
Tutorial

on

Meta Models and Meta Execution Models

ICSE 2014

June 3, 2014

Kamalakar Karlapalem, Centre for Data Engineering, IIIT-Hyderabad, India

P. Radha Krishna, Infosys Labs, Infosys Limited, India

Agenda

1. Introduction [20 Minutes]
1. Understanding Conceptual Modeling, Meta Models and Meta Execution Models

2. Motivation [10 minutes]
1. Issues with Complex Information Systems,

2. Run-time change and design time change, etc.

3. Basic Notions [20 minutes]

4. Meta Models [30 minutes]

Break

5. Meta Execution Models [30 minutes]

6. Implementation and Deployment Perspectives [20 minutes]

7. Related Software Engineering Artifacts [20 minutes]

8. Summary [10 minutes]

9. Open Problems and Discussion [20 Minutes]

Background

Database Design for Applications

(Elmasri & Navathe (EN),
Database Systems)

Application Support with Workflows

Data requirements Workflow Requirements

Exceptions ECA Rules

Workflow specifications

Application specifications

Conceptual schema

(Data model)

Requirements Collection and Analysis

Physical Design (Relations, Workflows, Metadata….)

Internal Schema

Run-timeEnvironment

Mini-world

Support for Complex Applications

Active Behaviour Behavioral
changes
Knowledge Base
(Run-time & Mini-
world)

Data requirements Application Requirements

Log Records

Logical Schema Applications

ApplicationDesign

Physical Design (Relations, Workflows,….)

Internal Schema

Process specifications
(Logical Design)

Exceptions ECA
Rules

Application specification

Structural
validation

Functional
Validation

Conceptual
specification

Behavior
validation

Workflow
specifications

Log records specification

Conceptual schema
(ER data model)

Mini-world

Run-timeEnvironment

RequirementsCollection and Analysis

Background

◼ Information System Design

◼ Articulate specifications of the system

◼ Information System Development

◼ Implementation of specifications got during system design on a
particular platform

◼ Gap ?

System design and implementation
differentiate between the specification of
the system and its implementation.

Any change in design → redesign of

implemented system

Workflow Activity Execution

Activities –
System or
Human

Reality Changes

Impacts

Background

◼ Changes in reality managed by workflows/processes

How to specify the impact in terms of What, Where, Why, How, When and
Who?

Need constructs → to represent the real-world !!!

Why ensuring reflection of changes in reality
important ?

Background

Activities

impact

Stored
data

Manifestation of
reality

Manifest changes
in reality through
change in stored
dataIn the database design, the reality is

facilitated by storing the data according to
the end-users’ perception for an
application in order to realize the impact.

Background

◼ So, database is a model (stored
manifestation) of reality in the sense
that the database represents a
selected set of data that can be
managed by the database

Database Creation to store the data is a
fundamental step in coming to know the
nature and status of that reality

Background

◼ Capturing and managing data about real world is too
complex a task.

◼ Models enable reality that is intended to represent real
world aspects as closely as possible

◼ Models also helps in understanding the reality as well as to
know its status and manage it.

The constructs of a model should
reflect the real-world reality.

Change of reality can be simple (ex. updating
balance) or complex (ex. introduction of new
payment instrument).

Motivation

Models are used as manifestation of either processing
requirements or data requirements to capture and manage
reality.

◼ Models are used for a precise
description of systems at the
appropriate abstraction level
without unnecessary details.

◼ Fractured reality towards
multiple systems and partial
information

◼ Models for Requirements,
design, development, testing
and deployment

Role of Models in Software Engineering

Feature Model Example for ATM

Motivation

◼ Complex software development is a big problem

◼ Complexity of Models

◼ Ex.: Relationships among varying subsets of entities

◼ Changes are inevitable

◼ Due to competitive, dynamic and volatile businesses

◼ Run-time and Mini-world changes

◼ Expected and unexpected

◼ Need to handle both

◼ Need new constructs to handle new complexities

◼ Complexities arise due to changes in facts and relations

◼ Ex.: Handling unknown events and exceptions at run-time, role
changes, new kind of relationships

Motivation

◼ Traditional Software Engineering Principle “Design Once,
Use Forever” may not work

◼ Focus Shift :

◼ Re-design Models → Models Self-Design themselves
◼ To adopt the changes in reality

◼ Lack of clarity on how self-design works – when reality changes – how
is it reflected in the model

◼ Capture active behavior and respond

◼ Mini-world and Run-time changes

◼ Models can be used to decide structure, behavioral and
functional decomposition of information systems dictated
by, say, WFMS that ensure consistent execution.

Conceptual Modeling Framework

Exceptions /

ChangesStimuli /

changes

Mini-world

Conceptual

Model

Conformance

Run-time

Environment

Remedy

Modeling complex applications require

both human and system driven

specification and deployment in order to

handle the active behavior of applications.

Meta Models (data) and Meta Execution
(run time) Models

◼ Objective:

◼ To support integrated management of information
systems that manages changes to reality

◼ Two Major Goals:

◼ Develop executable (conceptual) Models

◼ Direct mapping from conceptual to implementation
level constructs

◼ Support evolving (changing reality) requirements

◼ Reality changes – how is it supported?

