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Abstract

High Dimensional Real Data Visualization

Visual representation of data is called Data Visualization. The aim of data visualization is to pro-

vide viewers an understanding of the dataset. In high dimensional numerical data visualization, data is

mapped from numerical form to visual objects. The simple line graph or scatter plot[11] has been used

for visualization to understand the interaction of two variables. Over the time, more sophisticated data

visualization techniques were developed to visually understand high dimensional datasets.

Cluster Visualization

Clustering is the task of assigning a set of objects into groups (called clusters) so that the objects in

the same cluster are more similar to each other than to those in other clusters. Visualizing shape and

structure of data points within a cluster helps in understanding nature of the cluster (group of points

which are close to each other). Two dimensional and three dimensional clusters can be visualized

directly but visualizing higher dimensional clusters is difficult. Several techniques have been presented

to visualize high dimensional data clusters. They include general multidimensional data visualization

techniques, icon based representation techniques and interactive cluster exploration tools. Majority of

these visualization techniques are based on a point level abstraction (every data point corresponds to

one or more visual objects present on canvas). When number of data points increase, these techniques

are crippled by over plotting, decline in legibility, inability to plot complete dataset or loss of speed and

interaction.

Classification Data Visualization

Data classification consists of using variables with known class to predict class of other variables.

Visualization of classification data is similar to cluster visualization. Techniques which are used for

cluster visualization can also be used for classification visualization.

In this thesis, we present a tool called PEARLS which uses basic three-dimensional shapes like

sphere and cube to visualize high dimensional data clusters. These shapes, called pearls are groups of

points which represent a level of abstraction in between data point level and cluster level. We embed

various interactive techniques like data dimension, swiss cheese view and attribute filtering to make the
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cluster analysis informative and intuitive. Other tools like Parallel coordinates and scatter plot matrix

are embedded for a detailed analysis of individual pearls. We demonstrate the use of PEARLS through

case studies on a Singapore real estate data set and Baseball players data set. Our evaluation shows the

benefits of PEARLS in cluster analysis and concept identification within clusters.
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Chapter 1

Introduction

Extracting meaningful information from large quantities of data is a difficult task. Effective visual

representation of data makes this task easier. Visual representation of data is called Data Visualization.

Aim of data visualization is to help users detect expected as well as unexpected from data and gain

meaningful insights into data. Many techniques, domain dependent as well as domain independent

have been developed for multi dimensional data visualization. Some of the well known techniques are

parallel coordinates [22], scatter plot matrices [11] and RadViz [35].

Different data types require different visualization techniques. Multivariate datasets occur very often

in domains ranging from science to finance. Data points in such datasets either already have classes

or they are clustered or classified to extract meaningful information. Understanding these clusters or

classes is a key component in the puzzle of understanding whole dataset. In a multi-dimensional real

data cluster, data points have shape (structure of the cluster) and size (spread of the cluster). Visualizing

shape and structure of these data points helps in understanding clusters. Understanding clusters helps

in performing further data analysis and comparing one cluster with another cluster. A two dimensional

or three dimensional data cluster can be visualized and shape and size of clusters preserved accurately.

Feiner and Beshers [14] observe that human experience with spatial positioning is limited to 3-D. This

leads to difficulty in visualizing data clusters with more than three dimensions.

Well known data visualization techniques like parallel coordinates [22], scatter plot matrices [11] and

RadViz [35] have been used to visually explain the results of clustering algorithms and data clusters.

Most of these techniques focus on a point level abstraction. Every point corresponds to one or more

objects on the visual canvas. The point level abstraction suffers from the limitations when number of

points becomes too large. Andrienko et. al [1] and others have identified several problems like over

plotting, decline in legibility, inability to plot full dataset or loss of speed and interaction which lead to

a decline in efficacy of techniques based on point level abstraction. Moreover, large number of visual
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objects overwhelm user. Figure 1.1 shows parallel coordinate visualization of 5000 data points. In this

visualization, problems like over plotting and decline in legibility are evident.

Figure 1.1: This image sequence shows a parallel coordinate plot for 5000 records of Singapore Real
estate dataset. Problems of over plotting and decline in legibility are evident.

In this thesis, we propose PEARLS, a visualization technique that helps user understand clusters, by

visualizing their shape and size using primitive easy to understand shapes like sphere, cube and rhombus.

These shapes not only describe shape and size of data cluster, but they also represent concepts. As stated

in Han and Kamber [17], “A concept usually refers to a collection of data such as frequent buyers,

graduate students, and so on and concept description generates descriptions for characterization and

comparison of data.”. In PEARLS, concepts can be thought of as an abstract description of the cluster

and a potentially closest such description.

Describing a data cluster and its points using an intermediate level of abstraction scales up when

number of data points increase. Such a visualization also enables a user to search for groups of points

which belong to a predefined concept and explore various intra point relationships in various subsets of

dimensions by constantly refining how the cluster is divided into concepts.

1.1 Contributions of Thesis

The contributions of this thesis are :

• Pearl three dimensional visualization technique for high dimensional data.

2



• Intuitive user interactions techniques like Swiss-cheese view, filtering of dimensions, data dimen-

sion and Point Search technique.

• Visualization of clustering and classification results using PEARLS.

• Demonstration of how PEARLS can be used in concept description and discrimination, in search-

ing for point groups representing various concepts and in exploring intra point relationships be-

tween points in various subsets of dimension. Concept description and discrimination are elabo-

rated in in real life data experiments in Chapter 5.

• A PEARLS visualization tool kit built in Qt and OpenGL integrated with Xmdv toolkit to visual-

ize parallel coordinates, scatter plot, star glyph, dimension stacking analysis and k-reverse nearest

neighbor analysis on individual pearls.

1.2 Motivational Example

We illustrate how search results from a real-estate property web-site could be visualized using

PEARLS and how the results could be explored using the interactive features of PEARLS. A user

searching for the ‘right’ listing, often encounters thousands of listings as search results to the query

posted. Browsing through the entire list to analyze and identify the ‘right’ one is non-trivial and time-

consuming task. Hence, these exhaustive search results are under-utilized most often. The regular

modes of displaying these search results are: (i) list-mode and (ii) map-mode based on the location.

An intuitive and information mode of display is needed that helps the user to browse through the data

without getting overwhelmed with information deluge. We suggest PEARLS as an alternative to the

regular list-mode and believe that it brings more structure to the display of the search results. The idea

of grouping search results is not new in the field of textual search. But the concept of clustering the

search results, partitioning the clusters into pearls and displaying the pearls along with various interac-

tive features for the user to zoom in and out is illustrated as a detailed case study in the experiments

section.

For instance, when a query is executed on Singapore’s property website property guru, the search

results included over 35,000 listings. After clustering, 15 major clusters are identified. Each cluster

representing set of listings that are close to each other based on attributes like size of the unit, loca-

tion, nearest train station and school. The largest cluster is partitioned to obtain pearls. Example of

a single pearl goes like this: pearl id 31, Alexis (59 units),LVIV (33 units), Stevens Suites(22 units),

City Square Residences (30 units), Visioncrest Residence (27 units) and City Loft(13 units). These

3



listings are located in one district and the clustering and partitioning helped group the listings accord-

ingly. The visualization of the cluster is shown in Figure 1.2. The pearl in red represents the pearl

31.

Figure 1.2: This image sequence shows pearls for a cluster of Singapore real estate dataset. Pearl with
pearl id 31 is highlighted in red.

Using the PEARLS visualization tool, the user is first provided with 15 clusters to choose. Summary

of each cluster is provided, so the user could identify clusters of interest. Upon choosing the cluster, the

tool partitions cluster into pearls and obtains the PEARL visualization of that cluster. Clicking on each

pearl, the user could obtain more information. Accordingly, the user could then explore pearls close to

each other. Each pearl could be zoomed in and out, to obtain information at various levels (point-level,

pearl-level and cluster-level). Thus, the information is presented in a hierarchical fashion; information

could be broken down to individual listing level. The user could choose the attribute (or dimension)

that matters most like ’distance to nearest MRT’ and order the pearls along that dimension to identify

groups of listing that satisfy the criteria. We believe that an overall system like PEARLS could help in

situations when there is information overload (for numerical data sets) and with suitable data preparation

for PEARLS, the features it provides could be used to explore, analyze and zoom into specific points

for more detail. Searching across data sets and representing the results of the clusters is a good example

of an application where PEARLS fits.
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1.3 PEARLS and BEADS

PEARLS is based on some of the ideas presented in BEADS [47],[46]. BEADS

• is a framework to provide conceptual visualization of high dimensional data clusters.

• is an approach to compose 2-D visual metaphors to visualize high dimensional clusters.

• gives a formalism for shape definition and applies it for shape identification.

• has results on real and synthetic data sets to illustrate the approach.

A system called BEADS [46] was implemented in C++ and rendering was done using a set of Gnu-

plot commands. The BEADS system can at best be described as a proof of concept but it has limited

applicability in data visualization and exploration tasks. BEADS framework was not developed to meet

requirements of a visualization tool. Also, the bead shape identification algorithm was based on some

approximations derived by computing ratio’s of 2-D Lp norm shapes. We have found out that as we

move to higher dimension shapes these approximations do not hold. For example ratio of area of 2-D

sphere to 2-D plus (p = .5) is 4.75 is while that of a 4D hyper sphere and plus is 776.175. We developed

PEARLS system to present next generation of BEADS system.

1.3.1 A Case for 3-D PEARLS

Reasons which compelled us to design a 3-D visualization instead of 2-D are:

1. Overlap in beads In 2-D, due a limited canvas size, lot of beads overlap. Larger beads completely

overlap some smaller beads. In 3-D, a user can rotate the camera and view same visualization from

various angles which addresses the problem of overlap.

2. In 2-D BEADS, the position of a bead conveys only its distance from center and the quadrant in

which this bead lies. Position is one of the key features in conveying visual information and a 3-D

visualization enables us to convey more information using position of beads. In 3-D, position of

a pearl conveys its distance from cluster centroid, the quadrant in which it lies and its value in

dimension with maximum standard deviation. An extra dimension also enables us to introduce

data dimension interactive technique (described in section 4.1).

Figure 1.3 shows some plots generated by Beads System.
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Figure 1.3: Some of the plots generated by BEADS for various clusters.

In [29], authors have identified baseline requirements of software systems built for data visualization.

There are seven functional requirements (i.e., rendering scalability, information scalability, interoper-

ability, customizability, interactivity, usability, and adoptability) and seven non functional requirements

(i.e., views, abstraction, search, filters, code proximity, automatic layouts, and undo/history).

1.3.2 Non Functional Requirements

Among all non functional requirements both BEADS and PEARLS equally satisfy requirements of

rendering scalability (since both compute in C++ and number of beads and pearls is much small as

compared to number of data points in most cases) and interoperability.

Information Scalability A data visualization tool must be able to reduce and extend the amount of vi-

sualized information on demand. It should also allow user to select and view the information of interest.

The PEARLS toolkit build in QT using OpenGL allows information scalability since QT and openGL

support building dynamic graphic views where amount of visualized information can be reduced or

extended. A user can change the number of pearls to increase/decrease the extent of visualized informa-

tion. He/She could also hide certain pearls and generate the pearls again, which in effect removes the

information generated from points contained within hidden pearls. Figure 1.4 shows examples of infor-

mation scalability of PEARLS. In part a, only 15 pearls are generated; In part b, 20 pearls are generated

; In part c, some pearls are removed from original visualization shown in part b.
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Figure 1.4: Information Scalability in PEARLS

Customizability Customizability enables to meet needs that cannot be foreseen by tool developers,

for instance, if a tool is applied in a new context. Most visualization tools do not allow easy extension by

new visualization techniques. Customizability depends on programming language, development frame-

work and modularity of code. PEARLS implementation supports extensive customizability as it is writ-

ten in C++ using QT/OpenGL framework in a modular manner. We have extended PEARLS framework

by adding various standard multivariate data visualization techniques implemented in Xmdv toolkit[50]

. This demonstrates that an QT/OpenGL based independent framework is much more customizable as

compared to bead Plots drawn in Gnuplot.

Interactivity A visualization tool should be interactive and exploratory in nature. While Gnuplot is

an interactive toolkit, its goal is plotting of mathematical functions. Hence, the nature of interactivity

it supports does not meet requirements of a data visualization toolkit. PEARLS framework provides

interactive features like Swiss cheese view, use of a dimension as data dimension, attribute filtering and

browsing points in pearls and Clusters in tabular form.

Usability For any toolkit usability or ease of use is a very important requirement. User interface

of a visualization toolkit should be intuitive to user. In the context of a code visualization toolkit,

Storey et al. say that “available functionality should be visible and relevant and should not impede the

more cognitively challenging task of understanding a program”. The PEARLS interface adheres to this

guiding principle. User Interface of PEARLS is showing figure 4.1.

