
Tutorial

on

Advanced Transaction Models

for e-Services

CAiSE 2010

June 7, 2010

K. Vidyasankar, Department of Computer Science, Memorial
University, St. John’s, Canada

P. Radha Krishna, SET Labs, Infosys Technologies Limited, India

Collaborator: Kamalakar Karlapalem, IIIT-H, Hyderabad, India

Motivation

◼ Tasks in e-services can be simple or complex.

◼ Complex tasks are due to:

◼ Tasks are inherently complex;

◼ Infrastructure support is heterogeneous and loosely

coupled;

◼ Correctness criteria for successful completion of the

task are not clear and can change dynamically;

◼ Stringent intra-task dependencies exist.

Motivation - 2

◼ Participants are autonomous and all participants in
a transaction may not have to see the same
outcome.

◼ In B2B relationships, hierarchies with parent-child
relationships exist, resulting in nested transactions,
and children (sub-transactions) may complete
independently of their parents, and hence need to
be compensated on the abort of the parent.

◼ A participant in a service transaction may need to
support provisional or tentative state changes (and
make them visible to other transactions) during the
course of the execution.

◼ Interoperability issues exist among transactional
models.

◼ There is a large gap between business semantics
and application of transactional operations.

Motivation - 3

◼ Assumptions:
◼ Unitary tasks have reasonable transaction properties.

◼ Compositions of unitary tasks are in some structured
form (sequence, tree, etc.) and their semantics can be
understood easily.

◼ Support for flexibility in guaranteed execution by means of
escalations is available.

◼ Task dependencies are usually handled as pre-task or
post-task dependencies.

◼ The question here is how do we provide a software
system that can cater to guaranteed executions of
such complex services.

◼ The problem is not trivial !!!.

◼ The belief is that (database) transactional
properties will help.

Database Transactions versus

Web Services Transactions

◼ A database transaction is a partially ordered set
of operations.

◼ A Web service transaction is a partially ordered
set of services/activities.

◼ Differences between operation and activity
executions are:
◼ Executions of database operations are atomic.

Executions of activities are not atomic.

◼ Consistency of a (single) database operation is defined
very simply. Consistency definition of an activity
execution is complex.

◼ Each database operation execution has a single
successful termination state. An activity execution may
have several successful termination states.

◼ Roll backs of activity executions are compensation
based. Cascade roll backs are common.

Database Transactions versus

Web Services Transactions - 2

◼ Activities in a Web service transaction (composition)
are executed typically much more concurrently
than database operations. Therefore, complex
dependencies occur between executions of different
activities.

◼ Activities are executed in much more autonomous
and heterogeneous distributed environments.
Concurrency control and recovery mechanisms
designed for database transactions need to be
modified extensively for Web service executions.

◼ Multi-level compositions of Web services can be
defined analogous to nested transactions.
Complexities get compounded in (higher level)
composite Web service executions.

Adaptation of Transactional

properties

◼ Historically, transactional properties have been
adapted, in some relaxed form, to different
execution environments.

◼ We are now adapting to Services environment.

◼ This requires identifying and implementing the
transactional requirements in Services
environment.

◼ In this tutorial, we describe certain things that have
been done and try to give some insight into what
should be done.

Agenda

◼ Brief Introduction to Database
Transactions
◼ ACID properties

◼ Recoverability properties

◼ Concurrency control and recovery

◼ Early Advanced Transaction
Models
◼ Sagas

◼ Nested transactions

◼ Relative atomicity

◼ Execution in Distributed
Environments
◼ Homogeneous and heterogeneous

systems

◼ Mobile systems

◼ Data Item and Operation
Granularities
◼ Objects and methods

◼ Transactional workflows

◼ Transactional Web Services
◼ Multi-level hierarchical

composition model

◼ Guaranteed terminations

◼ Level-wise transactional
properties

◼ Electronic Contracts
◼ E-contract basics

◼ Multi-level composition model

◼ Dependencies

◼ Payments

◼ Recent transaction models for e-
services
◼ Web services composition with

transactional requirements

◼ Achieving atomicity using
commutativity

◼ Protocols for commitment

◼ Other proposals

Brief Introduction to Database

Transactions

Transaction Definition

◼ A transaction is an execution of a program.

◼ A (database) transaction is a partially ordered set
of (atomic data) operations.

◼ The properties associated with a transaction are:
◼ Atomicity

◼ Consistency

◼ Isolation

◼ Durability

◼ These are called ACID properties.

Transaction Properties - 1

◼ Atomicity
◼ Refers to all-or-nothing property.

◼ When the execution is complete and successful, the
transaction is committed.

◼ Otherwise, it is aborted:
◼ partial execution, if any, is rolled back. This is called

backward recovery.

◼ Forward recovery, which refers to completing a partial
execution successfully, is also possible some times.

◼ Consistency
◼ Transaction program is correct.

◼ Each transaction, when executed alone and to
completion, is assumed to be correct, that is, it is
assumed to transform a consistent database state to
another consistent database state.

◼ It follows that a concurrent execution of several
transactions is correct when the execution is
serializable, that is “equivalent” to some serial execution
of the same transactions.

Transaction Properties - 2

◼ Isolation
◼ Refers to the property that the effect of each transaction

is the same as when it is executed alone, in spite of
possible interleaving of the steps of other transactions.

◼ Intermediate states of executions (results) are not
available to other transactions.

◼ Durability
◼ This is the guarantee that the effects of a committed

transaction persist in the database.

◼ This must hold in spite of failures in the system.

Transaction Management –

Concurrency Control

◼ For better utility, transactions are executed

concurrently.

◼ Interleaving of the steps of the transactions is

controlled, so as to get a serializable execution.

◼ Different concurrency control methods have been

designed:

◼ Two-phase locking,

◼ Timestamp methods,

◼ Optimistic approach, and

◼ several mixed methods.

Transaction Management -

Recovery

◼ Commitment of a transaction is not done
atomically.

◼ Commit response is usually given first and
persistence is ensured afterwards, by storing the
results in stable database.

◼ During normal execution:
◼ The effects of the committed transactions must be

preserved and those of aborted transactions removed.
Redo is done for the former, and undo for the latter.

◼ After system failures:
◼ The effects of the committed transactions are restored.

◼ Logs (log buffers and stable logs) are used
typlically.

Recoverability Properties

◼ To facilitate recovery, execution and/or
commitment of transactions may be delayed until
some other transactions commit.

◼ With only read/write operations, for two
transactions T and T′:
◼ Recoverability implies that if T′ read a value written by T,

then T′ cannot commit until T commits.

◼ In the above case, if T aborts, then T′ will be aborted too.
To avoid such cascaded abort, T′ should not be allowed
to read the values written by T until T commits.

◼ Strictness means T′ cannot write an object that T also
writes until T commits. This simplifies recovery
mechanism.

◼ Rigorousness implies T′ cannot write an object that T
reads until T commits.

Relaxing the ACID properties

◼ Quite early on, the ACID properties were

recognized to be too strict for several applications.

◼ Relaxations of the properties were proposed.

◼ Relaxations were to address issues such as:

◼ long running transactions;

◼ Execution in non-centralized database systems; and

◼ Semantics of the transactions.

◼ Both concurrency control and recovery aspects

were considered.

◼ This affects atomicity, consistency and isolation.

Early Advanced Transaction
Models

Sagas

◼ Proposed by [Garcia-Molina and Salem, 1987].

◼ A transaction is divided into a sequence of sub-
transactions.

◼ Each sub-transaction is allowed to commit individually:
◼ When committed, their effects are visible to all transactions.

◼ If some sub-transaction has to be aborted, then the whole
transaction is aborted:
◼ The already committed sub-transactions are rolled back, in

reverse order, by executing compensating transactions.

◼ Other transactions might have seen the effects of these sub-
transactions in the mean time.

◼ Thus, consistency and isolation requirements are relaxed;
atomicity requirement is not.

Nested Transactions

◼ Proposed first by [Moss, 1981] and refined by
others.

◼ Transactions are decomposed into sub-transactions
hierarchically:
◼ A (root) transaction is decomposed into sub-transactions,

each sub-transaction may be decomposed into further sub-
transactions, and so on.

◼ Different scopes for commit and abort of sub-
transactions have been defined:
◼ Flat nested

◼ Closed nested

◼ Open nested

◼ Global and local isolations come into picture.

Types of Nested Transactions

◼ Flat nested:
◼ Commit of a sub-transaction is local; its effects are visible

only to its parent level.

◼ Only when the root transaction commits, the effects are
visible to other transactions.

◼ When any sub-transaction aborts, the entire root
transaction is aborted, that is, abort is global.

◼ Closed nested:
◼ Here also, commit of a sub-transaction is local.

◼ And, only when the root transaction commits, the effects
are visible to other transactions.

◼ Here, abort of a sub-transaction is also local; the other sub-
transactions and the root transaction are not affected.

◼ Open nested:
◼ Commit of a sub-transaction is global, to the root level.

◼ Abort of a sub-transaction is local.

◼ When the root transaction aborts, the committed sub-
transactions need to be rolled back by executing
compensating transactions.