◼ Simplify (ex. workflow driven) the overall software
engineering lifecycle for certain class of applications

Shipping Material Example

Ship current orders

Fill order 1
15 X and 14 Y

Fill order 2
25 W (or 20 Z)

Unload
15X

Unload
14Y

Pick up
X, Y

Deliver
X, Y Unload

25W

Pick
up W

Deliver
W

It requires two orders of specified quantities of items
X, Y and W (or Z) to ship. The solid edges represent
parent-child relationships in the tree. The arrows
represent precedence constraints (i.e. a → b means

that task a must precede task b).

• OR and AND
conditions

• Hierarchical
relationships

• Precedence
relationships

• Constraints (ex.
time limit)

• Payment
processing

Payments

Assume that the
items are
inspected
(manually) before
delivery.

Damaged goods
should be
replaced/
compensated
/imposed penalty.

Conceptual Modeling Example

Activities

Delivery time > 2
weeks

Constraints/ Clauses

Invalid account

details

Hold

Resend

again

Wait

Send

Clarification

has

Supplier

have

Payments

Parties



Exceptions

Buyer

Delivery approval

Bank

Goods damaged
during shipment

Order of Goods

Shipment of Goods

Delivery of Goods

Transfer of Funds

Reject

Not sufficient

balance

• •

Good not

received

refer

Buyer-Supplier
(Contract) Payment exceeds

one Million

Compensate

• • •

An Example (partial) workflow

Accept

Reject
No matching
quote
received

Material is
in order

Information
missing

Not Confirmed

Received
quotes are in
the required
order No Quotation

received

Start Find

Suppliers

Revise the

specification

User
Evaluation

Stop

Evaluate and

Select the

quote

Confirmed

Send to supplier

for acceptance

Fund

Transfer

Check

Time out

Arrange the

shipment
Send the

material
Prepare

the

Material

Get quotation

and/or products

information

Request for

additional

information

Send the

payment

invoice

Material is not in order

Our work

◼ Enable on-the-fly changes to how best changes to reality
can be accommodated.

◼ Basically due to seamless coupling from conceptual to
implementation level

◼ Concentrate on verticals/problems where there can be end
to end solution. For example, SAP can use our technology
to integrate their solutions.

◼ This seamless coupling can be incorporated in large
systems for certain class of applications

Focus is towards database oriented
conceptual modeling and workflows

Focus & Scope

◼ Our focus is not on the process of building software and
techniques to model and build artifacts for such software

◼ Our focus is on - ideation of Actionable framework
(through meta models and meta execution models) which
drives the specification and execution of business
systems/processes

Supporting change is costly in SE, and in
our MEM, change is possible, dynamic,
almost real-time and cheap.

Introducing Meta Models and Meta Execution
Models

◼ Evolved large number of Meta-related themes

Meta Data

◼ Meta Data

◼ A well-known and widely used term

◼ “Data about the Data”

◼ Describe the data

◼ Meta Model

◼ A model about the model

◼ Goes beyond basic structural artifacts

◼ Facilitates specification of the behavioral semantics

◼ Describes Dynamic behavior

◼ Can also model (using active database concepts) requisite
changes to mappings – and perform them.

Meta Execution [Smith84]

◼ A program execution operates on data; a meta-execution
operates on a program execution.

◼ In our case – there are software engines that drive
workflow execution, we model the execution logic of these
software engines as a workflow – and support run-time
changes to this execution workflow !

◼ Data and Processes are two critical aspects in software
engineering lifecycle.

◼ Models enable reality that is intended to represent the real
world aspects as closely as possible.

◼ The data and process requirements for reality can be done
by conceptual models (ex. XML, ER, etc.).

◼ Processing of changes can be supported by workflows.

◼ Data and Processes are two critical aspects in software engineering lifecycle.

◼ Models enable reality that is intended to represent the real world aspects as closely as possible.

◼ The data and process requirements for reality can be done by conceptual models (ex. XML, ER, etc.).

◼ Processing of changes can be supported by workflows.

Some of the changes in reality impact
changes to the model, and frequent such
changes to model can be supported by

meta model. Further, we need meta
execution model to facilitate the way the

processing to happen when there are
changes in reality.

(Meta-) Models
(ex. UML, etc.)

Specifications Structural
aspects

Behavioral
aspects

Functional
aspects

For example, UML meta-model supports a
particular methodology or process

A meta issue is whether meta-models follows
simplicity or increases the complexity
(in understanding model artifacts and design
pragmatics) !!!

Basic Notions

Models

◼ Model: Representation of the data/process which can facilitate
specification and implementation of application/framework.

◼ Models enable reality that is intended to represent the real world
aspects as closely as possible.

◼ A Model is governed by the constructs it has and semantics of these
constructs have capabilities such as represent, activate, dictate and
enforce for data and processes

◼ Limitation - Model is limited by the capabilities of the constructs to
model the reality.

. How does this gap between the model
(or schema) and reality to be filled

Need Various Models

Meta Models

◼ Meta-model: An explicit model of the constructs needed to build
specific models for applications. The developed model must be in
accordance with its meta-model.
◼ A model or an abstraction which highlights the properties of the model itself.

◼ Defines rules and processes which need to be followed to define a model.