Adoptability Bull et al. [6] state that ease of use and adoptability to the tasks cause a tool to be

adapted. Reiss [40] says that developers will adopt tools only if ”the cost of learning that tool does

not exceed its expected rewards and the tool has been and can easily shown to provide real benefits”.
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Tilley et al. [45] suggest that research tools might be more adoptable if they were more understandable,

robust, and complete. While a number of qualities have been listed which makes a tool adoptable there

is no exhaustive checklist which can guarantee adaptability. While designing PEARLS framework we

aimed at designing an easy to use, understandable and robust toolkit. We believe that the toolkit will be

adopted by users.

1.3.3 Functional Requirements

Among functional requirements, both BEADS and PEARLS follow identical abstraction model and

permit similar code proximity (ability of the visualizer to provide easy and fast access to the underlying

source code) .

Views A Visualization software provide multiple views to satisfy the need of different stakeholders

and to emphasize on different aspects of data. Integration of multiple views is also an important aspect

of visualization system as it supports ease of exploration. PEARLS has closely integrated dynamic

textual and graphical views which are described in section 4.1.7. Gnuplot based implementation does

not provides flexibility to develop such views. Examples of graphic Views and textual views of several

datasets are given in Chapter 5 and 6.

Filters Filtering of information in visualization tools can be seen as a rudimentary form of (structural)

querying [44]. Visualization tools support data filtering in several ways like interactive filtering or

criterion function based filtering. Filtering allows users to reduce the amount of visualized data and

to limit their analysis. PEARLS supports filtering using concept of swiss cheese view and attribute

filtering as described in section 4.1 . Due to limitations of Gnuplot, BEADS could not support this

feature. Figure 1.5 shows using swiss cheese filter to remove Pearls 30, 32, 27 and 29.

Undo/History Undo/History is a feature present in most interactive visualization toolkits and graph

editing toolkits. Since user performs interactive manipulations that change the visualization, there

should be an undo mechanism that allows them to revert to previous states. In PEARLS all interac-

tive manipulations can be undone. The two major interactive manipulations are hiding pearls using

swiss cheese view and regenerating the pearls by changing various parameters. The history of all inter-

active steps along with their results is stored to make it possible to revert back to previous states when

needed. The BEADS implementation does not support it due to limitations on interactivity and static

views. Figure 1.6 shows undoing the removal of Pearls 27 and 29 using Undo History button.
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Figure 1.5: Filters in PEARLS

Figure 1.6: Undo in PEARLS

Search Storey et al. [44] observe that lack of a searching tool to find text strings from the data hinders

the user. PEARLS visualizes multidimensional datasets where each point can/cannot have a textual

name. PEARLS toolkit supports searching of points using their names while BEADS tool does not

support it. Figure 1.7 shows searching ”Urbana“ using search box in Singapore real estate dataset.

Figure 1.7: Search in PEARLS
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1.4 Organization of Thesis

The rest of the thesis is organized in the following manner.

In Chapter 2, we look at the Related Work in the field of multi dimensional data visualization and

cluster visualization. We shall provide an exhaustive coverage of prominent work conducted in these

areas in the past decade.

In Chapter 3, we give an overview of PEARLS. We describe the algorithms which generate PEARLS

plot from a data cluster and present underlying concepts.

In Chapter 4, we describe PEARLS toolkit. We highlight the functionality and interactive features of

the toolkit, discuss the non functional requirements which it satisfies and describe major implementation

details.

In Chapter 5, we introduce concept description and concept discrimination and describe how PEARLS

toolkit is useful for the same. We describe queries which PEARLS system can answer and give a se-

quence of steps to be followed for these queries. We also describe how such a sequence of steps can be

constructed for new query types.

In Chapter 6, we provide data analysis case studies on singapore real estate dataset and nutrition

dataset. In the case studies, we use PEARLS toolkit to perform concept search tasks on dataset. We

show PEARLS visualization for each step of the task.

In Chapter 7, we highlight our conclusions followed by providing some ideas for the future work.

10



Chapter 2

Related Work

In this chapter we look at the related work in the field of multi dimensional numerical data visual-

ization and cluster visualization.

2.1 Multidimensional Data Visualization

Chan [9] has done a comprehensive survey on techniques for multi variate data visualization. We

describe the major techniques.

2.1.1 Scatterplot Matrix

In a scatter plot two attributes are projected along the x-y axes of the Cartesian coordinates. A Scat-

terplot matrix is collection of scatterplots organized in a matrix to provide correlation information among

the attributes. Scatterplot matrix is primarily used to observe patterns in the relationships between pairs

of attributes. Figure 2.1 shows a scatter plot matrix for a 5 dimensional data of 500 automobiles.

2.1.2 Prosection Matrix

Prosection [16] is an orthogonal projection where the data items that lie in the selected multidi-

mensional range are colored differently. Prosection matrix is a collection of prosections organized in a

matrix. Figure 2.2 shows a prosection and a prosection matrix.

2.1.3 Parallel Coordinates

Parallel coordinates [21] [20] [23] is a well known multidimensional data visualization technique.

In parallel coordinates, a backdrop is drawn consisting of n parallel lines( n is number of dimensions

of data), typically vertical and equally spaced. A point in n-dimensional space is represented as a poly
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Figure 2.1: A scatterplot matrix for 5 dimensional data of 500 automobiles

Figure 2.2: (a) A prosection, (b) A prosection matrix

line with vertices on the parallel axes; the position of the vertex on the ith axis corresponds to the ith

coordinate of the point. Figure 2.3 shows a parallel coordinates plot.

2.1.4 Radical Coordinates Visualization

In Radical Coordinates Visualization [18], n lines emerge radically from the center of the circle and

terminate at the perimeter. Each line represents one attribute. Spring constants attached to the data

attribute values define the positions of the data points along the lines. Points with approximately equal

or similar dimensional values lie closer to the center. Figure 2.4 shows an example of radical coordinates

visualization.
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Figure 2.3: Parallel Coordinate Plot

Figure 2.4: Radical Coordinates Visualization

2.1.5 Table Lens

In table lens visualization [39], each row represents a data item and the columns refer to the attributes.

Each column is viewed as a histogram or as a plot as shown in figure 2.5. Table Lens allows users to

spot relationships and analyze trends in dataset.

2.1.6 Pixel Oriented Techniques

In pixel oriented techniques, idea is to represent an attribute value by a pixel based on some color

scale. For an n-dimensional dataset, n colored pixels are needed to represent one data item.

Spiral technique [27] is a pixel oriented technique to visualize query results over multidimensional

dataset. In this technique, pixels are arranged in spiral form according to the overall distance from the

query. Figure 2.7 shows an example of spiral technique visualization.

Circle segment [2] is also a technique to visualize query results over multidimensional dataset. It

assigns attributes on the segments of a circle. Data items are arranged within a segment so that a single

data item appears in the same position at different segments. The ordering and colors of the pixel
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Figure 2.5: An example of Table Lens from Inxight

are determined using overall distance to the query. Figure 2.8 shows an example of circle segment

visualization on a 8 dimensional dataset.

Figure 2.6: Space Filling Curves
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Figure 2.7: Spiral Technique

Figure 2.8: (a) Circle segment arrangement for 8-diemensaionl data,(b) An example of circle segments

2.1.7 Hierarchical Axis

In this technique [52] [34], axes are laid out horizontally in a hierarchical fashion. This technique

can plot many attributes in one screen. A simple example is the histogram within histogram plot as show

in figure 2.9.

Figure 2.9: Histogram within Histogram Plot

2.1.8 Dimensional Stacking

Dimensional Stacking [31] technique partitions the data space into 2-dimensional subspaces which

are stacked into each other. Important attributes should be choosen for outer levels of stack. Figure 2.10

shows a partition of dimensional stacking and a complete example of dimensional stacking technique.
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Figure 2.10: (a) Partition of dimensional stacking, (b) An example

2.1.9 Treemap

Treemap [42] partitions the screen hierarchically into regions depending on the attribute values. The

sizes of the nested rectangles represent the attribute values. The color of the regions may encode an

additional attribute. Figure 2.11 shows an example of Treemap visualization.

Figure 2.11: Treemap

2.1.10 Chernoff Faces

In this technique [10] two attributes are mapped to the 2D position of a face and remaining attributes

are mapped to its properties like the shape of nose, mouth, eyes and that of the face itself. Chernoff

faces can only visualize a limited amount of data items. Figure 2.12 shows an example of Chernoff Face

visualization.
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Figure 2.12: : (a) Chernoff faces in various 2D positions, (b) Different facial features

2.1.11 Star Glyphs

In Star Glyphs [8][19], the dimensions are represented as equal angular axes. An outer line connects

the data value points on each axis, as depicted in Figure 2.13. Each data item is presented by one star

glyph.

Figure 2.13: Star Glyph

2.1.12 Stick Figure

Stick figure [38] is a visualization technique that maps two attributes to the display axes of stick

figure and the remaining to the rotation angle, length, thickness or color of the limbs. According to

[9], “when the data items are relatively dense with respect to the display dimensions, the packed icons

exhibit some texture patterns that vary according to the data features, which are detected by pre-attentive

perception”. Figure 2.14 shows stick figure visualization for a 5 dimensional dataset.
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Figure 2.14: (a) Stick figure family, (b) 5D image data using stick figures, (c) Part of (b) in original size

2.1.13 Color Icon

Color icon [32] is a combination of the pixel-based spiral axes and icon based shape coding tech-

niques. Pixels are replaced by arrays of color fields that represent the attribute. Various properties

like color, shape, size, orientation, boundaries and area sub-dividers can be used to map the multidi-

mensional data to these color fields. Figure 2.15 shows a color icon visualization for a 5 dimensional

dataset.

2.2 Cluster Visualization

Related work in cluster visualization can be described in three categories. Using general purpose

multidimensional data visualization techniques to visualize data clusters, Icon-Based Multivariate data

visualization techniques and various interactive cluster exploration tools.

2.2.1 Multidimensional data visualization techniques

Parallel coordinates [22] is a well known multidimensional data visualization techniques. In parallel

coordinates, a backdrop is drawn consisting of n parallel lines( n is number of dimensions of data),

typically vertical and equally spaced. A point in n-dimensional space is represented as a poly line with
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Figure 2.15: (a)5D image data using color icons, (b) Part of (a) in original size, (c) Color icon scheme

vertices on the parallel axes; the position of the vertex on the ith axis corresponds to the ith coordinate of

the point. Several variations of parallel coordinates have been widely used to visualize multi dimensional

clusters and to identify cluster patterns in large multidimensional datasets.

For example, Fua et al. [15] used hierarchical clustering to develop a multiresolutional view of the

data and used a variation on parallel coordinates to convey aggregation information for the resulting

clusters. Authors perform a hierarchical clustering on dataset. A level of detail control parameter w

is chosen to select clusters from hierarchy tree which are to be displayed. (S(w) is the collection of

clusters whose size vi is less than or equal to w but whose parent’s size is greater than w.) Clusters

are represented on parallel coordinate plot as variable-width opacity bands. The mean of the cluster

stretches across the middle of the band and is encoded with deepest opacity which is a function of the

density of a cluster. The top and bottom edges of the band have full transparency. The opacity across the

rest of the band is linearly interpolated. The thickness of the band across each axis section represents

the extents of the cluster in that dimension. These opacity bands are colored on the basis of cluster

proximity. This proximity function is based on the structure of the hierarchical tree, that is sibling

nodes are considered closer than non-sibling nodes. Figure 2.16 shows a series of images captured at

six varying levels of abstraction for and 8 dimensional Fatal Accident Reports Dataset. The efficiency

of this visualization technique is dependent of complexity of clustering technique. After clustering,

for every cluster a visual object can be computed in constant time using meta data generated while

clustering. Visual clarity depends on level of detail control parameter w. For equal number of clusters
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and points, this technique and parallel coordinates have equivalent visual clarity. Figure 2.2.1 shows

figure of PEARLS visualization for a cluster of same dataset.

Figure 2.16: This image sequence shows a Fatal Accident data set at different level of details. The first
image shows a cut across the root node. The last image shows the cut chaining all the leaf nodes. The
rest of the images show intermediate cuts at varying levels-of-detail.

Novotny [36] partitioned data into clusters and represented each cluster as a polygonal area on a par-

allel coordinate plot and used both opacity values and textures to distinguish different clusters. Opacity

values can be chosen based on three criterion : uniform mapping (all clusters have the same opacity

1/k, where k is the number of clusters), population mapping (the opacity value is the ratio of the cluster

population to the number of samples in the whole data set) and density mapping (the opacity value is the

ratio of the cluster population to the size of the cluster. Aim of coloring is to have colors as mutually dif-

ferent as possible and share the same intensity. A qualitative scheme acquired from [5] is applied to find

color of the individual elements. The palette distinguishes the objects by hue while keeping the color

intensity relatively the same for all colors. Figure 2.18 shows Novotny’s visualization. Computation

complexity is dependent on the complexity of clustering algorithm. For every cluster, visual objects can

be computed in constant time. This technique has considerable improvements over Parallel Coordinates

technique in terms of visual clarity.
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Figure 2.17: PEARLS visualization for a cluster of Fatal Accident dataset. Most attributes of fatal
accident dataset like Number of persons, Number of vehicles, atmosphere, light take discrete integer
values between very small range 0-15. This leads to a bias towards plus shapes.