Atomicity Properties of Nested

Transactions

◼ Relaxation of the atomicity property in nested

transactions has two distinct characteristics:

1. An atomic unit may consist of some, not necessarily

all, steps of a transaction;

◼ For example, a saga is a two-level nested transaction

where each bottom level transaction is an atomic unit for

every other transaction.

2. Some steps may constitute an atomic unit to some

transactions, not to others

◼ Characteristic (2) has been generalized in

various stages.

Compatible Transactions

◼ Proposed in [Garcia-Molina, 1983]

◼ These are a set of transactions whose steps can
interleave arbitrarily.

◼ If T and T′ are not compatible, then the entire
transaction T is an atomic unit of T′, and vice
versa.

◼ If T and T′′ are compatible, then each step of T is
an atomic unit for T′′, and vice versa.
a) the steps of T can interleave with those of T′′ arbitrarily

and

b) any number of steps of T′′ can be executed after any
step of T.

◼ These properties are constrained in other
notions.

Relative Atomicity and Relative

Serializability
◼ In the relative atomicity notion of [Farrag and Ozsu, 1989]:

◼ T′′ is allowed to interleave only at certain points in the execution of
T, defined as the breakpoints of T with respect to T′′; but,
whenever T′′ is allowed, any number of its steps can be executed.

◼ Breakpoints of T with respect to T′′ may be different from those of
T with respect to another transaction, and hence the term relative
atomicity.

◼ With the relative serializability notion of [Krishnaswamy et al.,
1997]:
◼ The above interleavings are only with respect to “dependent”

steps.

◼ Nondependent steps are allowed to interleave anywhere in T.

◼ The precedence relation among the steps of the same transaction
and conflict relations among the steps of different transactions
contribute to the dependency.

◼ With the generalized relative serializability notion of
[Vidyasankar, 1998]:
◼ the number of steps of T′′ that can be executed at the individual

breakpoints of T is restricted.

Split-Join Transactions

◼ Proposed by Pu, Keiser and Hutchinson in 1988.

◼ An executing transaction may be split into two or

more sub-transactions.

◼ The resulting sub-transactions are still isolated to

obey a serializability criterion.

◼ Executing sub-transactions may also be joined

together.

Execution in Distributed

Environments

(Homogeneous) Distributed

Database Systems

◼ Logically a single database; physically distributed.

◼ Operations are executed at different sites.

◼ Transactions are coordinated either centrally or in
a distributed manner.

◼ Concurrency control methods for centralized
systems are extended.

◼ Site failures and communication failures may
occur.

◼ For atomicity, all participating sites commit or all
of them abort. Two phase and three phase commit
protocols are designed for this.

Replicated Database Systems

◼ Data may be fully or partially replicated at various
sites.

◼ One logical (read or write) operation entails several
physical operations on different physical copies.

◼ Performance is improved by reducing the number
of physical operations. Examples are:
◼ write-all, read-one;

◼ majority write, majority read;

◼ using quorums; etc.

◼ Performance is improved also by responding
earlier and performing some physical operations
later.
◼ Lazy replication in contrast to eager replication.

◼ Serializability requirement is relaxed to eventual
serializability or eventual consistency.

Mobile Database Systems

◼ A non-mobile main database and several cached
(partially replicated) databases in mobile hosts.

◼ The mobile and main databases are synchronized
at times of connectivity

◼ Transactions are executed at individual mobile
units.

◼ They are validated against stationary unit when
connected.

◼ Connectivity of mobile units with the stationary
one is infrequent.

◼ Lazy propagation and eventual consistency are the
main characteristics.

Heterogeneous Distributed

Database Systems - 1

◼ Examples are multi-database systems and
federated database systems.

◼ Distribution is logical – database schemas may be
different.

◼ Individual database systems are designed for
independent local use, but agree to participate in
global applications.

◼ A global transaction is composed of sub-
transactions executed in several local sites.

◼ Local sites are autonomous – Design, Execution
and Communication autonomies.

Heterogeneous Distributed

Database Systems - 2

◼ Global transaction management superimposes
local transaction management
◼ Submission of local sub-transactions is controlled by

global transaction manager.

◼ Local sub-transactions may be committed before their
global transaction.

◼ If the global transaction aborts, then locally committed
sub-transactions are rolled back by executing
compensating transactions.

◼ (sub-)transactions are defined as compensatable,
pivot, and retriable.

◼ Global transaction composition is restricted, for
example, to have at most one pivot.

Data Item and Operation

Granularities

Data Items, Abstract Data Types

and Objects

◼ Simple data items:

◼ Simple atomic operations - read and write; then create and

delete.

◼ Sets, queues, trees, hash structures:

◼ Non-atomic insert, delete, and search.

◼ These operations treated as transactions composed of

atomic operations.

◼ Objects:

◼ Non-atomic methods.

◼ The methods treated as transactions.

Concurrent executions of non-

atomic (operations and) methods -1

◼ Semantics of the objects and the methods
determine allowable sequential specifications of
the objects.

◼ A concurrent execution of the methods is expected
to be equivalent to some allowable sequential
specification.

◼ Certain operations were considered to “essentially
complete” the execution of the method, and the
other operations were executed lazily.
◼ An example is deleting an index in B-tree.

◼ Merging of the nodes, if necessary, could be done lazily.

Concurrent executions of non-

atomic (operations and) methods -2

◼ Isolation was relaxed, especially for non-essential
operations.

◼ Rollback was limited to undoing the essential
operations.

◼ Notion of “critical” atomic operations was used and
serializability of concurrent executions was argued
in terms of the critical operations.
◼ The critical operations were very much like pivots in

multi-database applications.

(Transactional) Workflows

◼ Operations/methods are replaced by activities.
◼ A workflow instance is an execution of a partially ordered set of

activities.

◼ Activities need not be database related, need not even be
electronic.

◼ They could be manual.

◼ Consistency of an execution of an individual activity is
determined by application semantics.

◼ Concurrency and isolation are not main issues.

◼ Achieving atomicity (all-or-nothing property) in each individual
workflow instance is the main concern.

◼ Backward and forward recoveries are typically manual.
◼ Forward recovery is in terms of exception handling.

◼ Different successful (or acceptable) terminations are used.

Services

Service definition

◼ A non-material equivalent of a good in economics
and marketing [Wikipedia].

◼ A kind of relationship and interaction between a
service provider and a service consumer. The
service provider will commit to complete tasks for
and provide value to the consumer during the
service life cycle. The goal for both sides is to keep
a healthy, long term trust with efficient and
valuable services. [Zhang et al, 2007]

Characteristics of a service

◼ Service Provider

◼ Service consumer or requestor

◼ Consists of execution of one or more tasks

◼ Re-usable

◼ Composable

Services

◼ The general vision is that services can be
◼ described in an implementation independent and

“semantic” fashion;

◼ published in generally accessible repositories;

◼ found, in standard ways, by clients;

◼ composed into new services fitting their needs; and

◼ executed by referring back to the service providers
behind their selection.

◼ Composite services may further be composed into
higher level services.

Issues

◼ Autonomy

◼ Heterogeneity

◼ Loose coupling

◼ Interoperability

◼ Security

◼ Orchestration

◼ Asynchronous communication

◼ Services selection and composition

Service composition

◼ A service composition is a transaction.

◼ Concurrency refers, at the first instance, to
concurrent executions of the services in a
composition, not of the services in different
compositions.

◼ Dependencies arise between executions of different
services.

◼ Atomicity (all-or-nothing property) of the
composition is sought.

Transactional Web Services

[Vidyasankar and Gottfried Vossen, 2004]

[VV] References

◼ K. Vidyasankar and Gottfried Vossen [VV]:

◼ Multi-Level Modeling of Web Service Compositions with

Transactional Properties, Journal of Database Management,

Special issue on Service-oriented Computing.

◼ A Multi-Level Model for Web Service Composition, Proc. Int.

Conf. on Web Services (ICWS 2004), San Diego, July 6-9,

2004, pp. 462-469.

General Vision of Web Services

◼ Software services can be described in an

implementation-independent and semantic fashion.

◼ Such descriptions can be published in repositories.

◼ Users can:

◼ find service descriptions,

◼ compose them into new services, and

◼ execute them by referring back to the service providers

behind their selection

Web Services Composition

◼ Composition relates to dealing with the assembly

of autonomous components so as to deliver a new

service out of the existing services.

Hierarchical Composition

◼ Hierarchical composition refers to the ability to form a

composite service by combining already existing

services, which themselves might be composed of

other composite/primitive services.

Composite Travel &
Shipping Service

Composite Travel
Booking Service

Shipping Service

Flight Booking Service Hotel Booking Service

Transactional Composition

◼ A multi-level model for Web service composition:
◼ Hierarchical composition

◼ Start with basic activities (services)

◼ These are traditional transactions

◼ Group them into composite activities

◼ Higher level composite activities obtained from lower level
basic and/or composite activities

◼ Transactional properties extended to composite activities

◼ Service composition should be treated from a
specification and an execution point of view at the
same time:
◼ The former is about the composition logic

◼ The latter is about transactional guarantees

Atomicity

◼ All or nothing property

◼ Assumed for traditional transactions and strived for

“high-level” transactions

◼ [Schuldt, Alonso, Beeri and Schek, 2002] extended

atomicity properties of multidatabase transactions

to transactional processes.

