N = 222, this is about 21 ms.

PPoPP 2010, Bangalore, India.



Case Study 2 — List Ranking

== NMAX
== ACTUAL

— 4

- @ 3 7 @ 3

size in log.

+ Each thread ranks a sublist.

*+ Very little computation.

PPoPP 2010, Bangalore, India.



Case Study 3 — Histogram

* A popular primitive in statistics

* Count all like items.

* Implementation scheme [Patidar and Narayanan,
2009]

“ N data points

¢ Each thread works with a set of data points and
generates a local histogram.

¢ Each thread then updates the global histogram

PPoPP 2010, Bangalore, India.



Case Study 3 — Histogram

7

= MAX
== sum
m ¥ ACTUAL

1 2 4 8 10 12 14 16 18 20 24 32 48 64

* Each thread reads one element from the global
memory and updates a counter in shared memory.

PPoPP 2010, Bangalore, India.



The Proposed Model

* An attempt to bridge the gap between theory and
practice of GPGPU.

* The model is easy to apply and is reasonably good.
¢ More case studies in other reports, e.g., AES

* But has a few drawbacks

¢ Atomic operations
¢ Divergence of threads, especially dynamic divergence
¢ Intra block synchronization

* In future, wish to develop a software simulator for
the GPU.

PPoPP 2010, Bangalore, India.