Parallel coordinates technique suffers from over-plotting, resulting in an image which is far too

cluttered to perceive any trends, anomalies or structure. [36] and [15] visualize clusters instead of data

items on a parallel coordinate plot. But in order to fully investigate a data set, it is necessary that cluster

representations must reveal detailed information about each individual cluster Johansson et. al. [24]

proposes use of high precision textures to represent these clusters on a parallel coordinate plot. In this

approach, for every cluster, all the data items belonging to it are rendered and the maximum number of

data items intersecting anywhere on display, pi is computed. pglobal , the largest of the pi values is then

computed and intensity range is normalized using either pglobal or pi. If normalization is done using

pglobal , clusters with a small maximum intersecting value become more transparent. If pi are used for

each cluster, each cluster’s maximum intensity is perceived as equally dense. Due to the sometimes

large range of intensities, the human eye has difficulty in perceiving the smallest intensity values. A

linear scaling may lead to clamping of highest intensity values. So authors propose use of transfer

function (TF) which allows non-linear as well as user-defined mapping. Figure 2.19 shows visualization

using various transfer functions. Computation complexity of this technique is dependent on clustering

algorithm as well as transfer function. It is also dependent on GPU architecture for computation of p.

Visual clarity as well as level of detail are dependent on transfer functions. A logarithmic function used
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Figure 2.18: The same data is visualized by traditional parallel coordinates (top) and using visual ab-
straction (bottom) by Novotny

for Figure 2.19.(d) provides low visual clarity with high level of detail and a function used in Figure

2.19.(b) provides an overview of data with high visual clarity.

Principal Component Analysis, Multidimensional Scaling and RadVis [35] can represent multidi-

mensional data into 2-D which makes it easier to identify clusters present in dataset but they result in

loss of structure and shape of clusters. They fail to preserve the spatial relationships and much of the

data analytics process is based on spatial geometries and densities. They also do not take account the

apriori knowledge which a user might posses about semantics of dimensions.

Principal component analysis (PCA) is a mathematical procedure that uses an orthogonal transfor-

mation to convert a set of observations of possibly correlated variables into a set of values of linearly

uncorrelated variables called principal components. The number of principal components is less than

or equal to the number of original variables. This transformation is defined in such a way that the first

principal component has the largest possible variance (that is, accounts for as much of the variability in

the data as possible), and each succeeding component in turn has the highest variance possible under

the constraint that it be orthogonal to (i.e., uncorrelated with) the preceding components.

Multidimensional Scaling(MDS) is a non-linear method for projecting n-D data down to a reduced

number of dimensions [4]. n data points can, for example, be represented as 2-D display points. The

MDS algorithm attempts to make the 2-D display points accurately reflect the relationships that exist
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Figure 2.19: (a)A linear TF prevents cluttering and to provide overview of the data. (b) Square TF shows
only dense regions. (c)A square root TF enhances low density regions and makes it easier to search for
outliers. (d)A logarithmic TF puts even more emphasis on the lower density regions.

between the corresponding n-D points by iteratively evaluating the level of Stress in the configuration

(high stress means the 2-D relationships are poorly correlated with the n-D relationships) and moving

the 2-D points in a direction of reduced stress. Unfortunately, it is difficult for users to understand the

semantics of the clusters as well as perform visual analysis on a MDS plot.

MDS and Principal component Analysis are computationally expensive techniques. The computation

of PCA requires eigenvalue decomposition (EVD) of the co variance matrix of the feature vectors. One

well-known EVD method is the Cyclic Jacobi’s method which diagonalizes a symmetric matrix. It

requires around O(d3 + d2n) computations, where d is dimensionality and n is number of data points.

Standard MDS operates by means of eigen vector analysis of an N x N matrix. It produces a layout

based on a linear combination of dimensions. It is an O(n3) procedure. 2 dimensional layouts generated

by MDS and PCA consist of points only so they are of high visual clarity and free from over plotting.

RadViz (Radial Coordinate visualization) [35] is a visualization method, which uses the Hooke’s law

from physics for mapping a set of n-dimensional points into a plane. Each RadViz mapping of points

from n dimensional space into a plane is uniquely defined by position of the corresponding n anchors

(points S j, which are placed in a single plane. The anchors are most often situated around a circle, but

this is not necessary. It is supposed that each anchor holds its own virtual spring of variable stiffness
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and all the loose ends of the springs are bound together. A point [y1, ....,yn] from n dimensional space

is mapped into a single point u in the plane of anchors as follows: for each anchor j the stiffness of its

spring is set to y j and the Hooke’s law of mechanics is used to find the point u, where all the spring

forces reach equilibrium (they sum to 0). The position of u = [u1,u2] is given by the equations

u1 =
∑

n
j=1 y j cos(α j)

∑
n
j=1 y j

u2 =
∑

n
j=1 y j sin(α j)

∑
n
j=1 y j

In [26] author uses non linear magnification to visualize high dimensional data clusters. N-dimensional

dataset is described in terms of 3D frames of the data. For a data set composed of N-dimensional points

a user can select frames of the data with each frame representing three of the N possible dimensions. The

key idea here is to use overlaying frames within a single three dimensional coordinate space (a single

frame presents three dimensions of the data) using color cues to visually separate the dimensions. Se-

lection of data records can either be done by entering the record ID number, or by selecting one or more

data points by brushing with the mouse. When a record is selected, it is highlighted in all of the visible

frames to show its position relative to the other records in the visible dimensions. Figure 2.20 shows

visualization of two frames (six dimensions) in a single three dimensional coordinate space. For every

individual record, its corresponding visual element can be computed in constant time. Visual clarity of

this technique is similar to PCA and MDS as every record is rendered as a point in three dimensional

space.

Figure 2.20: Visualization using Non Linear Magnification

This visualization technique is difficult to interpret as for a viewer the task is still the same in terms

difficulty for cognitive abilities and this technique is not effective when dataset is not sparse.

In [25] author uses star coordinates for visually exploring data and cluster discovery. In Star Co-

ordinates, coordinate axes are arranged on a two-dimensional circle with origin as center of the circle
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and with equal angles between the axes. Each multi-dimensional data element is represented by a point

on a two dimensional plain, where each attribute of the data contributes to its location through uniform

encoding. The Star Coordinate (SC) system is basically a curvilinear coordinate system, which can be

formally mapped to the Cartesian Coordinates (CC) by defining a two-dimensional point representing

the origin on (x,y) = (ox,oy) and a sequence of n two dimensional vectors An =< ~a1, ~a2, ...,~ai, ~an >

representing the axes. The mapping of a data element (D j) from a dataset D to a point (Pj) in the two-

dimensional Cartesian Coordinates is determined by the sum of all unit vectors ui = (~uxi, ~uyi) on each

coordinate multiplied by the value of the data element for that coordinate. Figure 2.21 shows an example

of calculation of data point location for an 8 dimensional dataset and figure 2.22 shows star coordinates

visualization for car specs dataset. Star coordinates technique require O(n∗d) computations to generate

visual objects for data points; where n is number of data points and d is dimensionality. Visual clarity

of this technique is similar to PCA and MDS since it renders a point on a two dimensional plot for every

data point. Figure 2.23 shows PEARLS visualization for a cluster of the car specs dataset.

Figure 2.21: Calculation of data point location for an 8-dimensional dataset

Figure 2.22: Star Coordinates Visualization of car specs dataset
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Figure 2.23: PEARLS Visualization for car specs dataset

Various transformations and mathematical operations are then applied to discover clusters, trends and

outliers present in data. While this technique helps in cluster and pattern discovery, it is not designed

for a comprehensive analytics and visual querying of already existing clusters.

While [36] and [24] follow a similar line of thought as ours, which is partitioning dataset into cluster

and then visualizing it, we use a different visualization display and extend our technique to a compre-

hensive cluster exploratory tool.

2.2.2 Icon Based Techniques

Pickett et al. [37] first proposed to represent multi dimensional data as graphic icons. Every data

item was represented using a graphic item, visual properties of graphic item are controlled by attribute

values of data item.

In VisDB, authors [27] use a pixel to represent each data item resulting from a query. The query

results give the user not only the data items fulfilling the query but also a number of data items that

approximately fulfill the query. Data items are sorted according to their relevance with respect to the

query and relevance factors are mapped to colors. Hundred percent correct answers are colored with

yellow and placed in the middle of the visualization with the approximate answers creating a rectangular

spiral around this region.The colors range from yellow to green, blue, red, and almost black to denote
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increasing distance from the correct answers. Authors have chosen this color scale empirically. Separate

windows are generated for each selection predicate of the query and and are arranged next to window

with overall query result. In the separate windows, the pixels for each data item are placed at the

same relative position as they appear for that data item in the overall result window. All the windows

together make up the multidimensional visualization. By relating corresponding regions in the different

windows, the user can perceive data characteristics such as multidimensional clusters or correlations.

VisDB requires O(n∗d)+O(nlogn) computations to generate visual objects for a single window; where

n is number of data points retrieved as result of query and d is dimensionality. O(n ∗ d) computations

are required to compute distance of every point and O(nlogn) computations are required to sort them.

Figure 2.24 shows example of visualization generated by VisDB system for an eight dimensional dataset

with 7000 data items.

Figure 2.24: A VisDB visualization for Eight-dimensional data (7000 Data Items)

In Value and Relation (VaR) display [53], authors uses pixel-oriented techniques and density based

scatter plots to create dimension glyphs to convey values. VaR is created by following four steps:

1. A dimension glyph, is generated to represent data values in each dimension, using pixel oriented

techniques. In particular, each value is represented by a pixel whose color indicates a high or low

value, and pixels representing values from the same dimension are grouped together to form a

glyph. A spiral pixel layout is used to place pixels. In all glyphs, pixels representing values in the

same row occupy the same position so that glyphs can be associated with each other.
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2. The correlations among the dimensions are calculated and recorded into an N ∗N matrix (where

N is the dimensionality of the data set).

3. The N ∗N relationship matrix is used to generate N positions in a 2D space, one position for

each dimension. The proximity among the positions reflects relationships among the dimensions;

that is, closely related dimensions are spatially close to each other, and unrelated dimensions are

positioned far way from each other. In particular, an MDS algorithm [4] is used to create the 2D

positions upon the relationship matrix.

4. The dimension glyphs are placed in the 2D space in their corresponding positions to form the VaR

display. Fig. 2.25b shows an example of the VaR display. It shows the Image-89 data set of 89

dimensions and 10,417 data items.

Figure 2.25(a) illustrates construction of VaR display and 2.25(b) illustrates VaR visualization for a

dataset with 89 dimensions and 10,417 items.

Complexity for VaR technique: O(nlogn ∗ d)+ O(n ∗ d2)+ O(d3); where d is dimensionality and n

is number of points. O(nlogn ∗ d) is required to construct glyphs. O(n ∗ d2) is required to compute

correlation matrix and O(d3) computations are required to place glyphs.

DICON, [7] is a dynamic icon-based visualization technique which represents clusters of multidi-

mensional data as compact glyphs. Visual encoding for a patient dataset. In this encoding, an individual

entity is described by a feature vector. Each feature in the vector is a numerical value depicted by a small

cell. The cells are packed together to generate an individual icon. Individual icons are grouped together

by splitting and re-grouping their features into categories. Figure 2.26 shows this visual encoding over a

patient dataset. 2.27 shows DICON Visualization for a cars dataset. Authors have developed interaction

techniques over visualization to understand, compare and adjust multidimensional data clusters. In the

paper, authors do not comment on computational complexity of DICON technique. The computational

complexity of generating icons for individual data records is O(d); where d is dimensionality. The

complexity for packing these individual icons to form an icon for cluster is implementation dependent.

There is no overlap in icons generated by DICON since the position of icon’s do not represent the values

of data items, hence amount of visual clarity is higher than parallel coordinate based techniques.

While Icon Based techniques can visually encode various statistical attributes of data points within

a cluster they result in loss of structure and shape information. They are also crippled by problems

hindering other point level abstraction techniques like over plotting, decline in legibility or inability to

plot complete dataset.
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Figure 2.25: 1. (a) Illustration of the VaR display. On the left is the spreadsheet of a 4D data set with
each column representing a dimension. At the bottom is a matrix that records the pairwise relationships
(such as correlations) among the dimensions. In the middle is the glyph of the fourth dimension. On
the right is the VaR display of the data set. (b) The Pixel MDS VaR display of the Image-89 data set (89
dimensions and 10,417 data items).