◼ Useful to define (or augment) new constructs, instances, constraints
and semantics and for supporting reusability.
◼ Applicability to various domains and instantiate data models according to application

requirements

◼ Meta-modeling: The procedure in building meta-models
◼ Helps in conceptualizing and instantiating appropriate (customized) data models and

provides required facilities to support the functionality required for adapting a data
model to changing requirements.

The commonalities, the differences and
inadequacies in data models can be captured

and pursued as a Meta Model.

Execution Model (more on Workflows)

◼ Execution Model : A model to represent set of concepts
and/or constructs in the desired order to achieve execution
of tasks/activities for running an application.

◼ Define procedure (or workflow) of execution engine to execute a
set of tasks

◼ Mostly fixed (hardcoded)

◼ Processes get executed by the execution model, which
dictate how the models are executed.

Meta Execution Model

◼ Meta execution models are specific to conceptualizing and representing
the execution logic for executing processes.

◼ It is the specification of the execution model as a process using the
concepts of execution model.

◼ Constitutes rules and processes that define, select, generate and
govern meta-models and meta-model instances (semi-) automatically.

◼ Drives one or more execution models (or constructing new execution
models) for successful execution of an application.

◼ Example: Workflow Execution

◼ There is a workflow engine that executes the workflow

◼ So the specification of a workflow engine (that is, the steps taken
by a workflow engine) as a workflow gives a meta execution
workflow.

Meta Models and Meta Modeling

(e-contract example)

Application Modeling

Conceptual

Level

Logical Level

Implementation Level

Complex Application Modeling

Meta

Level

Conceptual

level

Logical Level

Implementation level

Conceptual

Level

Logical Level

Implementation Level

Need for Meta-Model

◼ Most of the applications (ex., contracts) have similar
structure (like clauses related to payments)

◼ A pre-cursor to conceptual modeling

Meta Model approach for Exception Handling

[Chiu et al, 1999]

Meta Model Approach for Exception Handling

M
e
ta

-c
la

ss
 a

n
d

cl
a
ss

e
s

fo
r

P
S
A
s

M
e
ta

 L
e
v
e
l

d
e
cl

a
ra

ti
o
n
s

fo
r

P
S
A
-

ro
le

s
a
n
d
 t

o
k
e
n
s

[Chiu et al, 1999]

E-contract

A contract is a legal agreement involving parties, activities, clauses and
payments, which stipulates that the involved parties agree to fulfill
specified activities.

An e-contract is a contract specified, modeled and executed by a software
system.

• Parties play different roles in a contract and perform activities
of a contract.

• Activities : Represent the tasks and e-services that have to be
executed during the business process enactment.

• Clauses : describes restrictions/ conditions on the execution of
activities

• Exceptions: Arise due to incomplete or partial fulfillment of
clauses.

• Commitments: It includes completion of the activities by the
parties as per the agreed terms and conditions and successful
closure of e-contract enactment

• Payments

Major
elements
of an e-
contract:

Parties

Activities

Clauses

Exceptions

48

Modeling E-contracts

4W E-contract Model

Who Where Business

Legal

Other

Context

Communication

Standards

Contracting

HoW

Exchange value provisions Exchanged value

Actor Party

Contact
data

Mediator

OtherE-notaryPerson

Financial
reward

Service Product

What

Contract

Defines

Defines

Defines

Defines

Defines

DefinesDefines

Defines

CONTRACT

has has has has

Description Concept
Usage

Clause

Enactment

Clause
Process

Model

has

Process

Element

Consists

of
Refers to

Refers to

Refers to
Refers to

Refers to

(1,1)

(1,N)

(0,N)
(0,M)

(0,N)

(1,1)
(1,1)

(1,1)

(1,1) (1,1)

(0,1) (0,1) (N,M) (0,1) (0,1)

(1,1)

(0,M)

(0,N)(0,N)

(0,M)(0,N)

(0,M)

CrossFlow e-contract meta-model
[Grefen et al]

Meta –Model for e-Contract template

e-Contract Party

e-Contract

Template

refines

1

2..*

Contract

Clause
Template

Variable

Obligation Permission Prohibition

references

depends

*

*
*

*

involves

1..*

[Chiu et al,

2005]

Purchaser

:Party

Supplier

:Party

Sales

:e-Contract Template

Shipping&Insurance

:Contract Clause

Deposit Payment

:Contract Clause

Pricing

:Contract Clause

Delivery

:Contract Clause

Freight

:Templ. Variable
Deposit

:Templ. Variable

Quantity

:Templ. Variable
Delivery date

:Templ. Variable

Insurance premium

:Template Variable

Unit price

:Templ Variable

Return policy

:Templ:Variable

A sales e-Contract template as an instance of the meta-model

depends

Compose of

Chiu et al, 2005

Feature Group
Attribute TypedValue

Containable

ByFG

Containable

ByF

Feature String

Value

Integer

Value

FDReference
Grouped

Feature

Solitary

Feature

Root

Feature

Feature

Model

name

Feature

Cardinality

name name

GroupCcardinality name
0..1

1

*
*

*

*

0..1

Feature Meta-model [Fantinato et al, 2006]

54

Conceptual Modeling of E-Contracts

◼ Complexity in modeling E-contracts

◼ Voluminous documents

◼ Complex inter-relationships among activities, clauses, etc.

◼ Determining which particular exception clause should be enforced
when a violation is detected.