◼ [Vidyasankar and Vossen, 2004] extended further to

composite activities.

Multidatabase Global Transactions

◼ Made up of traditional (local) transactions.

◼ (In a simple form) a sequence of transactions

consisting of:

◼ A prefix of zero or more compensatable transactions;

◼ At most one pivotal (non-compensatable) transaction;

and

◼ Zero or more retriable (assured) transactions.

Multidatabase Transaction -1

compensatable

retriable

pivotal

Multidatabase Transaction - 2

Fail  retry and continue

Fail  compensate

Multidatabase Transaction - 3

All or nothing property  atomicity

Transactional Processes

◼ [Schuldt, Alonso, Beeri and Schek, 2002] extended

the multidatabase transaction model to

transactional processes.

◼ Composition is a tree.

◼ Essentially, multiple pivots are accommodated.

◼ Multiple children are allowed for pivots.

◼ A preference order is defined on the children.

◼ The last child is the root of an assured termination

tree consisting only of retriable activities.

Process Model Example

Execution Example - 1

Nothing

Failure and compensation

Execution Example - 2

All

A successful termination

Execution Example - 3

Something

Execution Examples - 4

All are guaranteed terminations

Approach

◼ [Schuldt, Alonso, Beeri and Schek, 2002] extended
atomicity of multidatabase transactions to
guaranteed termination of transactional processes.

◼ [Vidyasankar and Vossen, 2004] extend the
guaranteed termination property to atomicity (of
composite activities).

◼ For composite activities at any level of composition,
[Vidyasankar and Vossen, 2004] define
◼ Atomicity

◼ Compensatability, pivotal and retriable (c,p,r) properties

◼ Use these properties to reason about transactional
guarantees in service executions.

Different Terminations

◼ [Vidyasankar and Vossen, 2004] classify guaranteed
terminations as follows:

◼ Nothing -- null termination, also failed termination
or f-termination.

◼ All -- successful termination or s-termination.

◼ Something – successful or failed termination. This is
relative to the composition, that is, it depends on the
application semantics.

Execution Example - 1

Nothing

null termination

Failure and compensation

Execution Example - 2

All

s-termination

A successful termination

Execution Examples - 3

null or s-terminations

Execution Example - 4

Something

s-termination or f-termination

A successful or failed termination

Pivot Graphs

◼ To simplify reasoning, a pivot graph, consisting

essentially of only the pivotal activities of the

composition graph, is defined.

◼ A dummy pivot is added as the root.

◼ Then an execution is a path from the root to some

node in the graph.

Pivot Graph

Pivot Graph

Null termination

s-termination

f-termination

Recoverability

◼ For achieving atomicity of a composite activity,

from an f-termination we should get one of the

following:

◼ A null termination – by appropriate compensation (at a

higher level). This is backward-recoverability.

◼ An s-termination – by executing the appropriate suffix (of

the composition graph). This is forward-recoverability.

An Application Semantics

◼ p1 -- flight ticket purchase

◼ p2 -- reservation in conference hotel (A)

◼ p3 -- reservation in another (specified) hotel (B)

◼ p4 -- shuttle bus from B to A

◼ p5 -- car rental

◼ p6 -- public transportation ticket

p⊥

p3

p1

p2

p4p5p6

p⊥

p3

p1

p2

p4p5p6

Example

s-terminations: [p1 and (p2 or (p3

and (p4 or p5 or p6)))]

That is, the path from the root to some leaf.

f-terminations: [p1] and [p1,p3]

Atomicity of Composite Activity

◼ A composite activity is atomic if each f-termination

is (forward- or backward-) recoverable.

◼ In our example:

◼ [p1] may be backward-recoverable (canceling the flight

tickets)

◼ [p1,p3] may be forward-recoverable (different transportation

mode available)

Transactional Properties for

Composite Activities

◼ Once we have the notion of atomicity for a
composite activity, we can talk about
compensatability, pivotal, and retriable properties
also.
◼ These will be relative to the composition.

◼ In higher level compositions, basic and composite
activities composed into a higher level activity.

◼ From the atomicity and the c, p, r properties of the
constituent activities, we can define the atomicity
(and other properties) of the higher level activity.

◼ This can be carried out to any level.

Atomic Execution of Composite

Activities

◼ Consider, for example, that a composite activity C is

one of the activities in a higher level composition U.

◼ Atomicity of C is desired in the specification of the

composition U.

◼ Suppose C will be executed by a service provider

SC.

◼ We assume that SC will provide guaranteed

termination of C, at the very least.

◼ Atomicity itself could be the responsibility of SC or

of the service requestor SU.

◼ That is, if SC does not provide atomicity of C, then

SU should.

p⊥

p3

p1

p2

p4p5p6

Example

f-termination [p1]:

-- flight tickets purchased

-- hotel reservation not done

Recovery Possibilities

◼ [p1] may be compensatable, suffix not retriable

◼ Ticket purchase is pivotal at lower level. (Airlines may not

refund.)

◼ It may be compensatable at higher level. (Travel agency

may use the tickets for another customer.)

◼ [p1] may not be compensatable, but suffix retriable.

◼ Flight tickets cannot be returned.

◼ Travel agency does not succeed in hotel reservation.

◼ Conference organizers (another service provider) get

reservation to the customer directly.

p⊥

p3

p1

p2

p4p5p6

p3 p2

p4p5p6

p⊥

Suffix of [p1]

Multi-pivoted Activities

◼ Consider a composite activity C in a composition U.

◼ Suppose C is multi-pivoted.

◼ It may be possible to get an equivalent composition

U’ where C is replaced by a set of single-pivoted

activities.

◼ For example, suppose C can be replaced by C1 ;C2.

◼ We argue that U may have some added value

compared to U’.

◼ That is, an atomic execution of C by a single service

may be more desirable than the atomic executions

of the individual sub-activities C1 and C2 by

different services.

Added Value

◼ Reduction in the total cost
◼ For example, the output of the first activity has to be

embedded in an XML document and then extracted by the
service provider of the second activity. The document
preparation and transportation can be avoided if both
activities are executed at the same site.

◼ Quality of service
◼ Implicit dependencies may exist between the two activities

affecting the quality of service if executed in different sites.

◼ Atomicity guarantee
◼ C1 may not be compensatable and C2 not retriable, but a

service provider can keep C1 in a prepared-to-commit state
until the execution of C2 reaches the commit stage and
commit both of them together.

◼ Increased security and autonomy
◼ Not letting out trade, contract, or service secrets.

Electronic Contracts

Vidyasankar, Radha Krishna and Kamalakar Karlapalem,

2007, 2008, 2009

[VRK] References

◼ K. Vidyasankar, P. Radha Krishna and Kamalakar

Karlapalem [VRK]:

◼ A Multi-level Model for Activity Commitments in E-

contracts, 15th Int. Conf. in Cooperative Information

Systems (CoopIS 2007), Vilamora, Portugal, LNCS Vol.

4803, Springer 2007, pp. 300-317.

◼ Study of Execution Centric Payment Issues in E-contracts,

Proc. IEEE Services Computing Conference (SCC), Hawaii,

July 2008, Vol. 2, pp. 135-142.

◼ Study of Dependencies in Executions of E-contract

Activities, 13th East-European Conference on Advances in

Databases and Information Systems (ADBIS 2009), Riga,

Latvia, September 2009, LNCS Vol. 5739, Springer 2009,

pp. 301-313.

Electronic contract (e-contract)

◼ An e-contract is a contract modeled, specified,
executed, controlled and monitored by a software
system.

◼ A contract is a legal agreement involving parties,
activities, clauses and payments.

◼ The activities are to be executed by parties
satisfying clauses, with the associated terms of
payment.

Example: Contract for building a

house

◼ Parties: Customer, builder, bank, insurance
company.

◼ The builder constructs house as per the customer’s
specifications; some activities such as plumbing
and electrical work may be sub-contracted.

◼ The customer gets mortgage from the bank.

◼ The house is insured comprehensively for the
market value covering fire, flood, etc. in the joint
names of the bank and the customer.

◼ Several bi-lateral or tri-lateral contracts may exist
for building the house. We consider all of them to
be part of a single high-level contract.

Complexity of contracts

◼ Contracts are complex in nature.

◼ Both the initial specification of the requirements and
the later verification of the execution with respect to
compliance to the clauses are very tedious and
complicated.

◼ This is, partly, due to the complexity of activities.
◼ Activities may be electronic or non-electronic.

◼ They are interdependent with other activities and clauses.

◼ They may be executed by different parties autonomously, in
a loosely coupled fashion.

◼ They are long-lasting.

◼ The outcomes of their executions may be unpredictable.

Goals of the e-contract

◼ The premise is that, to handle the
complexity of a contract, an e-contract
should reflect both the specification and the
execution aspects of the activities at the
same time, where the former is about the
composition logic and the latter is about the
transactional properties.