2.2.3 Interactive cluster exploration tools

Several researchers have designed cluster visualization and exploratory analysis tools by leveraging

power of interactivity.

Seo et al. designed HCE(Hierarchical Cluster Explorer) [41] and proposed four interactive features

for hierarchical multidimensional cluster analysis. Hierarchical Clustering Explorer’s interactive fea-

tures are

1. overview of the entire data set, coupled with a detail view so that high-level patterns and hot spots

can be easily found and examined

2. dynamic query controls that let users eliminate uninteresting clusters and show the interesting

clusters more clearly

3. coordinated displays that forge a bidirectional link from the overview mosaic to two-dimensional

scatter graphs;

29



Figure 2.26: DICON encoding shown for a patient dataset

Figure 2.27: DICON Visualization of a cars dataset

4. cluster comparisons to let researchers see how different algorithms cluster the genes.

Primary purpose of HCE is to visualize and analyze dendrogram created by hierarchical clustering and

compare hierarchical clusters.

Lex et al. [33] designed an interactive Caleydo matchmaker technique to allow users to split multidi-

mensional datasets into subgroups, cluster them separately and analyze relations between the resulting

clusters of each group. The Caleydo Matchmaker technique allows a visual comparison of multiple

groups of clustered data. Since there is no inherent order of clusters and records in the clusters, both

clusters and records within the clusters are sorted according to their mean value. In addition, having

introduced a specific ordering, we can use the parallel coordinates metaphor. The heat maps of groups

are generated and arranged side by side, where each group is equivalent to an axis in a parallel coordi-

nates plot. Identical records are connected within the groups. A naive approach for connecting records,

results in visual clutter rendering the visualization unusable. Hence authors use an edge bundling strat-

egy. Figure 2.29 displays Caleydo visualization technique over a dataset with 1800 records and three

clustering algorithms. Figure 2.29 shows that the k-means algorithm (used in (b)) assigned differently
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Figure 2.28: Hierarchical Clustering Explorer’s compressed overview. The melanoma gene expression
profile contains 3,614 genes and 38 experimental conditions. This view shows the entire hierarchy. The
detail information of a selected cluster, shown as a yellow highlight in the upper left, appears below the
overview, together with the gene names and the other dendrogram at the lower right

expressed genes to the same cluster, while affinity propagation and the hierarchical clustering algorithm

created separate clusters (highlighted in yellow and orange respectively in 2.29.

In [48], author designed an interactive tool for exploration of hierarchical clusters in multidimen-

sional data but the tool does not addresses challenge of describing the structure of clusters in terms of

point distribution and spread. Also the resultant visualization fails to preserve and present the spatial

distribution of the data points in cluster.

The underlying idea in these systems is to develop a key visualization technique and customized in-

teractions for it. These interactions play a major role in ability of user to understand the visualization and

perform exploratory analysis. PEARLS follows the similar approach and includes a key visualization

technique and a set of unique interactions.
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Figure 2.29: Comparison of hierarchical clustering, k-mean and affinity propagation algorithm, each
was run on a dataset with 1800 records
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Chapter 3

Overview of PEARLS

In this chapter we provide an overview of PEARLS. We describe various algorithms used in gener-

ating PEARL plots and underlying concepts for these algorithms. The process of obtaining the visual-

ization of a set of clusters present in the data set, by building the shape of a high-dimensional cluster,

is accomplished by three modules : Partitioning, 3-D Pearl Shape Identification and Pearl Placement.

Pearls are stored in the PDAS( Pearls Data Abstraction Structure) data structure (section 4.2.1) and then

displayed on screen space. Various interaction techniques (section 4.1) allow users to control the logic

used to generate the visualization. Figure 3.1 shows a block diagram of the modules of PEARLS.

Screen

 
Display Module

Signal & Slot
mechanism

Placement
Module

PearlPearl Shape
Identification

Module
Cluster

Interaction Modules

Partitioning Module

P

D

A

S

Figure 3.1: Module diagram of PEARLS
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3.1 Cluster Division

Let X be a data set of d-dimensional points (X ⊂ Rd). Let the set of clusters (group of points which

are close to each other) be represented as C = {C1,C2, ...,Cc}, where c is the number of clusters identified

from the data set. Given a cluster Ci(Ci ⊆ X), this step divides the cluster into a set of non-overlapping

subsets of points. Each subset of the cluster is referred to as a pearl. The points in a pearl should be close

to each other so that the shape-fitting for the pearl could be obtained accurately through a mathematical

framework.

3.2 Pearl Shape Identification

In this module, a shape is obtained for every pearl using pearl shape identification algorithm. Best

fitting Lp norm shape is assigned to a pearl by comparing distances between centroid of the pearl and

the farthest point from centroid found using various Lp-norm distance measures. Rules for shape iden-

tification are given in [46].

By executing the best Pearl Shape Identification Algorithm (Algorithm 1) on each pearl, we get the

shapes of pearls.

we have P = {0.25,0.5,1,2,∞}, as set of distinct values of p. While we can choose P to be any

subset of values between 0 and ∞, the values we have choosen represent simple, commonly used shapes

whose higher dimension can be understood by a user easily. In three dimensions .25 and .5 represent

plus shape, 1 represent rhombus, 2 represents sphere and ∞ represents cube. Figure 3.2 shows the span

and structure of these Lp norm shapes in 2 Dimensions

p= inf

p= 2

p=1

p= .5

Figure 3.2: 2-D shapes for various Lp norms

In the algorithm 1, in line 2, farthest ten percent points are removed to eliminate shape distortion by

outliers. In the while loop of line 3 - 8, for each p, the farthest point ( fp ) in the pearl and its distance

(dp) from pearl centroid is computed. A tuple of three values {p,dp, fp} is computed and maintained
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for each p in the list T . From the list of the tuples, the various Lp -norm envelopes are then analyzed.

Line 9 - 12 initialize minimum volume, bestp and bestr variables. In the loop of lines 13 - 18, volume

is computed for all the tuples in T and the Lp norm shape with minimum volume is selected. Volume

is computed by taking product of volume constant computed using Algorithm 2 with the radius of Lp

norm shape raised to the power equal to dimensionality.

Algorithm 2 computes volume of i dimensional Lp norm shape by stacking up the i-1 dimensional

shapes, each of which has a radius (1−sp), s ranging -1 to 1. The non recursive solution to this equation

has been found by Wang in [49] as V c[d] = 2d
Γ(1+ 1

p)d

Γ( 1
p ∗d +1)

but we use recursive version since a recursive

solution can be easily computed by a computer.

Since the corresponding Lp norms are known, we use 3-D shapes of these high dimensional norm

envelopes i.e, use corresponding Lp norm envelope for 3-D space, to represent the d-dimensional enve-

lope.

Algorithm 1 Pearl Shape Identification Algorithm
1: Input : A pearl, a list of Lp norms P
2: Farthest 10% points are removed from pearl to eliminate shape distortion by outliers.
3: while P 6= φ do
4: pmax = Largest p in(P)
5: (dpmax, fpmax) = Farthest Distance,Farthest point f rom pearl Center using pmax Lp norm
6: T.push((pmax,dpmax, fpmax))
7: P = P - pmax

8: end while
9: t1(p1, f1,r1) = Get Tuple With Largest p(T ) f romT

10: T = T − t1
11: min volume = V c1 ∗ rd

1
12: bestp = p1,bestr = r1
13: while all t ∈ T considered, in decreasing order of p do
14: t1(p1, f1,r1) = Get Tuple With Largest p(T )
15: if (V c1 ∗ rd

1 < min volume) {where d is dimensionality} then
16: min volume = V c1 ∗ rd

1
17: bestp = p1,bestr = r1
18: end if
19: end while
20: Output: Best fitting Lp norm bestp and radius bestr

We give an example of how Vc for a shape with Lp norm 2 and dimensions 4 is computed using

Algorithm 2.

1. Vc[0]=1

2. Vc[1]= Vc[0] *
∫ 1
−1(1− s2)0/2ds = 2
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Algorithm 2 Volume Constant (Vc) Computation
1: Input: d (dimensionality) , p (l-p norm shape)
2: Vc[0]=1 {because for all l-p norm shapes, volume constant in 0-dimensions is 1}
3: for i between 1 to d do
4: V c[i] = V c[i−1]∗

∫ 1
−1(1− sp)(i−1)/pds

5: end for
6: return(V[d])
7: {Where V[d] denotes volume constant for dimensionality d }
8: Output: Volume constant Vc for given p and d

3. Vc[2]= Vc[1] *
∫ 1
−1(1− s2)1/2ds = 3.141

4. Vc[3]= Vc[2] *
∫ 1
−1(1− s2)2/2ds = 4.187

5. Vc[4]= Vc[3] *
∫ 1
−1(1− s2)3/2ds = 4.933

Similarly Vc[4] for Lp norm 1 is 0.666, for Lp norm .5 is 0.00635 and for Lp norm infinity(100) is

16.015.

Table 3.1 shows example of pearl shape identification algorithm for a pearl with 5 points. Lp norm

shape rhombus is chosen for this pearl as Max Lp Vol is lowest with Lp norm value as 1.

Table 3.1: Example of Pearl Shape Identification Algorithm
P1 2 -2 4 5
P2 3 2 1 4
P3 1 3 2 2
P4 4 3 -1 4
P5 1 5 4 1
Pearl Centroid 2.2 2.2 2 3.2
Lp Norm Values 0.5 1 2 100
Lp-Distance(P1,centroid) 27.58 8.2 4.99 4.2
Lp-Distance(P2,centroid) 10.47 2.8 1.52 1
Lp-Distance(P3,centroid) 9.51 3.2 1.87 1.20
Lp-Distance(P4,centroid) 23.64 6.4 3.67 3
Lp-Distance(P5,centroid) 32.10 8.2 4.25 2.8
Max Lp dist 32.10 8.2 4.99 4.2
Vc[4] 0.00635 0.666 4.933 16.015
Max Lp Vol(V c[4]∗Max Lp dist4) 6747.14 3011.13 3063.42 4983.38
Farthest Points P5 P5 P1 P1
Shape selected rhombus

3.3 Shape Composition

3-D Pearls Plot
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Till now, we have a set of pearls for a cluster. We now generate a 3-D plot in which pearls are placed.

The origin of this plot maps to the cluster centroid. The range of axes are defined by the original distance

between pearl centers and cluster centroid and radius of pearls.

Sectors in 3-D Pearls Plot

The orthogonal axes divisions of the original d dimensional space are represented as sectors in the

x-y plane of 3-D plot. By orthogonal axes divisions we refer to the division of space by the orthogonal

axes. For example, in 4-D the space is divided into 16 parts by the w, x, y and z axes. Some examples

of parts are [+w,+x,+y,+z], [-w,-x,+y,+z], [+w,-x,-y,-z] etc. So, in 3-D,we divide the space into 16 parts

on x and y axes. Given a d-dimensional space, then the number of axes divisions of the space is 2d and

correspondingly, the 3-D plot is divided into 2d sectors with each sector angle being 2π

2d . The sectors are

numbered from 0 to 2d starting from +x-axis in the Pearls Plot to 360◦ (anti-clockwise); so the binary

representation of an integer between 0 and 2d can map to a distinct axes division. While constructing

the overall shape of the clusters, pearls lying in various axes-divisions are plotted in the corresponding

sector in the 3-D Pearls Plot. The algorithm to map the d-dimensional pearl onto the 3-D Pearls Plot is

Algorithm 3.

Pearl Placement Algorithm (Algorithm 3) is used to locate position of pearls on 3-D canvas. For

loop in line 6-13 finds the sector angle which determines the sector of pearl. Elevation angle of pearl is

found in line 14. Line 15-19 find the position of shape using its radius, sector angle and elevation angle.

The closest pearl to the centroid of the cluster is placed first near BO(0,0), at a distance d(Ci,Bic). The

shape of the pearl is identified by the corresponding best-fit Lp norm described earlier in Algorithm 1.

Pearls are placed using the sector angle and the distance of the bead to the centroid of the cluster.