◼ Ambiguity and fuzziness of natural language statements

◼ Actual parties’ activities may not be known during signing of the
contract

◼ Domain specific terminology and regulatory compliance

◼ Autonomous nature of individual organizations/parties

◼ Involvement of multiple sub-contracts at the time of enactment as
well as during enactment

55

Conceptual Modeling of E-Contracts

◼ Need for Meta-Model

◼ Most of the contracts have similar structure (like clauses related
to payments)

◼ Guided approach to conceptual modeling

◼ Templates can be designed for specific domains

◼ Provides generality and flexibility

◼ Allows reusability and extensibility

Can
have

ListsHave

Budget

Reject
Request

Rule-1

Allowed

Not Allowed

Budget
Over

Parties

Is a
(1, n)

(0, n)

Payments

refe

r

Role

changes

Sub Contract

Relations

Rules

Events

Stop WorkRule - 3

Roles
Can
have

Has

Clauses

Activities

Contract

Can
have

(0, n)

(1, n)

(1, 1)

(1, n)

(1, n)

(1, n)

(1, 1)

(1, 1)

(1, n)

(1, n)
(1, n) (1, n)

(1, n) (1, n)

(1, n)

Addition
of New
Parties

Rule - 2

An EREC Meta Model for E-Contract

57

R

CL-b

CL-d

refer

Clauses

Investment
Contract

Agreement

Bank Customership

Inter-Bank

Sub Contracts

Activities

(A1,A2,A3, A4)

Invalid Invalid

Account

Details

Hold

Resend Again

No Sufficient

Balance

Wait

Send Clarification

Bank

Agency

have

Submission

Maturity

Repayment

Periodic

Repayment

A1

A2

Scrutiny

A3
Change

Ownership

A4

Funds Transfer

Allotment

Payments

Parties



FI

Exceptions

Investor

CL-c

Relations between entity types Contract Events

Relations between instances of Output events for exceptions

different entities Input events for exceptions

have

has

Fund Receipt &

Info. To FI

EREC Model Instance: Investment Contract

CL-a

◼ e-contracts cover a vast amount of business related
processing in the world and our aim is to streamline it and
support it using meta models and meta execution models.

◼ e-contracts can be streamlined by using workflows.

Mapping E-contracts to Workflows

EREC model → Workflows

1. All parties are mapped to agent types/roles.

2. Activities to workflows and activities in a workflow.

3. Contracts to events that occur.

4. Clauses to conditions that need to be satisfied.

5. Exception handling to additional activities in a workflow.

6. Payments and contracts to documents and additional input/output events.

Parametric workflows, Workflow Views, Dynamic Workflows

(c)

(b)

(a)

Send Payment

instruction

Sign the check by single

person

Issue the

check
Start End

Send Payment

instruction

Sign the check by two

persons

Issue the

check
Start End

Start End
ReceivePayment

Ack. Check

receipt

Ack. Check

clearance

Start End

Ack. Check

receipt
Receive

Check

Check

deposit in

bank

Start

End

Coding

additional

module

Credit

check

amount

Ack. Check

clearance

Testing Failure

Insufficient balance
Send the Check

for clearance

Start

End

End

Start

Testing

Testing Failure

Identify design

changes
Analysis for

new model

Modifyexisting

code
Testing

60

EREC Model

◼ Forms a template
◼ EREC model defines a template for a specific contract
◼ A template is an instance of a meta-model with constraints for a

specific purpose.
◼ Models data and process/functional requirements of an application

◼ Captures Low level relationships
◼ Enable modeling events and exceptions
◼ Additional flexibility by customization
◼ Mix of entity types and entities
◼ Standardized model
◼ Deployable workflows for e-contracts

◼ Mapping from modeling constructs to workflow entities
◼ Requirement of on-the-fly generation of workflows

◼ parametric workflows, workflow views and dynamic workflows

Enable Visual Representation to Conceptualize e-contracts

Activity Commitments

◼ Meta Model enable commitment specifications for e-contracts
◼ activity-commitment semantics at conceptual level are specified based on the contract

document.

◼ However, during the specification of these semantics, the actual execution level
commitments are not known a priori.

◼ At logical level, the commitment specifications facilitate specifying the semantics for
transactional support, activity commitment, and workflow commitment in the execution
of an e-contract.

Re-
executed
part

Compensated

part

(a) A composition, (b) An execution of the composition,
(c) A closed c-tree for the execution-tree

(c)

C0

C1

I1

C2
C2

I2

(a)

C0

C1

I1

C2 C2


C2

I2

(b)

C0

C1

I1

C2
C2

I2

EREC Business Process Model for specification and

execution of e-contract enactment.

Relation

Tables

Workflows

Logical Layer

Conceptual Layer

Meta Layer

Legend:

Input

Process Flow

Monitoring
& updation

Instantiation

Workflow

Instances

CONTRACT DOCUMENT

Commitment

Specifications

EREC Data
Model

EREC Meta Schema

APC
Constructs

Activity Commit
Diagrams

Summary

◼ Provides guided approach to conceptual modeling

◼ Templates can be designed for specific domains

◼ Instances of a meta-model for a specific application domain (with
certain constraints)

◼ Guide the modeling and Execution processes

◼ Provides generality and flexibility

◼ Support functionality for adapting a data model to new and
changing requirements

◼ Allows reusability and extensibility

◼ Addition of new constructs

◼ Merging of two or more models/ model instances

◼ Ability to define meta-events and meta-ECA rules

◼ Sustainability of conceptual models for longer durations

Modeling Evolving Applications

Evolution Needs

◼ Evolution of Business Environments

◼ Changing Market Requirements

◼ Involvement of multiple organizations

◼ Competition

◼ Changes in Government Policies and Laws

◼ Advancements in Technologies

Evolving Applications

◼ Two Kinds of Changes

◼ Run-Time changes

◼ Mini-World changes

◼ Exceptions

◼ Expected exceptions

◼ Unexpected exceptions

need of active behavior to synchronize the changes in business logic and

business processes across different levels of conceptual/logical models.