◼ Hence, the goals of an e-contract include:
◼ precise specification of the activities;

◼ mapping them into deployable workflows;

◼ and providing transactional support in their
execution.

Properties of activities in

e-contracts

◼ Compensatability and retriability are encountered

in the execution of e-contract activities also, that

too in sophisticated ways:

◼ Both complete and partial executions may be

compensated;

◼ Both successful and unsuccessful executions may be

compensated;

◼ Even “committed” executions may be retried;

◼ Retrying may mean, in addition to re-execution,

“adjusting” the previous execution; and

◼ Activities may be compensated and/or retried at different

times, relative to the executions of other activities.

Some examples

◼ (Time of compensation) A pipe is fixed correctly as
specified in the contract. Later, while constructing a
mini-wall, the pipe breaks. As per a clause “any
damage or loss of goods during construction of the
house is the responsibility of the builder, and the
builder has to repair or replace at no additional
cost”, the builder has to fix the pipe.

◼ (Adjusting the execution) In the process of
repayment of a bank loan, if a cheque is bounced
for some reason, the customer has to pay a penalty
in addition to the actual amount.

Closure and E-contract

Commitment
◼ Each activity must be closed at some time. On

closure, no execution related to that activity would
take place.

◼ The closure could be done on a complete or
incomplete execution, and on a successful or failed
execution.

◼ On closure of the contract-activity, the e-contract
itself can be closed. (This may involve settlement of
payment and other issues between the parties.)

◼ E-contract closure is also referred to as e-contract
commitment.

◼ The term e-contract commitment logic is used to
refer to the entire logic behind the commitment of
the various activities of the e-contract, and the
closure of the activities and the e-contract.

Multi-Level Composition Model

◼ [Vidyasankar, Radha Krishna and Kamalakar
Karlapalem, 2007] propose a framework for e-
contract commitment.

◼ The multi-level Web service composition model is
extended to e-contract activities.

◼ Transactional properties are defined for the activities
in every level. These properties include:
◼ successful termination;

◼ Compensatability;

◼ Retriability;

◼ forward and backward recoveries; and

◼ commitment.

◼ This is done uniformly, the same way irrespective of
the level of the activity.

Properties of e-contract activities

◼ E-contract activities differ from database

transactions in many ways:

(i) Different successful executions are possible for an

activity;

(ii) Unsuccessful executions may be compensated or re-

executed to get different results;

(iii) Whether an execution is successful or not may not be

known until after several subsequent activities are

executed, and so it may be compensated and/or re-

executed at different times relative to the execution of

other activities;

(iv) Compensation or re-execution of an activity may require

compensation or re-execution of several other activities;

etc.

Basic activities

◼ Some activities are considered as basic.

◼ These cannot be decomposed into smaller ones, or

we want to consider them in entirety.

◼ They may be electronic (e.g., processing a payment)

or non-electronic (e.g., painting a door).

◼ We would like their execution to be atomic, that is,

either not executed at all or executed completely.

◼ However, incomplete executions are unavoidable

and we consider them also.

Constraints

◼ Each activity is executed under some constraints

◼ Who can execute, when can it be executed, which

executions are acceptable, etc.

◼ A complete or incomplete execution satisfying the

constraints specified at the time of the execution is

called a successful termination (s-termination).

◼ The constraints are specified in terms of an s-

termination-predicate (st-predicate).

◼ An execution which does not satisfy the st-predicate

is a failed termination (f-termination).

Example – Painting a wall

◼ The execution is

◼ Incomplete while being painted.

◼ Complete after the painting is finished.

◼ s-termination if the paint job satisfies the st-predicate:

◼ One undercoat and one other coat; and

◼ no smudges in the ceiling or adjacent walls.

◼ f-termination otherwise.

Change of constraints

◼ Constraints may change, that is, the st-predicate of

an activity may change, as the execution of the

contract proceeds.

◼ In the example of painting a wall, the requirement of one

coat (in addition to one undercoat) may be changed to two

coats.

◼ Such changes may invalidate a previous execution.

Then, the execution needs to be adjusted.

One way of adjusting -

Compensation

◼ Compensation is to nullify the effects of the execution. Options
are:
◼ absolute compensation if possible;

◼ ignoring the original execution;

◼ executing a compensating activity; etc.

◼ Compensation may be constrained by time.
◼ Example: Purchased goods cannot be returned after 7 days.

◼ For an activity, some (not necessarily all) executions may be
compensatable.
◼ Flight tickets may be fully refundable, partially refundable or non-

refundable.

◼ Which tickets will be available may not be known in advance.

◼ Therefore, compensatability property is attributed to an
execution of the activity, not to the activity itself.

Another way of adjusting - Retry

◼ Retriability is the ability to get a complete execution
satisfying the (possibly new) st-predicate by re-
executions.
◼ Retrying may involve a partial or full roll back and then a

re-execution.

◼ Retriability may also be time-dependent.

◼ Some executions of an activity may be retriable,
some others may not be retriable.

◼ Again, retriability is attributed to an execution of
the activity, not to the activity itself.

◼ Retriability property is orthogonal to
compensatability.

Execution states of an activity

◼ We consider an execution of an activity with a

specified st-predicate.

◼ On a termination, if we are not satisfied with the

outcome, we may re-execute.

◼ Several re-executions and terminations are possible.

◼ We assume the following progression of the states of

the (complete or incomplete) terminations.

97

Termination-m, m ≥ 1

Termination-1

Begin

Weak commitTry to compensate

Start execution

Re-executions compensatable and re-executable

wc-termination-1f-termination

wc-termination-n, n ≥ 1

sc-termination

Retrys non-compensatable but retriable

Strong commit

Execution states of an activity

Non-compensatable

and non-re-executable

Non-compensatable

and non-re-executable

Progression of states

1. The termination is both compensatable and re-
executable.

2. At some stage, the termination becomes non-
compensatable, but is still re-executable. Then,
perhaps after a few more re-executions, we get a
termination which is either
(a) non-re-executable to get a complete s-termination (we take

this as a f-termination), or

(b) re-executable to get eventually a complete s-termination.
We identify this state as non-compensatable but retriable.
The execution in this state is said to be weakly committed.

◼ Continuing re-executions in state 2.(b), at some
stage, we get a complete s-termination which is
non-compensatable and non-re-executable. Here
the execution is said to be strongly committed.

Complete or

incomplete

s-termination

Complete or

incomplete

f-termination

Execution stopped

Execution in

progress

Start

Re-execute Compensate

Closed null

termination

Closed non-null

f-termination

Incomplete

weakly committed

s-termination

Complete

weakly committed

s-termination

Closed strongly

committed s-termination

Retry

Execution stages of an activity

Complete or

incomplete

s-termination

Complete or

incomplete

f-termination

Execution stopped

Execution in

progress

Start

Re-execute Compensate

Closed null

termination

Closed non-null

f-termination

Incomplete

weakly committed

s-termination

Complete

weakly committed

s-termination

Closed strongly

committed s-termination

Retry

Some points

◼ Retrys and re-executions are
possibly after partial or full
backward recovery.

◼ A complete s-termination may
become f-termination, with a
change in st-predicate.
◼ If this happens before weak

commitment, the transitions of
an f-termination are followed.

◼ If the execution is already
weakly committed, then a retry
that guarantees s-termination
is assured.

◼ If the compensation succeeds,
we get the null termination.
Otherwise, we get a non-null f-
termination.

Complete or

incomplete

s-termination

Complete or

incomplete

f-termination

Execution stopped

Execution in

progress

Start

Re-execute Compensate

Closed null

termination

Closed non-null

f-termination

Incomplete

weakly committed

s-termination

Complete

weakly committed

s-termination

Closed strongly

committed s-termination

Retry

Additional points

◼ The “final” state of

execution is closure.

◼ Three possible states of

closure are shown:

◼ Null;

◼ Non-null (complete or

incomplete) f-

termination; and

◼ Complete s-termination,

which also corresponds

to strong commitment of

the execution.

Hierarchical composition

◼ Our hierarchical composition of the activities is:
◼ In the first level, a composite activity consists of basic

activities;

◼ In the next level, a composite activity consists of basic
and/or composite activities of level one; etc.

◼ The highest level will have the “single” activity for which
the contract is made. We call this the contract-activity.

◼ There could be multiple contracts for a single activity. For
building a house, there could be separate contracts
between (i) customer and the bank, (ii) customer and the
builder, and (iii) the builder and the bank. We consider this
set of contracts as a part of a single high level contract
whose contract-activity is building a house.

Composition graph – Bottom level

◼ Composition C is a rooted tree. It is a part of a

higher level composition U.

◼ Nodes in the tree correspond to basic activities.

◼ With each node, an st-predicate which specifies the

s-terminations of that activity is prescribed.

◼ A children execution predicate (ce-predicate) is also

associated with each node. This specifies, for each

s-termination of that node, a set of children which

have to be executed.

Composite activity

◼ An execution E of C yields a composite activity C. It

consists of executions of activities in the paths from

the root to some leaves. This is called the execution-

tree of E.

◼ If all the activities in these paths have been

executed completely, then E is a complete execution

of C.