Figure 3.3: PEARLS: Image (a) shows pearls from Baseball hall of fame dataset, Image (b) and (c)
show pearls from Singapore real estate dataset
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Algorithm 3 Pearl Placement Algorithm
1: Input: Cluster Ci, set of pearls Pi

2: Identify the closest pearl to the centroid of the cluster, say Pic.
3: Compute distance of pearl to cluster centroid, d(Ci,Pic)
4: Obtain radius of the pearl, ric such that ratio of volume of original n-D shape and 3-D shape remains

a constant across all pearls.
5: Obtain the position of the pearl in axes-division of space as:
6: for each dimension do
7: if C(Pic)′s d-dimension value is greater than C(Ci)′s d-dimension value then
8: set the bit corresponding to d-dimension to 1
9: else

10: else the bit corresponding to d-dimension to 0
11: end if
12: end for
13: Based on the integer value of the bit-vector (say i), the sector angle θ is calculated as 2π * i/2d .
14: The elevation angle φ is calculated as angle between pearl centroid and the unit vector in dimension

with maximum standard deviation.
15: Obtain the Lp norm information of pearl Pic.
16: Based on the value of p, get the corresponding 3-D shape and set the radius of the 3-D shape as ric.
17: The position of pearl (bx,by) is set as
18: bx = d(Ci,Pic) * cos(θ )* sin(φ )

by = d(Ci,Pic) * sin(θ )* sin(φ )
bz = (Ci,Pic)∗ cos(φ)

19: Plot pearl at ((bx,by,bz).

3.4 Differences between PEARLS and BEADS

As mentioned in chapter 1 PEARLS is based on some of the ideas presented in BEADS [47],[46].

Figure 3.4 shows module diagram of BEADS. Partitioning module of PEARLS and BEADS are similar.

Bead shape identification module of BEADS is different from PEARL shape identification module

of PEARLS. Instead of computing actual volumes of high dimensional Lp norm shapes to find the

best fit, BEADS computes the volume by assuming that ratio of volume of Lp norm shapes of same

radius remains same as dimensionality increases. We found that this assumption does not holds when

dimensionality increases beyond 4. In the Bead placement module, BEADS places the beads on a 2D

beads plot by using only their distance from cluster centroid and their quadrant in high dimensional

space. Algorithm 4 shows the Bead Shape identification algorithm used by BEADS and Algorithm 5

shows Bead Placement Algorithm used by BEADS.
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Figure 3.4: Module Diagram of BEADS

Algorithm 4 Bead Shape Identification Algorithm
1: Input : A bead, a list of Lp norms P
2: Farthest 10% points are removed from bead to eliminate shape distortion by outliers.
3: while P 6= φ do
4: pmax = Largest p in(P)
5: (dpmax, fpmax) = Farthest Distance,Farthest point f rom bead Center using pmax Lp norm
6: T.push((pmax,dpmax, fpmax))
7: P = P - pmax

8: end while
9: while all t ∈ T considered, in decreasing order of p do

10: t1(p1, f1,r1) = Get Tuple With Largest p(T )
11: T = T − tt1
12: t2(p2, f2,r2) = Get Tuple With Largest p(T )
13: if (r2 < α ∗ r1) then
14: bestp = p2, t1 = t2, goto step 12 in this loop
15: else
16: bestp = p1 and quit
17: end if
18: end while

3.5 Outline

There are two parts to this work

1. Visualization technique based on pearls (covered in sections 3.1, 3.2, 3.3, 4.1 and 4.2). In

sections 3.1,3.2 and 3.3 we describe algorithms to generate pearl plot from data cluster. In section

4.1 we describe interaction techniques implemented in PEARLS toolkit and in section 4.2 we give

various implementation details.

2. Exploratory scenarios to use PEARLS for data exploration and analytics (covered in sections

of chapter 5 and chapter 6). In sections 5.1,5.2 and 5.3 we describe how PEARLS can be used

for concept search, concept description and exploring intra point relationships respectively. In

section 6.1 we present case studies on real life datasets.
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Algorithm 5 Bead Placement Algorithm
1: Input: Cluster Ci, set of beads Bi

2: Identify the closest bead to the centroid of the cluster, say Bic.
3: Compute distance of bead to cluster centroid, d(Ci,Bic)
4: Obtain radius of the bead, ric.
5: Obtain the position of the pearl in axes-division of space as:
6: for each dimension do
7: if C(Bic)′s d-dimension value is greater than C(Ci)′s d-dimension value then
8: set the bit corresponding to d-dimension to 1
9: else

10: else the bit corresponding to d-dimension to 0
11: end if
12: end for
13: Based on the integer value of the bit-vector (say i), the sector angle θ is calculated as 2π * i/2d .
14: Place the bead in the corresponding sector in the 2-D plot as:

bx = d(Ci,Bic) * cos(θ )
by = d(Ci,Bic) * sin(θ )

15: Plot the 2-D shape of the bead at (bx,by).
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Chapter 4

PEARLS Toolkit

4.1 Interaction Functionality

Figure 4.1: Screenshot of PEARLS System

PEARLS is designed as an interactive visualization tool [Figure 4.1]. It has a core visualization

technique and a set of interaction techniques specifically designed for pearl visualization technique.

PEARLS aims to give a user enough flexibility to control the scope and flow of analysis.
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4.1.1 Swiss Cheese

Brushing technique is implemented as Swiss View in PEARLS system. Brushing operation refers to

ability to interactively select subsets of data and perform various operations on them. The principles of

Brushing were first explained by Becker and Cleveland [3].

In the context of PEARLS, every pearl is a subset of data. As the user navigates across pearl plot and

explores various pearls, he/she can highlight and delete various pearls according to his/her interest. This

helps in pruning the unnecessary data and focusing on analyzing the data points of interest in contrast

to other points.

A user has an option of choosing between a simple view where removed pearls are not completely

invisible or a specially designed swiss cheese view which is shown in Figure 4.2. In the swiss cheese

view, a transparent bounding box represents the complete range of dataset and the hidden pearls are

represented by semi transparent shapes.

Figure 4.2: Swiss Cheese View

4.1.2 Attribute filtering

PEARLS allows users to filter the set of attributes used for cluster division to generate pearls. By

default, all data attributes are used during cluster division. For multidimensional datasets with many
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attributes, users can apply filter to focus on a subset of the attribute space. This allows users to explore

intra point relationships in various subsets of dimensions.

4.1.3 Data Dimension

We introduce a user-driven data dimension approach where user chooses a dimension(d) to act as

data dimension. The data points in cluster are binned according to their value in the data dimension. In

current implementation, bins can be created in two ways: either to ensure that every bin contains equal

number of data points or ensuring that bin span across equal range in d(data dimension). PEARLS

algorithm is run over every bin. PEARLS can be extended to use various techniques to divide data into

bins. In the pearl composition phase, the height of screen is equally divided in these bins. Position of a

pearl is determined by using algorithm 6.

Algorithm 6 Data Dimension Approach

Input: Distance between Pearl’s center (Pic) and Cluster centroid(Ci), sector angle (θ ); both were
determined in Algorithm 3
bx = d(Ci,Pic)∗ cos(θ)
by = d(Ci,Pic)∗ sin(θ)
bz = Value of Pic in data dimension
Output: (bx,by,bz), position of pearl p

4.1.4 Reclustering

Re-clustering or regenerating Pearls is done when a user changes number of pearls in which a cluster

must be divided or applies attribute filtering or data dimension technique. Koschke [30] said that “the

user needs the ability to control the logic used to produce the visualization in order to speed the process

of trying different combinations of techniques”. Combination of Swiss Cheese View, Data Dimension,

attribute filtering and changing number of pearls give users precisely this ability to control and ability

to comprehend data cluster. Case1 in section 6.1.1 presents an example of use of these techniques to

search for points forming a predefined concept.

4.1.5 Detail View Techniques

In PEARLS, there is no one to one mapping between a data-point and a visualization object. Hence,

PEARLS suffers from the problem of level of detail (LOD) culling. However, every visualization object

represents a set of data points which are already aggregated by clustering, so in-spite of LOD culling,

PEARLS successfully visualizes trends within a cluster.
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Nevertheless, for a comprehensive analysis, it is necessary to be able to explore the individual data

records. Accordingly, following Shneiderman’s overview first, zoom and filter, details-on-demand

principle [43] PEARLS provides interactive detail views for individual pearls. Individual pearls can be

explored using following detail views in PEARLS: Scatter plots [11], Star Glyphs, Parallel Coordinates

[22], Dimensional Stacking [31], Pixel-oriented Display [28] and k-RNN Graphs. Scatter plots, Star

Glyphs, Parallel Coordinates, Dimensional Stacking and Pixel-oriented Display are implemented by

using parts of Xmdv toolkit [50].

k-RNN Graphs For every point, all the points from which edges are directed towards it (in a k nearest

neighbor graph) belong to its k-reverse neighbor set. The k-RNN set of point p gives the set of points

that consider p as their k-nearest, for a given value of k. If the point p has higher number of k-RNNs

than another point q, then p has a denser neighborhood than q. k-reverse nearest neighbor graph helps

in exploring and understanding the distribution of points inside a particular pearl.

Complexity: Let the number of points in pearl be M.

1. Complexity of building the distance matrix is O(M2), complexity of sorting the distance matrix is

O(M2 logM) and complexity of building k-RNN graph from sorted distance matrix is O(k ∗M)

2. Total complexity = O(M2 logM) + O(M2) + O(k ∗M) = O(M2 logM)

Graphviz library[13] is used to render the graph from this adjacency matrix.

4.1.6 Point Search Technique

For many datasets, individual points have specific names, for example in a sports dataset every data

point may represent a unique player name. In such scenarios, it is highly desirable to have an interface

which allows users to search for points of interest by name. Point search feature in PEARLS allows user

to search for particular points, locate the pearl in which they lie and then perform analysis as required.

If a user knows an interesting data point, user can find its pearl, analyze it using detail view techniques

described above and check whether the complete pearl shares the same interesting features as that of a

particular data point.

Point Search has been implemented using find() function of C++ string library. A point pearl index

is stored for every state in cluster state index. For every point this index has a corresponding pearl id.

Complexity We use string::find() operation in c++ in PEARLS implementation. string::find() opera-

tion has a complexity of O(m)*O(n); where m is number of characters in search string and n is number

of characters in point name. In worst case, if search string is not present, all points names must be
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Algorithm 7 Point Search
Input: A search string s
for every cluster c in dataset do

for every point p in cluster c do
if isTrue(p.find(s)) then

return pearl index corresponding to p from current point pearl index mapping for cluster c
end if

end for
end for
Output: Index of the pearl in which point is found.

searched. So worst case complexity is O(p)*O(n)*O(M); where p is number of points, and M is number

of characters in largest point name.

4.1.7 Views

To satisfy different users, a visualization software needs multiple integrated views. Views are pri-

marily divided into graphical and textual views. PEARLS, apart from the central graphical view, has a

textual view in right side which is interactive in nature and is closely integrated to graphical view. Two

other textual views are provided to look at data points of individual pearls and whole cluster in tabular

format.

The textual view in right side has a information box for every pearl which contains its id, mean value

and ranges in various dimensions, a +/- sign comparing mean value in dimension to cluster centroid,

number of points in pearl and shape, radius and area of pearl. A hyperlink is provided for every pearl id

in the textual view. A user can click on the link and the pearl will be highlighted in the graphical view.

Textual view also highlights the dimension selected as data dimension in Green and dimensions filtered

by using attribute filtering technique in Yellow color.

Textual View provides a comprehensive summary of pearls of cluster and helps to locate pearls which

are overshadowed by other pearls or are too small to be noticed. Small pearls which are have a large

point to volume ratio represent dense regions in cluster and may represent interesting concepts.

4.2 Implementation

PEARLS toolkit has been implemented in a modular manner. The partition module (Section 3.1),

pearl shape identification module (Section 3.2) and pearl placement module (Section 3.3) are run on the

cluster data points and the results are stored in a Pearl Data Abstraction Structure. A display module
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renders these pearls on the screen. Using signals and slots technique of Qt, various interactions result

in calling of various interaction modules. These interaction modules either interact with partitioning

module, Pearl Data Abstraction Structure (Section 4.2.1) or display module.

4.2.1 Pearl Data Abstraction Structure

Undo operations are a very important component of any visualization toolkit. In PEARLS, perform-

ing an undo of re-clustering operation (see section 4.1.4) is costly. Re-clustering happens when number

of pearls in which cluster should be divided is changed or when attribute filtering or data dimension

technique is used.

Our data structure called PDAS (Pearls Data Abstraction Structure) is designed to optimize undo

operation and memory usage.

Primitive data structures in our system are

1. Pearl structure (Figure 4.3) : Every pearl data structure contains some points and data like

pearl’s location and size. The points in a pearl originally belong to a cluster and hence only a

mapping(pearl point index) to cluster points is stored. A group of pearls represents a data cluster.

2. A mapping between points and pearls (point pearl index) to support point search operation (as

described in section 4.1.6).

After every re-clustering action, pearls of a cluster are regenerated and old pearls are required only

when user performs undo operation on re-clustering. Cluster points remain same after re-clustering

operation and they should not be stored again in memory. Since pearls only store mapping to clus-

ter points we can achieve this. The point pearl index is generated again after re-clustering and old

point pearl index is used only if an undo operation is performed.

Undo action can be efficiently supported by a LIFO(Last in First Out) based data structure. PDAS

(Figure 4.3) makes use of a stack data structure called cluster state stack which stores cluster states.