Evolving Applications

Meta Level

Conceptual

Level

Workflow Level

Enactment
Level

Active

Behaviour

Modeling active behaviour at various levels

Modeling Evolving Applications

◼ How to re-design the conceptual models (for instance,
ER model)? How to synchronize the changes in mini-
world and/or run-time environment to other levels?

◼ This calls for an iterative active methodology that
constantly monitors run-time environment and changes
in real-world specifications to keep the deployed
applications/processes current.

ER* Methodology

Active Behaviour Behavioral changes
Knowledge Base
(Run-time & Mini-
world)

Data requirements Application Requirements

Log Records

Logical Schema Applications

ApplicationDesign

Physical Design (Relations, Workflows,….)

Internal Schema

Process specifications
(Logical Design)

Exceptions ECA
Rules

Application specification

Structural
validation

Functional
Validation

Conceptual
specification

Behavior
validation

Workflow
specifications

Log records specification

Conceptual schema
(ER data model)

Mini-world

Run-time Environment

RequirementsCollection and Analysis

Two way perspective of active conceptual models

ER* Methodology for Evolving Applications

A two-way perspective of actively evolving conceptual
models:

i) across the time domain (present, past and future)

ii) at various levels (meta, conceptual, logical and application
level).

Approaches for evolution from present to future

• Template selection

• Operator assisted evolution of ER models

• Complete re-design of ER models (from scratch)

The template selection mechanism manifests
itself as a ER* methodology problem.

Approach 1: ER* Model Instantiation

ER*

An appropriate ER model is instantiated from ER* model
and necessary modifications can be made on it

depending on the revised scenario

Approach 2: Template instantiation from
multiple ER models

ER1 ER2 ERp

An application requires one or more additional template
elements

Approach 3: Build new template

ER1 ER2 ERp

ER*

The change could evolve the template itself

Example :
Housing-Loan contract

Standard template of Housing-Loan contract

Have

Roles

Housing-Loan

has



Bank

Guarantor

Activities

Insurance
Company

Clauses

Borrower

Parties

Have

Roles

Housing-Loan

has



Bank

Guarantor

Activities

Insurance
Company

Clauses

Borrower

Parties

Template with change of roles

Case 1: (Run-time change) - Borrower defaults

has


Bank

Guarantor

Activities

Insurance
Company

Clauses

Borrower

Parties Have

has



Nominee

Activities

Insurance
Company

Clauses

Parties

Roles

Housing-Loan Linked
to

Insurance-Claim

Template with addition of subcontract

Case 2: (Run-time change): Borrower’s death/disablement

Have

Roles

Housing-Loan

has

Bank

Guarantor

Activities

Insurance
Company

Clauses

Borrower

Parties

Society



Human Rights

Template with additional concepts

Case 3: (Mini-world change) - road expansion

Generalized Templates

Specific Templates

Active
Behaviour

Active
Behaviour

Standard Templates

81

Taxonomy of operations

◼ Operations on Meta-model:
◼ Adapt: The model is allowed to adapt based on the new

requirements.
◼ Migrate: The change affects the current model instance and

hence a new model has to be instantiated.
◼ Merge: A new model is instantiated and merged with the

current model.
◼ Build: The change cannot be handled with current model and

also a new model cannot be instantiated.

◼ Instances of models before and after change execute:
◼ allow any one running instance at any point of time
◼ Allow multiple running instances during some period

◼ Abort: The change needs to have a new model instance
immediately after the change occurs.

◼ Additive: The change needs to have a new model while continuing
the current model.

Meta-Model for ECA rule: On event if
condition then action

Rule
+precondition

triggers

1..*

*

*

Role

Party

involves

plays

*

*

exploits

+action

+publisher

+subscriber

* *

*

1

Business

Entity

1

*

uses

owns

Condition

based on

Event

+internal event

Temporal Event Exception

+external event

1

Workflow

carries out

1

*

*

*

*

1

*

*

Chiu et al, 2003

83

Meta-ECA Rule Driven E-contract Evolution

precondition

Basedon carries

exploits

plays

owns

uses

action
mini-

world

run-time

RuleCondition

e-Contract Enactment

Meta-model Role

Meta Event

triggers

Parties

Contract Clause

84

Meta-ECA Rules Driven Evolving Applications

precondition

Basedon carries

exploits

plays

owns

uses

action
mini-

world

run-time

RuleCondition

Application in Execution

Meta-model Role

Meta Event

triggers

Parties/
Users

Application Specific Policies

85

ER*EC architecture for evolving contracts

Add / Modify

Mini world

Run Time Template
Evaluator

Run Time Environment

Database
for workflows, Rules,

etc.