◼ Otherwise, if only the activities from the root to

some non-leaf nodes have been executed and/or the

executions of some activities are not complete, then

it is an incomplete execution of C.

C-1

C-2

I-1

C-2′

I-2

C-2′′

A composition

Composition example

◼ Construction activities C-i for
a product, and inspection
activities I-i.

◼ The st-predicate for each C-i
will be the guidelines for that
step. The st-predicate for each
I-i will be the acceptable
results of that inspection.

◼ After C-1, I-1 is carried out.
Depending on the result, C-2
is to be carried out if possible,
and either C-2′ or C-2′′
otherwise. This is the ce-
predicate at I-1.

C-1

C-2

I-1

C-2′

I-2

C-2′′

Execution example - 1

◼ Suppose C-2 was executed
after I-1, and I-2 fails.

◼ It may be decided that the
product be sent back to C-1
for some fixing, inspected
again, and then the options
C-2′ and C-2′′ explored.

◼ This amounts to
compensating I-2 and C-2,
and retrying C-1 and I-1,
each possibly with adjusted
st-predicates. The adjusted
ce-predicate for I-1 will have
only C-2′ and C-2′′ options.

C-1

C-2

I-1

C-2′

I-2

Execution example – 2

◼ Suppose C-2′ is tried

and the execution was

successful.

◼ Then the execution-tree

is as shown. Here C-2

and I-2 are f-

terminations.

Composite activity - Terminations

◼ If each activity in E has s-terminated, then E is a
(complete or incomplete) s-termination of C.

◼ In a (complete or incomplete) f-termination,
executions of some activities have f-terminated.

◼ The execution of each s-terminated node satisfies
the st-predicate of that node

◼ In a complete s-termination, the selection of
children at each non-leaf node satisfies the ce-
predicate at that node.

◼ Both st- and ce-predicates of the nodes may change
as the execution of C proceeds.

Commitment of constituent

activities

◼ Execution of each activity in C may first be weakly
committed; then it is strongly committed, some time
after its s-termination.

◼ Once weakly committed, the execution cannot be
compensated; and once strongly committed, it
cannot be retried.

◼ The activities in C are (both weakly and strongly)
committed in sequence. That is, when an activity is
weakly committed, all preceding activities in C are
also weakly committed. The same holds for strong
commitment.

Transactional properties

◼ Weak commitment, strong commitment,

compensatability and retriability of the activities in

C are all relative to C. (We explain this shortly.)

◼ Composition C assumes that each of its activities is

executed atomically. Then, an f-termination is

assumed to be compensatable, relative to C.

Transactional properties (cont’d)

◼ The execution of the entire composition C is
intended to be atomic in the higher level
composition U.

◼ If E is an incomplete s-termination, forward
recovery is carried out by executing the “suffix” of
E in C, to get a complete s-termination.

◼ If E is an f-termination, then the executions of
some activities may have to be adjusted (partial
backward recovery) to get an incomplete s-
termination, and then a forward recovery is carried
out.

◼ To get the null termination, E has to be
compensated (full backward recovery).

a1

am

aj

an

ak

ai

Roll back point

Last weak

commitment

Re-execution

point

Last strong

commitment

Compensated

part

Re-executed

part

Adjusted

part

Partial backward recovery –

Simple case

◼ f-termination of ai may
warrant adjustment of
executions:
◼ Re-execution of aj;

◼ If it does not succeed, aj and
all executions up to ai are
compensated.

◼ If the re-execution succeeds
with an s-termination and
the ce-predicate
corresponding to that s-
termination allows re-
execution of aj+1, then re-
execute aj+1. Otherwise,
compensate aj+1 and all
executions up to ai; and so
on.

Re-executed
part

Compensated

part

Partial backward recovery –

General case

Dependencies

◼ The transactional properties (defined in the

composition model) enable identifying the

dependencies that arise between the executions of

the activities in a precise and elaborate manner.

◼ The dependencies deeply impact both the recovery

and commitment aspects.

◼ (This study will be helpful in monitoring behavioral

conditions stated in e-contracts during execution.)

Dependencies between

executions

◼ Factors contributing to transactional properties in

an execution of each activity are:

◼ (Changes in) st-predicate and ce-predicate;

◼ (Different) s-terminations and (different) f-terminations;

◼ Beginning of execution;

◼ Weak commit and strong commit; and

◼ Compensation and re-execution.

◼ Dependencies involving each of these factors in

executions of activities can be defined. Most

combinations are possible. (They are explained in

the paper.)

◼ Here, we explain some dependencies with an

example.

Procurement example

◼ This concerns with procurement of a set of windows
for a house under construction.

◼ The order will contain a detailed list of the number
of windows, the size and type of each of them and
delivery date.

◼ The type description may consist of whether part of
the window can be opened and, if so, how it can be
opened, insulation and draft protection details,
whether made up of single glass or double glass,
etc.

◼ The activities are described in the following. The
execution-tree is simply a path containing nodes for
each of the activities in the given order.

Procurement activities

◼ P1. Buyer: Order Preparation – Prepare an order
and send it to a seller.

◼ P2. Seller: Order Acceptance – Check the availability
of raw materials and the feasibility of meeting the
due date; if both are satisfactory, then accept the
order.

◼ P3. Seller: Arrange Manufacturing – Forward the
order to a manufacturing plant.

◼ P4. Plant: Manufacturing – Manufacture the goods
in the order.

◼ P5. Plant: Arrange Shipping – Choose a shipping
agent (SA) for shipment of the goods to the buyer.

◼ P6. SA: Shipping - Pack and ship goods.

◼ P7. Buyer: Check Goods – Verify that the goods
satisfy the prescribed requirements.

◼ P8. Buyer: Make Payment – Pay the seller.

Dependencies-1

◼ P1. Buyer: Order Preparation

◼ P2. Seller: Order Acceptance – if
raw materials available and due
date feasible

◼ P3. Seller: Arrange
Manufacturing – Forward to a
manufacturing plant.

◼ P4. Plant: Manufacturing –
Manufacture the goods in the
order.

◼ P5. Plant: Arrange Shipping –
Choose a shipping agent (SA).

◼ P6. SA: Shipping - Pack and
ship.

◼ P7. Buyer: Check Goods – Verify
goods satisfy the requirements.

◼ P8. Buyer: Make Payment – Pay.

◼ Once the order is accepted:
If it cannot be cancelled,
but can be modified
(delivery date/quantity
changed), then on s-
termination of P2, weak-
commit P1 and P2.

◼ There may also be a
dependency: the execution
of P3 can begin only on
weak-commitment of P2.

◼ If order cancellation is
possible, postpone weak
commitment of P1 and P2.

◼ In the following, we assume
that the order cannot be
cancelled.

Dependencies-2

◼ P1. Buyer: Order Preparation

◼ P2. Seller: Order Acceptance – if
raw materials available and due
date feasible

◼ P3. Seller: Arrange
Manufacturing – Forward to a
manufacturing plant.

◼ P4. Plant: Manufacturing –
Manufacture the goods in the
order.

◼ P5. Plant: Arrange Shipping –
Choose a shipping agent (SA).

◼ P6. SA: Shipping - Pack and
ship.

◼ P7. Buyer: Check Goods – Verify
goods satisfy the requirements.

◼ P8. Buyer: Make Payment – Pay.

◼ The plant may find that the goods
cannot be manufactured
according to the specifications,
i.e., P4 fails.

◼ If the failure is due to inability to
produce the required quantity by
the due date, then the buyer may
be requested to postpone the due
date or reduce the quantity or
both (change in st-predicate of
P1).

◼ (Similar situation arises when
the buyer wants to update the
order by increasing the quantity.)

◼ This will result in a re-execution
of P1 followed by a re-execution of
P2. Then the past execution of P4
may be successful or a re-
execution may be done. Weak
commitments of P1 and P2 allow
for such adjustments.

Dependencies-3

◼ P1. Buyer: Order Preparation

◼ P2. Seller: Order Acceptance – if
raw materials available and due
date feasible

◼ P3. Seller: Arrange
Manufacturing – Forward to a
manufacturing plant.

◼ P4. Plant: Manufacturing –
Manufacture the goods in the
order.

◼ P5. Plant: Arrange Shipping –
Choose a shipping agent (SA).

◼ P6. SA: Shipping - Pack and
ship.

◼ P7. Buyer: Check Goods – Verify
goods satisfy the requirements.

◼ P8. Buyer: Make Payment – Pay.

◼ If the Buyer finds the goods do
not meet the type specifications
(or the plant “recalls” due to some
defects), that is, P7 fails, then, P4
has to be re-executed. In addition,
P5 and P6 have to be re-executed:
the buyer ships back old goods to
the plant and the plant ships new
goods to the buyer.

◼ An example is: two of the windows
have broken glasses and a wrong
knob was sent for a third window.
(The knob has to be fixed after
mounting the window.) Then,
replacements for the two windows
have to be made (in P4), the
damaged windows and the wrong
knob have to be picked up and
the new ones delivered: if by the
same shipping agent, the re-
execution of P5 is trivial.