After every re-clustering operation a new state is created in the stack. A state primarily consists of a

list of pearl data structures and a mapping point pearl index. The original cluster data points are stored

only once in the memory to minimize the memory consumption.

Benefits of PDAS Storing pearl point index instead of actual points inside pearls saves huge mem-

ory overhead. For a dataset with n points and d dimensions, if we perform m operations which require

re-clustering, a naive implementation with points inside pearls will require O(n*d*m) memory. Storing
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pearl point index requires only O(n ∗m) memory. Storing previous states in stack makes undo a con-

stant time operation. If previous states were not stored, undo operations will require running clustering

algorithm over cluster with old parameters to partition the data, running pearl shape identification algo-

rithm over every pearl to identify shape and then running pearl placement algorithm to place pearls at

their correct positions.

Cluster 
Points

    .....

......

Current State Stack

State m

    .....

  ....

State 1

   State 2Point 1

Point 2

Point k

Pearl 1 Pearl nm

Structure
Pearl 

Location Size

Pearl_Point_Index

Figure 4.3: Pearls Data Abstraction Structure

4.2.2 Implementation Details

The PEARLS technique is implemented in C++ using QT framework. For rendering, we use the

bindings for OpenGL. The images were produced using a published real-life Baseball Hall of fame

dataset [12] and a Singapore real estate dataset crawled from http://www.propertyguru.com.sg/.

Current PEARLS implementation performs well for datasets with up to 20 dimensions and up to

35000 data records on standard hardware (an Intel Core Duo CPU with 2.2 GHz processor, 1.9 GB RAM

and a 19 inch screen with a resolution f 1366x768). There is no hard limit on number of dimensions

as well as number of points and the only noticeable impact is on performance of k-mean algorithm to

generate pearls. For an eight dimensional dataset with 35000 data records in 15 clusters, computing 25

pearls for every cluster took 54 seconds.
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Chapter 5

Cluster and Class Visualization and Exploration

As stated in Han and Kamber [17], “A concept usually refers to a collection of data such as frequent buyers,

graduate students, and so on and concept description generates descriptions for characterization and

comparison of data. Concept description generates descriptions for characterization and comparison

of data.”

PEARLS toolkit is suitable for task of concept search and concept description.

5.1 Concept Search

Given a concept description and a dataset, Concept Search can be viewed as finding groups of

points from the dataset which fit this concept description. For example: Give a dataset X of Real Estate

Unit Information with attributes Price, Area, Psf Price, Nearest School and Nearest MRT Station and

a concept description ”Find all those data points which are moderately priced, have large area and are

close to Schools”; concept search means finding the group of data points which satisfy this concept

description.

In most of the concept tasks on real life data clusters, adjectives like ’moderate’, ’high’, ’low’,

’close’ etc are loosely defined. This lack of strict definition is a major challenge in Concept Search

task. A naive solution for a user is to plot the data points according to every dimension and understand

the distribution of data points and then come up with strict mathematical and algebraic equations to

describe the concepts. So to accomplish the task given above: a user must plot the data points with

respect to Price, remove the data points which are priced highly, then again plot the remaining points

with respect to area and remove low area data points and finally plot remaining data points with respect

to Nearest School and then prune unwanted points. Doing these steps manually is overwhelmingly

48



difficult. The complexity further increases manifold if the user wants to change his concept description

during intermediate steps or he/she wants to analyze which data points are close to each other.

PEARLS toolkit is suitable for task of concept search as well as concept description. Formal de-

scription of a concept query “Given a data cluster X with R (R1,R1, ....,Rn) dimensions. A concept can

be described as a group of points which are t1 in Ra, t2 in Rb, t3 in Rc and so on; where Ra, Rb, Rc

⊂ (R1, ....,Rn) and t1,t2,t3 etc are adjectives describing values of data points in respective dimensions.”

Figure 5.1 shows the flowchart for applying interactive techniques to perform concept search. In chapter

6.1 we demonstrate how to perform concept search by case studies.

number of
Choose

   Pearls
Cluster    Pearls

   Pearls

Increase/
Decrease

Swiss Cheese Dimensions
Data

Filtering
Attribute

of Pearls
number

Figure 5.1: Steps for Concept Search and Concept Description

5.2 Concept Description

PEARLS is also suitable for task of concept description. Combination of textual view (Section 4.1.7)

and graphical view can be used to describe a cluster in terms of underlying concepts.

Figure 5.2 displays Pearls for a cluster of nutrition dataset and table 5.1 shows textual view for

this cluster. The first hand pearls visualization divides the cluster into pearls which represent some

interesting concepts which can be used to learn more about cluster and find interesting point groups.

After looking at the preliminary Pearls plot a user may wish to look at these cluster points from a

different perspective. For example, user might just be interested in vitamin a, vitamin c and cholesterol

of various food items and might wish to have a concept division on only these attributes. Or user may

be interested in a deeper level concept analysis of points lying in a few pearls. Or user may just be

interested in more finer division of cluster.

As Han and Kamber state [17], “Users like the ease and flexibility of having data described at differ-

ent levels of granularity and from different angles.”
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The interactive techniques of PEARLS are capable of describing the clusters from various angles as

well as different levels of granularity. By varying the number of pearls, granularity of description can be

changed. By omitting certain dimensions in the Pearl generation, one can do a concept description which

is focused only on attributes of interest. By removing uninteresting pearls using swiss cheese view, a

user can do a concept description for only interesting points. And by combining all of them “a user can

generate a concept description focusing on points and attributes of interest at various granularity levels”.

Figure 5.1 shows the flowchart for applying interactive techniques to perform concept description.

So to generate concepts which are distinguishable on the basis of calcium, vitamin a, vitamin c and

cholesterol, a user can use attribute filtering technique and filter the remaining attributes. To analyze

points lying in particular pearls user can use swiss cheese view, hide remaining pearls and regenerate

the pearls. Figure 5.3 displays Pearls for the cluster after attribute filtering and Table 5.2 shows textual

view.

The flowchart for both concept search and description tasks is similar. The major difference is in

frequency of use of swiss cheese. In concept search task, after most attribute filtering or data dimension

operations, user prunes some pearls which do not satisfy search criteria. While in concept description

tasks, there is no predefined criteria or need to prune pearls. The aim is just to describe cluster in terms

of concepts at various levels of granularity and from different angles.

We agree that textual view only gives a summary of the pearl with high,low and average values. In a

PEARL, points will have values below as well as above the average values. Hence, the pearls generated

are susceptible to contamination with not so interesting points to a certain extent. But if average, low

and high values are carefully used and a detail analysis is conducted using detail view techniques; such

contamination can be minimized.

Table 5.1: Textual View of nutrition cluster (Graphic view in Figure 5.2) : It shows information for nine pearls farthest from

cluster centroid. In the right side of table there is a small textual interpretation drawn mostly from tables and from looking at

Parallel coordinate plot of pearls in few cases. Description of Pearls close to cluster centroid has been omitted since they have

similar values as cluster mean.
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Pearl id 57

Attribute Name Mean
pearl mean
vs cluster
mean

Cluster Mean Low High

calorie 196.182 - 233.704 155.347 251.033
protein(g) 13.102 + 11.304 2.07 20.862
carb(g) 4.615 - 19.436 0.08 9.961
fat(g) 14.053 + 12.473 7.479 19.727
cholesterol(mg) 76.189 + 61.043 18.619 425.956
calcium(mg) 93.48 - 98.664 10 247.351
iron(mg) 1.709 - 1.942 0.04 4.058
vit a(IU) 445.029 - 1228.936 1 2873.913
vit c(mg) 3.844 + 3.369 0.2 13.301
shape plus
radius 0.168
Points 40

Pearl 57 contains food items with

carb content considerabely lower

than cluster average. The average

carbohydrate content in cluster is

19.43 gm but food items in Pearl

57 have carb content ranging from

.08 to 9.961 with an average of

4.615

Pearl id 58

Attribute Name Mean
pearl mean
vs cluster
mean

Cluster Mean Low High

calorie 314.609 + 233.704 264.868 443.978
protein(g) 15.589 + 11.304 4.4 55.502
carb(g) 26.619 + 19.436 20.622 32.899
fat(g) 16.04 + 12.473 13.001 20.202
cholesterol(mg) 74.949 + 61.043 1 572.052
calcium(mg) 296.999 + 98.664 235.261 397.403
iron(mg) 1.427 - 1.942 0.657 3.16
vit a(IU) 572.861 - 1228.936 194.019 1990.737
vit c(mg) 1.254 - 3.369 0.1 3.53
shape plus
radius 0.082
Points 15

Points in pearl 58 are rich source

of calcium, have above average

carbohydrate, fat and calories.

Some of them can have very low

protein but remaining have high

protein.

Pearl id 59

Attribute Name Mean
pearl mean
vs cluster
mean

Cluster Mean Low High

calorie 240.758 + 233.704 200.546 282.625
protein(g) 6.565 - 11.304 0.667 11.208
carb(g) 25.812 + 19.436 13.28 36.66
fat(g) 12.494 + 12.473 5.424 16.522
cholesterol(mg) 26.722 - 61.043 1.757 94.997
calcium(mg) 53.615 - 98.664 2.739 172.387
iron(mg) 0.971 - 1.942 0.24 1.737
vit a(IU) 508.945 - 1228.936 53.765 3226.243
vit c(mg) 23.892 + 3.369 13.953 55.895
shape plus
radius 0.199
Points 11

Points in Pearl 59 are rich source

of vitamin C and are low in

cholesterol. Parallel coordinates

plot show that apart from a single

point(which has 94.997 mg chole-

strol) all others have cholestrol be-

low 38.37 mg.

Pearl id 60

Attribute Name Mean
pearl mean
vs cluster
mean

Cluster Mean Low High

calorie 246.249 + 233.704 147.991 374.955
protein(g) 15.446 + 11.304 10.329 22.701
carb(g) 11.164 - 19.436 0.28 20.002
fat(g) 15.79 + 12.473 1 31.2
cholesterol(mg) 47.828 - 61.043 15.999 137.01
calcium(mg) 353.411 + 98.664 226.583 711.938
iron(mg) 1.002 - 1.942 0.05 3.701
vit a(IU) 632.586 - 1228.936 163.96 2166.23
vit c(mg) 2.431 - 3.369 0.1 9.91
shape plus
radius 0.256
Points 25

Points in pearl 60 are rich source

of calcium.
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Pearl id 61

Attribute Name Mean
pearl mean
vs cluster
mean

Cluster Mean Low High

calorie 310.762 + 233.704 263.51 352.981
protein(g) 11.268 - 11.304 0.6 19.122
carb(g) 4.167 - 19.436 1.5 13.4
fat(g) 27.571 + 12.473 21.487 37.003
cholesterol(mg) 98.15 + 61.043 4 255.016
calcium(mg) 47.05 - 98.664 4 196.023
iron(mg) 3.104 + 1.942 0.03 11.902
vit a(IU) 4271.3 + 1228.936 9.999 23777.719
vit c(mg) 5.28 + 3.369 0.1 19.899
shape rhombus
radius 0.141
Points 26

Points in pearl 61 represent food

with high calorific value, high fat

content and below average carbo-

hydrate

Pearl id 62

Attribute Name Mean
pearl mean
vs cluster
mean

Cluster Mean Low High

calorie 182.214 - 233.704 135.001 276.963
protein(g) 23.94 + 11.304 10.86 47.678
carb(g) 2.41 - 19.436 0.03 15.519
fat(g) 7.907 - 12.473 0.4 18.601
cholesterol(mg) 320.647 + 61.043 55.005 3100.259
calcium(mg) 27.292 - 98.664 5.001 180.027
iron(mg) 4.916 + 1.942 0.6 13.908
vit a(IU) 4790.866 + 1228.936 20.003 39058.277
vit c(mg) 4.581 + 3.369 0.1 16.4
shape circle
radius 0.211
Points 52

Points in pearl 62 have high pro-

tein content.

Pearl id 63

Attribute Name Mean
pearl mean
vs cluster
mean

Cluster Mean Low High

calorie 246.272 + 233.704 194.019 310.319
protein(g) 5.711 - 11.304 2.4 12.067
carb(g) 40.631 + 19.436 35.456 45.318
fat(g) 7.263 - 12.473 2.34 12.901
cholesterol(mg) 18.568 - 61.043 0.852 57.517
calcium(mg) 83.297 - 98.664 2.747 249.025
iron(mg) 1.51 - 1.942 0.049 4.6
vit a(IU) 670.01 - 1228.936 5.999 7521.527
vit c(mg) 1.784 - 3.369 0.2 13.599
shape rhombus
radius 0.048
Points 27

Points in pearl 63 represent food

items with high carbohydrate.