Workflow

Engine
Workflow Generation/

Specification

subsystem

ECA Rule Manager

Evolution

Patterns

Run Time Template (s)

Event Handler

Template

Repository
Meta

ECA

Rules

Model

Selector

Metadata

Database

Monitor

Application

evaluation policies

Application Specific

components

86

Summary

◼ Extended EREC model and methodology to actively reflect the

changes across various levels of data models in an e-contract.

◼ Two-way active behaviour and mechanisms tracks the progression of

e-contract execution.

◼ Taxonomy of operations for template selection procedure for

modeling evolution

◼ Meta-events and meta-ECA rules to adapt the models.

◼ Architecture to support evolving applications by facilitating run-time

environment as well as capturing evolution patterns for run-time

template evaluation/selection.

Our methodology helps in visualizing evolution procedure and develop

specific procedures, methodologies and tools to actively support e-

contract evolution.

Meta Execution Models

Need of Meta Execution Workflow

◼ Current WfMSs follow a (hard-coded) fixed execution
control flow (with multiple control flows) to execute
workflow instances.

◼ The workflow definitions can be changed, but the ways in
which a workflow instance is executed is fixed. The
challenges are

◼ Dynamically change the way a WfMS engine functions without
modifying the engine code, and

◼ Allow changes in workflow specification procedure

◼ Execution of user workflows with minimal human intervention and
provide support for exception handling.

The challenge here is providing adaptability to
WFMS, flexibility to workflows in execution, and

generating new workflow specifications and
execution scenarios during workflow enactment.

◼ Requires dynamically changing the way a WfMS engine
executes workflows without modifying the workflow engine
code.

◼ A basic step towards providing flexibility is to generate
abstraction of workflows and generate new workflows on-
the-fly based on the current execution state of a workflow
instance.

Need of Meta Execution Workflow

WfMS supports workflows executing
workflows, where a WfMS engine

procedure is specified and implemented
as a Meta Execution Workflow.

Example

Consider the following workflow execution logic:

(i) Get a task - execute - continue till no more tasks

(ii) Get a task - check resources - execute - continue till no more tasks

(iii) Get a task - check resources - execute - call exception manager if
required – handle exceptions - continue till no more tasks

Here, (i) simple workflow that do not require resources, (ii) requiring
resources, and (iii) further needing exception handling.

need to shuffle or add new execution steps,
depending on how we want the workflow
execution engine to execute workflows

Meta Execution Workflow

Systems based on meta-execution driven WfMS allows
execution procedure to be modified, according to
business and technological needs that have been built.

Workflow for PG Admission in an Institution

MEW driven WFMS components

From a pool of tasks ready to be executed, TD selects
a task and assigns it to appropriate agents,
applications or humans for execution.

◼ Consider a single workflow instance

◼ User Workflow Instance ID :13

◼ Coupled EW Instance ID: 10

◼ Coupled EW Instance Current Task: Check Resources

◼ User Workflow Instance Current Task: Schedule
Interview

Workflow for PG Admission in an
Institution

the control is with the EW instance

Steps involved

The steps involved for shifting of control and
data

1. The MEW instance 10 passes the control to
the TD, for the execution of its task “Check
Resources" for “Schedule Interview".

2. TD sends the task for execution to an
application/human.

3. The task is executed; events are captured
by the TD and the control if returned to
the dispatcher.

4. The TD returns a post event data tuple to
the EW instance ID 10. With this step, the
control and data tuple is returned back to
the MEW instance task – “Check
Resources" (where it started from).

5. Based on the post event (suppose “success"
in this case), the current MEW task passes
on the control and the post event data to
the new MEW task – “Execute".

Workflow Specification and MEW Based
Execution - Architecture

Supports (i) on-the-fly specification and execution
of workflow and (ii) exception handling

Context-Aware Execution Workflow (CEW)

How to model context for conceptual model,
meta model and meta execution models.

Context Vs Exception

◼ Exceptions are handled by Exception handlers (in terms of
workflows)

◼ Context is beyond exception and they require different kind
of handlers.

Context-aware (Meta) Execution Workflow

◼ Allows flexible execution control flow and procedure to
specify and execute workflows.

◼ CEW procedure is implemented as the workflow engine,
and can be modified or enhanced based on the current
context.

◼ Developed a re-usable context-aware workflow execution
for generating context-aware execution workflow (CEW)
instances.

Context-aware (pre-)Meta Execution Workflow
generating CEWs

re-configure and manipulates its objects
based on the context information.

Task handling - Payment of tariff

Example: When the due date for payment of tariff falls below a deadline,
the payment has to be done by the client to the service provider to renew
the service.
Need context information

Based on clientInformation (last renewal date, due date, type); bill
details; provider’s bank information for crediting payment, etc.

Activity Execution

◼ Execution of an activity is done by using specified transition
path, transition condition between the tasks and other
parameters related to a task.

◼ Resolve the various dependencies between tasks such as
data-dependency from users, temporal event dependency
and dependency of a task on external events.

◼ Benefits:
◼ Less redundancy and consumption of time, because instances of an activity

usually consists of same definition and prone to similar exceptions.

◼ Pre-conditions can be evaluated apriori and execution engine can proceed
without allowing it to wait for the evaluation of that condition.