Dependencies-4

◼ P1. Buyer: Order Preparation

◼ P2. Seller: Order Acceptance – if
raw materials available and due
date feasible

◼ P3. Seller: Arrange
Manufacturing – Forward to a
manufacturing plant.

◼ P4. Plant: Manufacturing –
Manufacture the goods in the
order.

◼ P5. Plant: Arrange Shipping –
Choose a shipping agent (SA).

◼ P6. SA: Shipping - Pack and
ship.

◼ P7. Buyer: Check Goods – Verify
goods satisfy the requirements.

◼ P8. Buyer: Make Payment – Pay.

◼ The shipping agent is unable
to pack and ship goods at the
designated time, that is, P6
fails. Then either the delivery
date is postponed (adjustment
in the st-predicate of P1) or
the plant may find another
shipping agent, that is, P5 is
(compensated and) re-
executed. In the latter case, it
follows that P6 will also be
(compensated and) re-
executed

Dependencies Summary - 1

I. Any of the compensation,
weak commit and strong
commit actions on one
activity may require any of
these three actions for
another activity.

II. Several dependencies which involve re-execution are
also possible. We arrive at a general form in several
steps.
◼ An f-termination of an activity changes the st-predicate of

another activity and, in fact, of several activities.

◼ Each different type of f-termination of an activity changes the
st-predicates of a set of activities in a specific way.

◼ A specific (s- or f-) termination of an execution changes the
st-predicates of a set of activities in a specific way.

Dependencies Summary - 2

III. We can also state dependencies of the following

type.

◼ A specific (s- or f-) termination of an activity triggers

compensation, weak commit or strong commit of executions

of some other activities.

◼ The (compensate, re-execute, weak commit and strong

commit) actions on ai change the st-predicates of some other

activities.

IV. Dependencies constraining the beginning of an

execution of an activity can also be defined.

◼ For example, for activities aj and descendent ai possible

dependencies are: ai cannot begin execution until aj (i) s-

terminates, (ii) weak-commits, or (iii) strong-commits.

Multi-level model - Composition

◼ Composition C is a tree.

◼ Nodes in the tree are (sub-)compositions of basic or
composite activities; Compositions of composite
activities are, again, trees. Thus C is a “nested” tree.

◼ An st-predicate is associated with C. From this, st-
and ce-predicates of all the nodes of C are derived.

Multi-level Model - Composite

Activity

◼ Execution of each sub-composition of C yields an
execution-tree, called composite activity tree (c-
tree). To put these trees together, each c-tree is
converted to a one source one sink acyclic graph by
adding edges from the leaves of the tree to a single
(dummy) sink node. We call this a closed c-tree.

◼ Execution of C yields a closed c-tree whose nodes
correspond to executions of activities (which
themselves are closed c-trees). Thus, the graph can
be expanded until all the nodes correspond to basic
activities.

Multi-level Model – Transactional

Properties

◼ At each individual level, for each node, the
transactional properties are applicable. After the
recovery of one node, the recovery efforts at the
parent level execution will continue.

◼ Compensation of a composite activity may involve
execution of a composition that does the
compensation. This is also specified as a tree with
suitable st-predicate.

◼ Retrying a composite activity may involve a partial
backward recovery followed by a forward recovery.
The forward recovery may require adding additional
sub-trees at some nodes and specifying the st- and
ce-predicates for the nodes in them, and adjusting
the ce-predicates of other nodes appropriately.

Transactional properties (Cont’d)

◼ An execution a-i is
◼ (locally) compensatable if the execution can be undone to

get the null termination.

◼ compensatable relative to C if either it is locally
compensatable or it can be compensated by executing a
compensating activity within C.

◼ (locally) retriable if there is a re-execution that will yield an
s-termination.

◼ retriable relative to C if it is locally retriable or additional
activities can be executed in C to get the effects of an s-
termination of a-i.

◼ Weak and strong commitments and atomicity are
also defined both locally and relative to C.

Example of “relative to” aspect in

compensatability

◼ Let U be a composite activity consisting of
◼ (i) writing and printing a letter,

◼ (ii) preparing an envelope – composite activity C made up of

◼ (a-1) printing From and To addresses on an envelope
with a printer,

◼ (a-2) affixing a stamp on the envelope,

◼ (iii) inserting the letter in the envelope and sealing it.

◼ The activity a-2 of affixing a stamp is not
compensatable relative to C, if the stamp cannot be
removed.

◼ However, C may be compensatable relative to U,
amounting to tearing up the envelope and bearing
the loss of the stamp. In that case, we also say that
a-2 is compensatable relative to U.

Dependencies between activities

at different levels

◼ Compensatability, retriability and weak and strong
commitments of an execution of an activity can be
defined relative to different ancestors of that
activity.

◼ These (extended) definitions of the transactional
properties can be used to define dependencies
between activities at different levels of the
composition.

Multi-level commitment and

closure

◼ Compensatability, retriability and weak and strong

commitments of C are all relative to U.

◼ The execution stages in the diagram, given for basic

activities, are applicable to composite activities also.

◼ Closure of an activity is independent of the closure

of its parent or children activities.

◼ A contract for building a house may be closed after the

warranty period during which the builder is responsible for

repairs.

◼ A sub-contract for maintaining an air-conditioning system

in that house may close at a different time.

st- and ce-predicates

◼ These are activity-dependent.

◼ We can expect that they can be expressed more
precisely for some activities than for some others.

◼ For some activities, what constitutes an s-
termination may not be known until after the
execution of that activity, and even after the
execution of many subsequent activities.

◼ Syntactic specification of ce-predicate may be made
more precise, with an appropriate language (which
would have constructs for specifying Boolean
connectives and priorities).

Capabilities for execution

adjustment

◼ In a multi-level set up, the activities that are re-

executed or rolled back would, in general, be

composite activities, that too executed by different

parties autonomously.

◼ Therefore, the choices for re-execution and roll back

may be limited, and considerable pre-planning may

be required in the design phase of the contract.

Multi-level Model Discussion - 1

◼ Our primary goal is embedding transactional

properties in executions of e-contract activities.

◼ Dealing with (hierarchically) composite activities is

inevitable.

◼ Dependencies between executions of activities in

the same level or different levels need to be

complied with during execution of the contract.

◼ This work identifies several dependencies in a

systematic manner using a multi-level composition

model.

Multi-level Model Discussion - 2

◼ Level-wise definitions of compensatability and

retriability clarify the properties and requirements

in the executions of activities and sub-activities, in

contracts and sub-contracts.

◼ This helps in delegating responsibilities for

satisfying the required properties in the executions

to relevant parties precisely and unambiguously.

Multi-level Model Discussion - 3

◼ The transactional properties in our model can be
used to refine the conditions for the closure of the
contract.

◼ Features such as “the life of a contract may extend
far beyond the termination of the execution of the
activities in the contract” can be accommodated
fairly easily in our model.

◼ Terms of payments for the activities can be related
to the execution states of the activities.

◼ We believe that our transactional properties will be
useful in other applications also, with electronic
and/or non-electronic activities.

Payment issues

◼ The vital issue of payments in e-contracts are the

following.

◼ Payments are made to parties.

◼ They may be constrained by clauses.

◼ Most importantly, they are meant for, and so are closely

related to, the execution of activities in the contract.

◼ We can identify the execution states of the activities

in terms of their transactional (compensatability,

retriability and commit) properties, and relate the

states to costs of, and payments for, the activities.

Two aspects of payments

◼ First, one should be able to ascertain that the
activities have been executed satisfactorily to
deserve payment.

◼ Second, the amounts of payments need to be
determined.

◼ Both these require a good understanding of the
execution states of the activities and hence the
execution state of the e-contract.

Payments

◼ Two aspects – enabling and making payments.

◼ Payment options include the following:
◼ For each activity, either a single payment or multiple (partial)

payments may be enabled at various states of execution.

◼ Payments can be made once or in several installments. The
installments need not correlate to the enabling points.

◼ A payment can be fully or partially refundable, or non-
refundable.

◼ Payment for an activity may be made ahead of its execution
or after the execution. As stated earlier, the actual cost and
hence the actual amount to be paid may be known only at
the end.

◼ A payment monitoring system should keep track of
the state of termination, payment-enabled and
payment-made points and the amounts, for each
activity.

Cost and payment

◼ Let C be a composite activity consisting of basic

activities a1, a2, etc.

◼ There are two aspects of the cost of execution of ai:

◼ for ai and

◼ for C, that is, the cost charged to C and hence to be paid

by (the service executing) C to (the service executing) ai.

◼ We denote the first as cost(ai) and the second as

payment(ai).

Calculating cost and payment

◼ A cost is associated with an s-termination of an
activity. Different s-terminations may cost different
amounts. (Example: Non-refundable flight ticket
may cost more.)

◼ An activity ai that is not executed may cost
nothing. If executed but compensated, cost(ai) may
be non-zero, but payment(ai) may be zero.

◼ Each re-execution may incur additional cost.
Therefore, the final value of cost(ai) may be known
only at the end of the execution.

◼ If re-execution costs are not charged to C, then
payment(ai) may be known on weak commitment
of ai.