Pearl id 64

Attribute Name Mean
pearl mean
vs cluster
mean

Cluster Mean Low High

calorie 176.563 - 233.704 133.02 272.988
protein(g) 22.039 + 11.304 15.052 28.416
carb(g) 3.515 - 19.436 0.8 6.32
fat(g) 7.747 - 12.473 1.95 20.542
cholesterol(mg) 335.928 + 61.043 52.993 562.937
calcium(mg) 22.188 - 98.664 5.001 91.994
iron(mg) 15.469 + 1.942 5.109 30.526
vit a(IU) 35524.424 + 1228.936 144.004 96015.414
vit c(mg) 18.062 + 3.369 0.7 30.399
shape rhombus
radius 0.699
Points 16

Points in Pearl 64 have high pro-

tein content and low carbohydrate

content.
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Pearl id 65

Attribute Name Mean
pearl mean
vs cluster
mean

Cluster Mean Low High

calorie 483.214 + 233.704 405.006 564.023
protein(g) 8.691 - 11.304 1 57.906
carb(g) 4.259 - 19.436 0.03 7.36
fat(g) 48.022 + 12.473 31.797 61.392
cholesterol(mg) 60.738 - 61.043 21.425 150.001
calcium(mg) 40.429 - 98.664 14.999 70.17
iron(mg) 1.131 - 1.942 0.09 5.499
vit a(IU) 619.906 - 1228.936 33.995 3570.94
vit c(mg) 1.592 - 3.369 0.1 6.801
shape rhombus
radius 0.095
Points 14

Points in Pearl 65 have very high

fat content and high calorie val-

ues.

Table 5.2: Textual View of nutrition cluster after Attribute filtering (Graphic view in Figure 5.3) : It shows information for

pearls farthest from cluster centroid. Attributes removed are calorie, fat, protein, carb and iron. In the right side of table there

is a small textual interpretation drawn mostly from tables and from looking at Parallel coordinate plot of pearls in few cases.

Description of Pearls close to cluster centroid has been omitted as they are similar in value to cluster centroid.

pearl id 57

Attribute Name Mean
pearl mean
vs cluster
mean

Cluster Mean Low High

cholesterol(mg) 283.834 + 61.043 105.012 564.023
calcium(mg) 16.583 - 98.664 5.001 69.99
vit a(IU) 13596.831 + 1228.936 8134.79 17490.358
vit c(mg) 5.967 + 3.369 1.3 11.4
shape square
radius 0.014
Points 12

Points in this pearl have high

cholesterol content, low calcium

content and high vitamin a con-

tent.

pearl id 58

Attribute Name Mean
pearl mean
vs cluster
mean

Cluster Mean Low High

cholesterol(mg) 29.913 - 61.043 12.501 86.993
calcium(mg) 230.187 + 98.664 187.523 321.48
vit a(IU) 368.974 - 1228.936 74.994 1373.662
vit c(mg) 7.726 + 3.369 4.637 13.199
shape square
radius 0.008
Points 21

Points in this pearl have low

cholestol, high calcium content

varying vitamin A content and

above average vitamin c content.

pearl id 59

Attribute Name Mean
pearl mean
vs cluster
mean

Cluster Mean Low High

cholesterol(mg) 119.297 + 61.043 16.586 564.93
calcium(mg) 55.576 - 98.664 13.998 172.387
vit a(IU) 521.744 - 1228.936 13.001 5869.544
vit c(mg) 16.066 + 3.369 12.001 22.103
shape circle
radius 0.034
Points 23

Points in this pearl have low cal-

cium content, varying cholestrol

and vitamin a content and very

high vitamin c content.
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pearl id 60

Attribute Name Mean
pearl mean
vs cluster
mean

Cluster Mean Low High

cholesterol(mg) 64.044 + 61.043 8.001 572.052
calcium(mg) 317.263 + 98.664 267.003 417.959
vit a(IU) 580.873 - 1228.936 163.96 1990.737
vit c(mg) 1.834 - 3.369 0.1 8.302
shape rhombus
radius 0.032
Points 26

Points in pearl 60 have varying

cholesterol levels, low vitamin a

and vitamin c content.

pearl id 61

Attribute Name Mean
pearl mean
vs cluster
mean

Cluster Mean Low High

cholesterol(mg) 400.597 + 61.043 210.987 515.01
calcium(mg) 11.001 - 98.664 5.001 43.006
vit a(IU) 30288.833 + 1228.936 23777.719 39908.023
vit c(mg) 4.97 + 3.369 0.7 13.7
shape circle
radius 0.03
Points 10

Points in Pearl 61 have very high

cholestrol, low calcium, very high

vitamin A content and varying Vi-

tamin C content.

pearl id 62

Attribute Name Mean
pearl mean
vs cluster
mean

Cluster Mean Low High

cholesterol(mg) 160.736 + 61.043 1.757 562.937
calcium(mg) 18.195 - 98.664 2.739 46.873
vit a(IU) 6337.521 + 1228.936 112.992 21648.773
vit c(mg) 31.171 + 3.369 23.6 55.895
shape rhombus
radius 0.153
Points 9

Points in Pearl 62 have low cal-

cium content, very high vitamin

C content and varying cholesterol

and vitamin A content.

pearl id 63

Attribute Name Mean
pearl mean
vs cluster
mean

Cluster Mean Low High

cholesterol(mg) 54.867 - 61.043 15.999 93.995
calcium(mg) 564.954 + 98.664 458.767 711.938
vit a(IU) 1183.587 - 1228.936 617.7 2166.23
vit c(mg) 1.054 - 3.369 0.1 2.471
shape rhombus
radius 0.033
Points 5

Point in Pearl 63 have low vitamin

C content, very high calcium con-

tent and varying Vitamin A and

cholestrol content.

pearl id 64

Attribute Name Mean
pearl mean
vs cluster
mean

Cluster Mean Low High

cholesterol(mg) 420.788 + 61.043 331.016 511.055
calcium(mg) 6 - 98.664 5.001 7
vit a(IU) 76252.935 + 1228.936 66980.8 96015.414
vit c(mg) 14.299 + 3.369 0.7 24.497
shape circle
radius 0.053
Points 5

Points in Pearl 64 have high

cholesterol content, very low vi-

tamin C content , extremely high

vitamin a content and varying vi-

tamin c content.
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pearl id 65

Attribute Name Mean
pearl mean
vs cluster
mean

Cluster Mean Low High

cholesterol(mg) 3055.117 + 61.043 3009.976 3100.259
calcium(mg) 26.003 - 98.664 9 43.006
vit a(IU) 132.006 - 1228.936 117.018 146.997
vit c(mg) 10.601 + 3.369 10.5 10.701
shape circle
radius 0.003
Points 2

Pearl 65 has only two points both

of which have extremely high

cholesterol content.

5.3 Exploring data point relationships in subsets of Dimensions

PEARLS toolkit is suitable for exploring data point relationships in various subsets of dimensions.

Data point relation ship tasks which can be performed using PEARLS can be primarily divided in two

types. A user can either search for a data point and explore points similar to it or he/she can browse

various pearls and understand various data point groups.

In the first case, when a user wants to look for data points similar to specific data point, user can

select dimensions in which similarity is desired using Attribute filtering technique and then generate

suitable number of Pearls. User can then search for the data point of interest and find to which Pearl

does this point belong to. Other points in this pearl will have values similar to this point in the selected

dimensions.

Lou Gehrigwas an American baseball first baseman who played 17 seasons in Major League Baseball

(MLB) for the New York Yankees (19231939). Gehrig is chiefly remembered for his prowess as a hitter

and his durability, a trait which earned him his nickname ”The Iron Horse”. Gehrig accumulated 1,995

runs batted in (RBIs) in 17 seasons, with a career batting average of .340. Gehrig holds several records

like most runs batted-in by a first baseman (184 runs in 1931), most runs scored by a first baseman (167

in 1936) and others. [51]

We want to analyze the Baseball Hall of dataset and find players which are similar to Lou in

Runs scored, Hits, Home runs, Runs Batted in and batting average. The Baseball dataset cluster has

1340 data points. We do attribute filtering and select only the required 5 attributes. We select number of

Pearls as 25 and generate Pearls. Figure 5.4 shows the generated Pearls. We then do a Point Search for

Lou and Pearl 24 is highlighted as a result. Pearl 24 is the farthest Pearl from cluster centroid which im-

plies that, for this subset of five attributes, the distance between centroid of Pearl 24 and cluster centroid

is maximum. Figure 5.5 shows parallel coordinate detail view for this pearl and Table 5.3 displays the

list of player records in this Pearl. After an overview from graphical and textual view, if a user wants to

do analysis on individual data points within Pearl, parallel coordinate plot is useful.
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Figure 5.2: Pearls image of cluster 2 of nutrition dataset
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Figure 5.3: Pearls image of cluster 2 of nutrition dataset
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Table 5.3: Pearl from baseball dataset : Pearl 24 which contains Player Lou Gehrig
point names Runs Scored Hits Home Runs Runs Batted In Batting Average Walks
LOU GEHRIG 1888 2721 493 1995 0.34 1508
STAN MUSIAL 1949 3630 475 1951 0.331 1599
JIMMIE FOXX 1751 2646 534 1922 0.325 1452
MEL OTT 1859 2876 511 1860 0.304 1708
TED WILLIAMS 1798 2654 521 1839 0.344 2019
HANK AARON 2174 3771 755 2297 0.305 1402
WILLIE MAYS 2062 3283 660 1903 0.302 1464
FRANK ROBINSON 1829 2943 586 1812 0.294 1420
BABE RUTH 2174 2873 714 2213 0.342 2056
CARL YASTRZEMSKI 1816 3419 452 1844 0.285 1845

In the second case, when user is not looking for points similar to any specific data point, user can

specify a subset of dimensions using Attribute filtering technique and generate suitable number of pearls.

User can then browse individual pearls using detail view techniques or look at the list of data points in

pearls. Such an exploration will enable a user to understand what data points are close to each other in

the selected subset of dimensions.
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Figure 5.4: Pearls image for Baseball dataset: The highlighted pearl, ie pearl id 24, contains the player
Lou Gehrigwas
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Figure 5.5: Parallel coordinate plot for Pearl 24. This Pearl contains player Lou Gehrigwas and other
similar players. This plot shows values for individual points in Pearls in various dimensions. After an
overview from graphical and textual view, if a user wants to do analysis on individual data points within
Pearl, parallel coordinate plot is useful.
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Chapter 6

Case Studies

6.1 Exploratory Data Analysis Case Studies

In this section we perform exploratory data analysis tasks on real life datasets. The first task in on

a cluster of Singapore real estate dataset and the second task is on a cluster of Baseball dataset. These

tasks are focused on finding data points which represent answers to common questions asked by people

looking at these datasets. The first task on Singapore dataset is a question asked by many real estate

buyers and the second task is a question which occurs in mind of many sport enthusiasts.

6.1.1 Singapore Dataset

We use the methodology described in section 5.1 in figure 5.1 to perform a task on Singapore real

estate dataset. The exact set of operations are described below.

Dataset Description Singapore dataset consists of information about 35,000 real estate homes. Each

record has a name and Floor area, Price, Psf Price, Nearest MRT and Nearest School dimensions. The

dataset is divided in 15 clusters using a standard clustering algorithm.(Since real life datasets are sparse

all 35,000 records can’t be treated as a single cluster) The clustering results are loaded in PEARLS

toolkit.

Task Description The task is to find properties which are close to school, are not high priced and have

moderate area in cluster 1. Following operations complete this task. Every image in Table 6.3 is result

of a single step.

1. select Nearest School as data dimension, specify number of bins as 5, number of pearls as 3-4

pearl per bin and filter attributes other than Price and floor area.
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2. Look at the ranges of bins and prune pearls which lie in region of high school distance.

3. Select price as data dimension, specify bins and pearls, prune attributes other than floor area.

4. Prune pearls which have extremely high valuation prices. From the remaining pearls prune pearls

which have points with low floor area.

5. Select floor area as data dimension and specify number of bins and pearls.

6. Prune pearls which have points with low floor area.

It is to be noted that high and low are determined while exploring the pearls by looking at various

ranges and with help of some apriori knowledge. Table 6.1 shows statistical overview of original cluster

and Table 6.2 shows statistical overview of remaining pearls after step 6.