◼ Time allocation can be done better depending upon the past execution
time of different instances of same task.

Summary

◼ Meta Execution Workflow driven workflow execution
extends support for

◼ dynamic and flexible workflow executions.

◼ exception handling

◼ context-awareness to applications

◼ evolving application requirements

MDA - Ecosystem

◼ Model-Driven approaches to the system development
◼ A shift from programming to modeling activities

◼ Generation of software components from models.

◼ Reduce human interaction

◼ Areas
◼ requirements engineering

◼ information system Design

◼ Databases design

◼ Information System Development

◼ ……….

Models in Software Engineering - Terminologies

◼ Model Driven Software Engineering

◼ Model Driven Software Development

◼ Domain Specific Modeling

◼ Model Driven Architecture

◼ Software Process Models

◼ Business Process Models

Background

Their focus is mainly to improve software
quality, increased traceability between artifacts,
early defect detection, reducing manual and
error-prone work and reduce development cost

These technologies deals with coping with the complexity
of software development by raising the abstraction level
and introducing more automation in the process.

UML meta-model

◼ UML meta model defines a language for specifying UML
models

◼ Use Case Diagram Meta Model

◼ Class Diagram Meta Model

◼ Capable of adding new members (UML profiles) to the family

◼ Lack of effective Model Transformations and their traceability.

“The UML standard has evolved but, with this evolution, the syntax has
become even more complex and the necessary supporting mechanisms and
tools for dealing with this added complexity are not yet available. Even
something as conceptually simple as exporting a UML diagram from one tool
to another has not been accomplished yet with ease.” – Mohagheghi et al,
2008

◼ Can our approach complement/overlap with UML modeling ?

◼ Can we solve some of the issues with UML ?

◼ Can UML helps in enhancing our approach ?

UML Vs our approach

Our exposure to UML modeling is limited.

Open for Ideas and Discussion !!!!

Open questions

◼ What are the problems we solved that will help SE

◼ What are the problems in SE that we cannot solve

◼ What is the scope and reach of our solution from and
towards SE perspective

DNA of Information System Processing

The big picture

Meta Data
Model

Data
Model

Meta
Execution

Model

Execution
Model

Workflow
to manage

models

Meta
ECA
Rules

ECA
Rules

Execution
Engine and

Task
Scheduler

Workflow
SpecificationsModel

Instance
Workflow
Instances

Open Issues

Open Issues

◼ The level of abstraction needed to model the reality as
close as possible.

◼ Zero down (atleast reduce) the semantic mismatch
between model design and reality for a class of applications

◼ Actionable meta models and meta execution models

◼ Tracking the evolution

◼ Scalability of models

◼ Run-time models

◼ Attributing Risk involved and cost associated

Conclusion

Meta Models and Meta Execution Model provides a powerful
constructs to seamlessly model data and processes.

◼ Manage the data and processing capabilities of changing reality in a
seamless manner.

◼ Helps tie up from conceptual layer to actual physical layer by using
appropriate specific constructs, their implicit semantics and
constraints to cater to dynamic and evolving reality.

Bibliography - 1

◼ Boudewijn F. van Dongen and Wil M. P. van der Aalst, A meta model for Process Mining
Data, In EMOI-INTEROP, 2005.

◼ Brottier,E., Fleurey, F., Steel, J., Baudry, B. and Traon, Y. L., Metamodel-based test
Generation for Model Transformations : an Algorithm and a Tool, In proceedings of the
IEEE ISSRE’2006 conference, 2006.

◼ BPMN and OMG. Business Process Model and Notation (BPMN), Version 2.0, January
2011, http://www.omg.org/spec/BPMN/2.0

◼ Dashofy, E., Asuncion, H., Hendrickson, S., Suryanarayana, G., Georgas, J., and Taylor,
R.N., ArchStudio 4: An Architecture-Based Meta-Modeling Environment. In ICSE
COMPANION '07: Companion to the proceedings of the 29th International Conference on
Software Engineering, 2007.

◼ Fantinato, M., de Toledo, M. B. F., and de Souza Gimenes, I. M., WS-contract
establishment with qos: an approach based on feature modeling. Int. J. Cooperative Inf.
Syst., 17(3):373–407, 2008.

◼ Fey, D., Fajta, R. and Boros, A., Feature Modeling: A Meta-Model to Enhance Usability
and Usefulness, Proc. of the Second International Conference on Software Product Lines
(SPLC2), Springer-Verlag, LNCS 2379, pp. 198-216, 2002.

◼ Krishna, P. R. and Kamalakar, K. , "A Methodology for Evolving E-contracts Using
Templates", IEEE Transactions on Services Computing, Vol. 6, No. 4, pp. 497-510, 2013.

Bibliography - 2

◼ Jain, H., Krishna, P. R. and Karlapalem, K., Context-Aware Enactment of E-Governance
Contracts, IJCAI 2013 Workshop on Activity Context Aware System Architectures, Beijing,
China, August 2013.

◼ Laguna, M.A. and Marques, J.M., Feature Diagrams and their Transformations: An
Extensible Meta-model, 35th Euromicro Conference on Software Engineering and
Advanced Applications, 2009 (SEAA '09), pp. 97 – 104, 2009.

◼ Lodhi A, Koppen V and Saake G, An Extension of BPMN meta-model for evaluation of
Business Processes, Scientific Journal of Riga Technical University, vol. 46, pp.27-34,
2011.