Payment and Cost - 1

◼ Each activity in the execution-tree

has to be paid for.

C-1

C-2

I-1

C-2′

I-2

◼ Payment(s) may be enabled and made in any of the

states of execution of that activity, and also in the

states of weak and strong commitments relative to

C.

◼ For example, payment for ai may be enabled either when

its execution is locally weakly committed or only when it is

weakly committed relative to C, meaning that it will not be

compensated even by a compensating activity in C.

Payment and Cost - 2

◼ If an execution ai is compensated by execution ai′ of

a compensating activity, then both ai and ai′ will

appear in the execution-tree, and costs may be

attributed to them individually.

◼ Similarly, if retrying of ai is done by executing

additional activities, their executions will also be in

the execution-tree and costs can be assigned to

them.

Payment and Cost – 3

◼ Enabling and making payments for different

activities may occur at different times.

◼ Dependencies may exist between enabling/making

payments for different activities.

◼ Dependencies may also exist between

enabling/making payments for one activity and

starting the execution (similarly, compensating,

weakly committing and strongly committing)

another activity, and vice versa.

Payment Trees

◼ At any stage, the activities whose payments have
been enabled and those whose payments have been
made can be kept track of with a payment-enabled-
tree and a payment-made-tree, respectively.

◼ Note that the execution-tree and the two payment
trees are all sub-trees of the composition graph C.
As the execution of the contract progresses, all the
three trees will grow. By comparing them, the
correspondence between the execution of the
activities and enabling/making payments for them
can be obtained.

C-1

C-2

I-1

C-2′

I-2

Execution example – cont’d

C-1

C-2

I-1

C-2′ C-2′′

• Here is a payment-

made-tree for the

previous example.

• Payment for I-2 has

not been done yet.

• Payment for C-2′′

has also been done

even though only one

of C-2′ or C-2′′ is to

be executed. The

payment for non-

executed activity

needs to be adjusted

later on.

Payment-made-tree Execution-tree

Multi-level Model Transactional

Properties and Payments

◼ Enabling and making payments can be tied to the

transactional properties defined relative to different

ancestors.

◼ For example, payment for a-i can be enabled only when it

is weakly committed relative to its grand-parent U. This

may be appropriate when payment authorizations come

from U and not from (parent) C.

Payment Issues Discussion - 1

◼ We have expressed the property that costs are
determined by the executions. It is also possible
that costs and payments influence the executions.
◼ We associated a cost for each re-execution. Then, the total

cost for execution of an activity will increase with the
number of re-executions. If a maximum cost is stipulated
for an activity, then that could limit the number of re-
executions.

◼ Payments may influence the time of commitment. For
example, a non-refundable payment can be associated
with weak commitment which can be delayed until it is
certain that the execution does not need to be
compensated. Similarly, if no retrys are expected after
payment, then strong commitment can be combined with
the payment.

Payment Issues Discussion - 2

◼ As mentioned earlier, activities in e-contract may be
executed autonomously.

◼ Details of payments for them may also be kept
autonomously.

◼ The ability to deal with payment trees of different
levels, with activities described at different depths of
the hierarchy, supports the autonomy.

Summary

◼ Several proposals exist in the literature for

◼ Atomic execution of a group of activities,

◼ Using application semantics to determine whether the

result of execution (success of some activities and failure of

the others) is a successful termination of the whole group

or not,

◼ Doing compensation at different levels, etc.

◼ We bring the semantics in terms of guaranteed

termination and atomicity by

◼ using backward-recovery (compensation) and forward-

recovery (retriability)

◼ at the various hierarchical levels of the composition.

Open Issues

◼ In the literature, the inter-dependency among

contract satisfaction, activity execution and

payments has not been explicitly modelled. The

utility of such modeling in deploying and managing

the commitment and payment aspects of e-

contracts is immense.

◼ Some open issues are:

◼ Initiating payment transactions for making appropriate

payments;

◼ Extraction of related clauses for payments and monitoring

of payments; and

◼ Finding profitable contracts in an organization when

multiple contracts are in execution.

Recent Transaction Model

Proposals for Services

Web Services Composition with

Transactional Requirements

◼ Proposed by:

◼ [S. Bhiri, O. Perrin, and C. Godart, 2005]

◼ And further work done by:

◼ [Frederic Montagut and Refik Molva, Augmenting Web

Services Composition with Transactional Requirements,

2006].

Transactional Web Services - 1

◼ Four properties of services are defined:
◼ Retriable (r), Compensatable (c), Retriable and

Compensatable (rc) and Pivot (p).

◼ A service can combine properties. The combinations
are:
◼ {r; cp; p; (r, cp); (r, p)}.

◼ A state/transition model is used for the internal
behavior of a service.
◼ States are: {initial, active, aborted, cancelled, failed,

completed, compensated}.

◼ External transitions are: {activate(), abort(), cancel(),
compensate()}.

◼ External transitions enable a service to interact with
outside and are fired by external entities.

◼ Internal transitions, fired by the service itself, are:
{complete(), fail(), retry()}.

Transactional Web Services - 2

◼ The considered termination states (ts) are:
◼ Failed, completed, compensated, aborted and canceled.

◼ Transactional properties of services are
differentiated by termination states:
◼ Failed is not a ts of s iff s is retriable;

◼ Compensated is a ts of s iff s is compensatable.

Services States/Transitions

[Source: Bhiri et al, 2005]

Transactional Composite (Web)

Service

◼ Existing Web services are combined to form a
composite Web service.
◼ “A Transactional Composite (Web) Service (TCS)

emphasizes transactional properties for composition and
synchronization of component Web services.

◼ It takes advantage of services transactional properties to
specify mechanisms for failure handling and recovery.”

◼ An Acceptable Termination State (ATS) of a TCS is a
set of termination states of the component Web
services that are acceptable to the user.

An Example - A composite service

for online computer purchase.

◼ Services involved are:
◼ the Customer Requirements Specification (CRS) service used to

receive the customer order and to review the customer
requirements,

◼ the Order Items (OI) service used to order the computer
components if the online store does not have all of it,

◼ the Payment by Credit Card (PCC) service used to guarantee the
payment by credit card,

◼ the Computer Assembly (CA) service used to ensure the computer
assembly once the payment is done and the required components
are available, and

◼ the Deliver Computer (DC) service used to deliver the computer to
the customer (provided either by Fedex (DCFed) or TNT (DCTNT)).

[Source: Bhiri et al, 2005]

ATS used in the example

[Source: Bhiri et al, 2005]

Dependencies between services

◼ Dependencies are defined between service
executions.

◼ A dependency from s1 to s2 exists if a transition of
s1 can fire an external transition of s2.

◼ The following dependencies have been defined:

◼ Activation dependency:
◼ the completion of s1 => the activation of s2;

◼ Alternative dependency:
◼ the failure of s1 => the activation of s2;

◼ Abortion dependency:
◼ The failure, cancellation or the abortion of s1 => the

abortion of s2;

◼ Cancellation dependency:
◼ The failure of s1 => the cancellation of s2.

◼ The last three are called transactional
dependencies.

Objective and Overview

◼ First, an abstract representation of the composition
with desired transactional properties of its
constituent services is formulated.
◼ This is done by using a set of interactions patterns

(sequence, AND-split, AND-join, …)., and specifying the
required ATS

◼ Appropriate transactional behavior from the TCS
skeleton and the ATS is obtained.
◼ This is equivalent to identifying the appropriate

dependencies between services.

◼ Then, by a match-making process, concrete Web
services satisfying the transactional properties are
selected to obtain a TCS.

◼ The validity of the TCS is checked by “transactional
validity rules”.

◼ If not valid, new TCS is tried.

Objective and Overview - 2

[Source: Bhiri et al, 2005]

Achieving Atomicity Using

Commutativity

[Michael Melliar-Smith and Louise E. Moser, 2007]

Motivation - 1

◼ “Business activities incur the risk of long delays and
locked data when using the distributed transaction
strategy based on two-phase commit and conservative
locking.”
◼ [Due to blocking nature of 2PC], “if a transaction in one

enterprise locks data in the database of another enterprise and
then the server of the first enterprise fails, the data in the
second enterprise might remain locked for an indeterminate
period of time until the server in the first enterprise is recovered
from the fault. The risk of such delays is unacceptable,
particularly when the other participants in the business activity
are unknown or of uncertain dependability. Consequently, in
practice, Web Services Atomic Transactions are not used across
a wide-area distributed environment.”

◼ “The problems of distributed transactions, based on the two-
phase commit protocol, can be reduced, but not eliminated, by
use of the three-phase commit protocol [Skeen and
Stonebraker, 1983]. However, the three-phase commit protocol
increases transaction processing overhead and latency in the
normal fault-free case. Consequently, the three-phase commit
protocol is not used in practice.”

Motivation - 2

◼ “The Web Services Business Activity Specification
[Cabrera et al. 2005] addresses these problems by
means of an extended transactions strategy with
compensating transactions [Garcia-Molina and
Salem 1987].

◼ Compensating transactions are difficult to design
and program, have a higher error rate, and incur a
high risk of leaving the databases in an inconsistent
state. Detecting and removing these inconsistencies
are difficult, labor-intensive and time-consuming.”