Table 6.1: Original Cluster from Singapore Dataset
Points 5523
Attribute Name Mean Low High
Floor Area(sq f t) 1,364.024 322.000 4,209.000
Price(in thousands o f Singapore dollars) 2,881.842 4.097 36,117.548
Nearest School(km) 0.439 0.020 1.070

Table 6.2: Description of pearls remaining after completing all steps of task 1 ; Task: find properties
which are close to school, are not high priced and have moderate area

Pearl id 34
Points 124
Attribute Name Mean Low High
Floor Area(sq f t) 1356.347 1174 1915
Price(in thousands o f Singapore dollars) 1970.541 1150.001 2435.548
Nearest School(km) 0.436 0.39 0.46
Pearl id 33
Points 110
Attribute Name Mean Low High
Floor Area(sq f t) 1271.1 1152 1700
Price(in thousands o f Singapore dollars) 1757.271 1080.003 2449.999
Nearest School(km) 0.342 0.29 0.39
Pearl id 35
Points 141
Attribute Name Mean Low High
Floor Area(sq f t) 1415.44 1152 1918
Price(in thousands o f Singapore dollars) 1809.329 1200.002 2449.999
Nearest School(km) 0.238 0.1 0.3
Pearl id 36
Points 33
Attribute Name Mean Low High
Floor Area(sq f t) 2185.394 1819 2900
Price(in thousands o f Singapore dollars) 1887.818 1350 2449.999
Nearest School(km) 0.362 0.24 0.46
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Table 6.3: Task on Singapore Dataset

Result of Step1: z-dimesnion maps to Nearest school which was selected as the data dimension. There

are five consecutive bins in z-dimension. Clustering is done only on Floor Area and Price.

Pearls which are enclosed in a pink circle are candidates for pruning as they represent real estate with

large Nearest school distance.
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Result of Step2: Pearls enclosed in pink in previous image were removed.

Among the remaining pearls, our aim is to find pearls representing data points with high price as well

as low area. Exploration reveals that pearls representing such data points do not exist in this view.
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Result of Step3: z-dimension maps to Price which was selected as the data dimension. There are five

consecutive bins in z-dimension.

Pearls in bin-1 and bin-2 from top are marked in pink circles, they represent data points with high Prices

and they will be removed. Pearls which area marked with brown rectangular region represent data points

with below acceptable f loor area and they will also be removed.
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Result of Step4: Pearls enclosed in pink circle or brown rectangle in last image are removed. Further

exploration using textual view and detail views of pearls reveal presence of many data points with small

f loor area.
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Result of Step5: Floor Area is used as data dimension with 3 bins and 4 pearls. Three bins con-

secutive bins in z-dimensions show three ranges of data-points in f loor areas. Clustering is done on

Nearest School and Price.

Exploration using textual view and detail view reveals that first range from top (1152 - 2900) has ap-

proximately 400 data points which satisfy required criterion. Hence, other pearls will be removed.
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Result of Step6: The remaining four pearls can be analyzed in detail using detail view techniques and

user can narrow down to specific properties which he/she may want to buy.

Figure 6.1 shows the parallel coordinate plot for cluster 1 of Singapore dataset. This is the parallel

coordinate visualization of cluster 1 of Singapore 1 dataset on which we performed the Task 1. This

visualization is created using Xmdv toolkit. While it is possible to see that there exist some points in

the cluster which satisfy our query, it is not possible to

1. determine how many such points exist and what is their distribution?

2. determine the cluster structure since there are around 5000 points in the cluster over plotting leads

to problem a) and b)

3. group these points according to values in particular dimensions. Parallel coordinate algorithm

does not supports any grouping whereas PEARLS groups the points in various pearls. Since

number of points satisfying the query might be large it is essential to group these points and show

summary of every group.

4. a new query on the output of first query.
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Figure 6.1: Parallel coordinate visualization of cluster 1 of Singapore dataset

6.1.2 Baseball Hall of Fame Dataset

We use the methodology described in section 5.1 in figure 5.1 to perform a task on baseball Hall of

Fame dataset. The exact set of operations are described below.

Dataset Description : Baseball Dataset contains following attributes : Runs Scored, Hits, Doubles,

Triples, Home Runs, Runs Batted In, Batting Average, Walks, Strikeouts, Stolen Bases and Fielding Average.

It consists of information about 1340 major league baseball players who had retired prior to the 1993

and who were were eligible for the Major League Baseball Hall of Fame (had played in at least ten

seasons). The dataset is loaded as a single cluster in PEARLS toolkit. Original dataset contained 26

attributes, we use only 11 attributes to generate pearls and perform the task.

Task Description : The task is to find a group of players who are approximately among top 25% in

home runs as well as Fielding Average and who have above average doubles and triples.

Following operations complete this task. The pearls in image 6.2 represent step 2 of these operations.

1. Use data dimension technique on Fielding Average with number of bins as 4 and number of

pearls as some convenient number. Note the range of upper most bin (bin with fielders with highest

Fielding Average, ie .9830 - 1.00)

2. Use data dimension technique on home runs with number of bins as 4 and filter all other attributes

apart from Fielding Average, doubles and triples.
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Figure 6.2: Pearls in the plot are from step 2 of case study on Baseball Hall of Fame dataset. Ranges
0-22, 22-51,52-108 and 108-755 represent various bins for home runs dimension.

3. Prune pearls which belong to first three bins (home runs range : (0,108.8) ). From the remaining

pearls, prune pearls where number of doubles and triples is lower than cluster average.

4. Use data dimension technique on Fielding Average with number of bins as 4 and number of pearls

as 1 (since number of points left are already low and only points with below required fielding average

need to be removed)

5. Perform pruning by using attribute filtering or data dimension on doubles, triples if required.

Table 6.4 displays list of such players with their home runs, Fielding Average, doubles and triples.

6.2 Querying using PEARLS

In the previous section, we performed two tasks of answering queries on various datasets. PEARLS

can be used to visually query datasets. Queries with selection predicate over multiple dimensions can be

answered using pearls. The advantage of PEARLS over traditional querying is that a user can analyze
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the data by looking at the visualization and then specify query. Instead of hard ranges a user deals

with relative distances of various points from cluster centroid in the selected dimensions and prunes

the points which are too far or too close. Also a user can divide the dataset in the bins and look at

the distribution of data in various bins. This gives a better understanding of data distribution which is

helpful in deciding what further interactive actions are required to give the desired query.

The queries which specify relative distances from cluster centroid in various dimensions can be

interactively answered using PEARLS. For example: a query on vehicle dataset, select vehicles with

large horsepower,high acceleration, moderate cost and good average is a query which specifies relative

distances from cluster centroid.

For such a query,

• A user must arrange the query predicates according to his priority order over dimension.

• He/She should then use data dimension technique to prune the dimensions not required in query

and generate Pearls over the level of granularity required. The location of every pearl specifies in

which quadrant does the pearl lies. For a dimension order [D1,D2,D3], if a pearl is in dimension

(+,+,+), this implies it has higher average that cluster average in D1,D2 and D3. By looking at

location of the pearl and text view, a primary pruning of uninteresting pearls can be done.

• For further analysis, various dimensions can be either selected as data dimensions or sets of di-

mensions can be pruned using attribute pruning to generate pearls.

• This process continues iteratively till only interesting points remain.

6.3 Discussions

In PEARLS toolkit, Pearl id’s are assigned to pearls on the basis of their distance from cluster

centroid. Farther the pearl, larger the pearl id. A user can choose to display the id’s of pearls on top of

them in visual plot. Since we are viewing a three dimension plot on a two dimensional computer screen,

some pearls which are far from cluster centroid may appear relatively closer from certain viewing angles.

Displaying the pearl id is helpful in avoiding confusion for these instances. Shape and size of pearl are

computed after removing farthest ten percent points which are assumed to be true. Hence, the pearls

which are larger in size have a relatively large number of points far from cluster centroid as compared to

pearls which are smaller in size. The pearls which are close to cluster centroid are comprised of points

which are similar to average and pearls which are far from centroid are comprised of points which are far
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from average. Pearls which are far from cluster centroid tend to have large size. This can be attributed

to the fact that regions close to cluster centroid tend to be more dense as compared to regions which are

far from cluster centroid.

Data dimension technique, Swiss cheese view and filtering can together be effectively used for visual

data analysis because they support expression of useful multidimensional queries through interaction

and aid of data mining. Trained domain experts can follow complex lines of inquiry using sequences of

simple interactions and perform a wide range of visual analysis tasks.

In a lot of data analysis tasks, it is difficult to specify data points of interest as set of mathematical

and Boolean rules. It is also difficult to update these rules when new interests are found. Moreover, a

viewer may not know apriori what they will find interesting. PEARLS visualization along-with the set

of interactions described here is highly effective in such data analysis tasks.

In PEARLS visualization, whole data cluster can be viewed at a time which makes it easier to locate

elements of interest. PEARLS does not suffer from drawbacks suffered by point abstraction tools like

inability to plot complete dataset or loss of speed and interaction since number of visual objects (pearls)

is significantly lesser than number of data points in most cases. It may suffer from over plotting and

decline in legibility when some pearls are overshadowed by larger pearls but an effective text based view

and ability to rotate the 3-D visualization vertically and horizontally solves this problem.

This technique provides intuitiveness and efficiency by leveraging well established data mining tech-

niques of clustering and user’s apriori knowledge of the dimensions’ semantics and hypotheses about

relationships among dimensions.

Different visualization techniques show different trends and patterns from same dataset. It is very

difficult to design a visualization technique which can reveal all the trends and interesting patterns from

a dataset. Hence, visualization techniques should not be looked as techniques competing with each

other. To derive the maximum benefits from various visualization techniques, it is essential to find how

various techniques can be integrated and can complement each other. In PEARLS toolkit, we have

integrated parallel coordinates, scatter plots and other visualization techniques because we believe that

they are helpful in providing additional analysis of the dataset.
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Table 6.4: Results of Task 2: List of data points in the remaining pearls after completion of task 2. Task:
Find players who are approximately among top 25% in home runs as well as Fielding Average and who
have above average doubles and triples

point names Home Runs Fielding Average Doubles Triples
BOBBY DOERR 223 0.98 381 89
GABBY HARTNETT 236 0.984 396 64
CHET LEMON 215 0.984 396 61
FRED LYNN 306 0.988 388 43
FRANK WHITE 160 0.984 407 58
CESAR CEDENO 199 0.985 436 60
STAN MUSIAL 475 0.984 725 177
CARL YASTRZEMSKI 452 0.981 646 59
HANK AARON 755 0.98 624 98
BILL TERRY 154 0.992 373 112
JIM BOTTOMLEY 219 0.988 465 151
JOHNNY MIZE 359 0.992 367 83
CHRIS CHAMBLISS 185 0.993 392 42
ERNIE BANKS 512 0.994 407 90
CECIL COOPER 241 0.992 415 47
JOE TORRE 252 0.99 344 59
GARY CARTER 324 0.991 371 31
KEITH HERNANDEZ 162 0.994 426 60
JOE KUHEL 131 0.992 412 111
AMOS OTIS 193 0.991 374 66
YOGI BERRA 358 0.989 321 49
BOB WATSON 184 0.991 307 41
BILL DICKEY 202 0.988 343 72
RON FAIRLY 215 0.991 307 33
GEORGE SCOTT 271 0.99 306 60
LEE MAY 354 0.994 340 31
GIL HODGES 370 0.992 295 48
DICK ALLEN 351 0.989 320 79
VIC POWER 126 0.994 290 49
RUDY YORK 277 0.99 291 52
BILL WHITE 202 0.992 278 65
ROY SIEVERS 318 0.991 292 42
JOE ADCOCK 336 0.994 295 35
NORM CASH 377 0.992 241 41
ROY WHITE 160 0.988 300 51
GEORGE McQUINN 135 0.992 315 64
HAL TROSKY 228 0.993 331 58
GEORGE KELLY 148 0.992 337 76
HANK GREENBERG 331 0.991 379 71
LOU GEHRIG 493 0.991 534 163
TONY PEREZ 379 0.992 505 79
JIMMIE FOXX 534 0.992 458 125
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Chapter 7

Conclusions

In this thesis, we presented PEARLS, an interactive multidimensional cluster visualization toolkit.

It provides a novel approach to cluster structure and shape visualization and cluster exploratory anal-

ysis. PEARLS leverages well established data mining technique of clustering to generate pearls from

data clusters. Pearls could be thought as a layer of abstraction between point level and cluster level.

PEARLS scales well to support large number of data points as well as large number of pearls. PEARLS

satisfy well established functional and non functional requirements for interactive data visualization

toolkits. Several interaction techniques specific to pearls visualization have been developed for cluster

manipulation and intuitive exploratory analysis. Swiss Cheese view, data dimension and attribute filter-

ing are major interaction techniques. These techniques help the user to control logic used to produce

visualization. We demonstrate the use of PEARLS toolkit in cluster visualization, concept search within

a cluster, concept description and data point search. Our evaluation through case studies on two real

datasets (Singapore real estate dataset and nutrition dataset) demonstrates the effectiveness of PEARLS.

7.1 Future Work

Future work includes

• Performing additional experiments with a variety of clustering algorithms to generate pearls.

• exploring computational geometry techniques to find shapes not restricted to Lp norm shapes.

• performing further user studies to evaluate aspects of the design and improving coloring of pearls.

• building a web based version of toolkit.
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