◼ Muller, P-A., Fleurey, F., Drey, Z., Pollet, D., Fondement, F. and Studer, P., On
Executable Meta-Languages applied to Model Transformations, Model Transformation In
Practice (MTIP) workshop, 2005.

◼ Pabitra, M., Krishna, P. R. and Karlapalem, K., E-contract Enactment using Meta
Execution Workflow", 21st International Conference on Cooperative Information Systems
(CoopIS 2013), 11-13 Sept 2013, Graz, Austria, 2013.

◼ Rohlik, O., Pasetti, A., Ekstein, K. and Chevalley, P., A Meta-Modelling Approach to
Feature Modelling, http://pnp-software.com/XFeature/pdf/XFeatureToolConcept.pdf,
June 2005.

◼ Sharma, S., Karlapalem, K. and P. R. Krishna, A Case for a Workflow Driven Workflow
Execution Engine, 22nd Workshop on Information Technologies and Systems (WITS
2012), Orlando, Florida December 15-16, 2012.

Thank you

Happy Meta-World !!

kamal@iiit.ac.in

Radhakrishna_p@infosys.com

mailto:kamal@iiit.ac.in
mailto:Radhakrishna_p@infosys.com

	Slide 1: Tutorial on Meta Models and Meta Execution Models
	Slide 2: Agenda
	Slide 3
	Slide 4: Database Design for Applications
	Slide 5: Application Support with Workflows
	Slide 6: Support for Complex Applications
	Slide 7: Background
	Slide 8: Workflow Activity Execution
	Slide 9: Background
	Slide 10: Background
	Slide 11: Background
	Slide 12
	Slide 13
	Slide 14: Role of Models in Software Engineering
	Slide 15: Motivation
	Slide 16: Motivation
	Slide 17: Conceptual Modeling Framework
	Slide 18: Meta Models (data) and Meta Execution (run time) Models
	Slide 19: Shipping Material Example
	Slide 20: Conceptual Modeling Example
	Slide 21: An Example (partial) workflow
	Slide 22: Our work
	Slide 23: Focus & Scope
	Slide 24
	Slide 25
	Slide 26: Meta Data
	Slide 27: Meta Execution [Smith84]
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Models
	Slide 34: Meta Models
	Slide 35: Execution Model (more on Workflows)
	Slide 36: Meta Execution Model
	Slide 37
	Slide 38: Application Modeling
	Slide 39: Complex Application Modeling
	Slide 40: Need for Meta-Model
	Slide 41: Meta Model approach for Exception Handling
	Slide 42: Meta Model Approach for Exception Handling
	Slide 43: E-contract
	Slide 44: Parties
	Slide 45: Activities
	Slide 46: Clauses
	Slide 47: Exceptions
	Slide 48: Modeling E-contracts
	Slide 49
	Slide 50
	Slide 51: Meta –Model for e-Contract template
	Slide 52
	Slide 53
	Slide 54: Conceptual Modeling of E-Contracts
	Slide 55: Conceptual Modeling of E-Contracts
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Mapping E-contracts to Workflows
	Slide 60: EREC Model
	Slide 61: Activity Commitments
	Slide 62: EREC Business Process Model for specification and execution of e-contract enactment.
	Slide 63: Summary
	Slide 64
	Slide 65: Evolution Needs
	Slide 66: Evolving Applications
	Slide 67: Evolving Applications
	Slide 68: Modeling Evolving Applications
	Slide 69: ER* Methodology
	Slide 70
	Slide 71: ER* Methodology for Evolving Applications
	Slide 72: Approach 1: ER* Model Instantiation
	Slide 73
	Slide 74
	Slide 75: Example : Housing-Loan contract
	Slide 76: Standard template of Housing-Loan contract
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81: Taxonomy of operations
	Slide 82
	Slide 83: Meta-ECA Rule Driven E-contract Evolution
	Slide 84: Meta-ECA Rules Driven Evolving Applications
	Slide 85: ER*EC architecture for evolving contracts
	Slide 86: Summary
	Slide 87
	Slide 88: Need of Meta Execution Workflow
	Slide 89: Need of Meta Execution Workflow
	Slide 90: Example
	Slide 91: Meta Execution Workflow
	Slide 92: Workflow for PG Admission in an Institution
	Slide 93: MEW driven WFMS components
	Slide 94: Workflow for PG Admission in an Institution
	Slide 95: Steps involved
	Slide 96: Workflow Specification and MEW Based Execution - Architecture
	Slide 97: Context-Aware Execution Workflow (CEW)
	Slide 98: Context Vs Exception
	Slide 99: Context-aware (Meta) Execution Workflow
	Slide 100: Context-aware (pre-)Meta Execution Workflow generating CEWs
	Slide 101: Task handling - Payment of tariff
	Slide 102: Activity Execution
	Slide 103: Summary
	Slide 104: MDA - Ecosystem
	Slide 105: Background
	Slide 106: UML meta-model
	Slide 107: UML Vs our approach
	Slide 108: Open questions
	Slide 109: The big picture
	Slide 110
	Slide 111: Open Issues
	Slide 112
	Slide 113: Bibliography - 1
	Slide 114: Bibliography - 2
	Slide 115: Thank you