Proposed Method

◼ Their idea is to allow interleaving of only commutative
steps.
◼ A mechanism to reserve the necessary resources at the

beginning of the execution is followed.

◼ If all the necessary resources are not available, then the
transaction execution will not start.

◼ This is akin to getting all the locks at the beginning of the
execution.

◼ Reservation requests of other transactions will be entertained
only if non-conflicting resources are available.

◼ Reservations will be held until the transaction commits or
aborts.

Protocols for commitment

Two-Phase Commit (2PC)

Coordinator

Participant 1

Participant 2

Call for Commit

Call for Commit

Yes

Yes

Coordinator

Participant 1

Participant 2

Commit

Commit

Phase 1 – Preparation: Coordinator sends a request for commit to all participants

and waits until it recieves response from them.

Phase 2 – Commit/Abort: Coordinator decides to commit the transaction, if it

receives YES from all participants; and decides to abort, if it receives NO from any

of the participants.

2PC Gurantees atomicity in a distributed environment.

2PC involves message communications for Request for vote, voting and

decision, so the delay is large.

Phase 1
Phase 2

Limitations and variations of 2PC

◼ 2PC is a blocking protocol.
◼ All participants who voted YES block if the

coordinator fails before sending the decision in
phase 2.

◼ Variations of 2PC
◼ Presumed Commit and Presumed Abort

◼ Designed to reduce the number of messages

◼ Assume “default” decisions

◼ Differ with respect to logging and recovery details

◼ 3PC
◼ Non-blocking protocol

◼ Increased number of messages

◼ Volatile 2PC
◼ In this context, 2PC is called Durable 2PC

Limitations and variations of 2PC- 2

◼ Volatile 2PC (4PC)

◼ Phase 1 – Prepare phase of Volatile 2PC

◼ Before the transaction starts the Durable2PC, all participants registered with
the Volatile2PC are informed and can flush cached data. Any failure at this
point will cause the transaction to roll back.

◼ Phase 2 & Phase 3 –Prepare & Commit/Rollback phases of 2PC

◼ The coordinator then conducts the entire Durable2PC protocol.

◼ Phase 4 – Commit/Rollback phase of Volatile 2PC

◼ Once the transaction has terminated, the second phase of the Volatile 2PC
protocol is executed.

◼ Any failures at this stage are ignored as the transaction is terminated, and
therefore nothing is affected.

◼ All participants registered for volatile 2PC must respond to coordinator
with vote messages before coordinator sends prepare messages to cohorts
registered for (durable) 2PC.

◼ Participant registered for volatile 2PC is not guaranteed to receive
commit/abort message from coordinator. (Since it does not support
durable resources, the message serves no purpose.)

◼ Useful to work on cached objects.

2 PC in e-services context ?

◼ E-service transactions are, usually, long-lived

and hence blocking resources for a long-time is

not acceptable

Web Services Transaction

Management

◼ Business Transaction Protocol

◼ Tentative Hold Protocol

◼ WS-Transaction

◼ WS-Atomic Transaction

◼ WS-Business Activity

◼ WS-Coordination

◼ WS-Scheduler

Business Transaction Protocol

(BTP) - 1

◼ Developed by OASIS [OASIS 2002]

◼ Manages complex B2B transactions over Internet

◼ XML based standard interoperation protocol and
follows 2 PC commit protocol

◼ Supports asynchronous communication between
loosely-coupled applications

◼ Atoms Vs Cohesions
◼ Atoms are short duration transactions, follows ACID

◼ Cohesions are long duration transactions which are
combination of several atom transactions, relaxes ACID

Business Transaction Protocol

(BTP) - 2

◼ Cohesions
◼ Cohesive transactions relax isolation property by making

intermediate results visible.

◼ Cohesive transactions may deliver different termination
results (commit or rollback) to its participants. Consistency is
determined based on the agreement and interaction between
the coordinator and initiator.

◼ Initiator is allowed to terminate the transaction.

◼ BTP incorporates business logic into the transaction
infrastructure.
◼ It adds business logic between the phases in 2 PC.

◼ The intermediate results are visible to other transactions and
thus isolation is relaxed.

Tentative Hold Protocol

◼ Proposed by Papazoglou, 2003.

◼ A non-blocking protocol

◼ useful to place a hold on a resource by multiple
participants and thus eliminate blocking problems.

◼ Allows tentative, non-blocking reservations
◼ Commit of a resource by one participant will be notified

immediately to all other participants who placed hold on
the same resource.

◼ Facilitates automatic co-ordination between two or
more business transactions.

◼ Provides open, loosely coupled, messaging-based
framework for information exchange between
participants prior to the execution of the actual
transaction itself.

WS-Transaction - 1

◼ Defines two models for web service transactions:

Atomic transactions and Business activity

transactions.

◼ WS-AtomicTransaction [OASIS 2007]

◼ Similar to the traditional ACID transactions, intended for

short-lived activities

◼ Implements transactional atomicity using 2PC, ensures

global atomicity

◼ Supports Durable2PC and Volatile2PC

◼ Works in a trusted domain

WS-Transaction - 2

◼ WS-BusinessActivity [OASIS 2007]
◼ Based on the Open nested transaction model.

◼ Useful when non-atomic outcomes are expected.

◼ Ensures consistency through compensation (by parents).

◼ Children can proactively communicate with parents without
waiting for a request.

◼ Intended for loosely-coupled, long-lived activities.

◼ Designed for an activity that consists of sequence of tasks,
where each task satisfies the constraints of an atomic
transaction.

◼ Participants might make state transitions durable and
visible immediately

◼ Compensating actions must be used to reverse actions.

◼ Sub-transactions may commit independently

◼ In case of sub-transaction failure, concerned participant
may decide whether the overall transaction should abort or
simply ignore it.

◼ Defines an abstract notion of activities, which
are distributed units of work, involving one or
more parties (which may be services,
components, or even objects).

◼ Specifies Two components
◼ Coordinator

◼ Responsible for creating context and coordinating the
participants according to the applied protocol.

◼ Participant
◼ Responsible for communicating with the coordinator

according to the applied protocol on behalf of web service.

◼ It creates a new activity, registers for a service,
and selects a protocol (as specified in WS-
Atomic Transaction / WS-Business Activity).

WS-Coordination

WS Transaction

Coordinator

Web Service

(Provider)

Web Service

Transactions

(Client)

Transactions Web Service

Coordination

Messages

Business Logic

interactions

Participant

Separates coordination from transaction

WS-Scheduler - 1

◼ Proposed by Alfari et al, 2009.

◼ Implements service level concurrency
control.

◼ Scheduler resides on web service provider’s
side.

◼ Detects transactional dependencies
◼ Build conflict matrix

◼ Handles global dependency cycles

WS-Scheduler - 2

◼ Responsible for managing concurrent
instances of WS-Coordination protocol.

◼ Consistency of transactions’ outcome is
ensured using the rules
◼ A transaction is only allowed to commit after all

its dominant transactions have committed
◼ Adds a waiting state in the WS-BusinessActivity

specification

◼ When a transaction aborts and/or compensates
its local activities, the local activities of all its
dependent transactions are compensated
automatically.

◼ These standards are mostly
◼ Based on 2 PC protocol and a set of extended

transactional models

◼ focuses on coordination between Participants

◼ Parties have to agree to a specific model (BTP
(atoms and cohesions), WS-AtomicTransaction and
WS-BusinessActivity), etc.) before initiating a
service..

◼ supports exchange of messages according to
specified model

◼ Exploits transactional semantic properties of
operations
◼ E.g. cancelling an order treated as compensation

Summary

Bibliography - 1

◼ M. Alrifai, P. Dolog, Balke Wolf-Tilo and W. Nejdl, Distributed Management of
Concurrent Web Service Transactions, IEEE Transactions on Service
Computing, Vol. 2, No. 4, pp. 289-302,2009.

◼ S. Bhiri, O. Perrin and C. Godart, Ensuring Required Failure Atomicity of
Composite Web Services, WWW 2005, pp. 138-147, 2005.

◼ L.F. Cabrera, G. Copeland, T. Fruend, J. Klein, D. Langworthy, F. Leymann, I.
Robinson, T. Storey and T. Thatte, Web Services Business Activity Framework,
2005, http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/WS-
BusinessActivity.pdf

◼ P. K. Chrysanthis, K. and Ramamritham, A Formalism for Extended Transaction
Models, Proc. of 17th International conference on Very large databases, pp. 103-
112, 1991.

◼ H. Garcia-Molina. and K. Salem, SAGAS, Proceedings of ACM SIGMOD
Conference on Management of Data, 1987.

◼ P. Grefen, J. Vonk and P. Apers, Global transaction support for workflow
management systems: from formal specification to practical implementation.
The VLDB Journal 10, pp.316-333, 2001.

◼ P. Michael Melliar-Smith and Louise E. Moser, Achieving Atomicity for Web
Services Using Commutativity of Actions, Journal of Universal Computer
Science, 13(8), pp. 1094-1109, 2007.

◼ F. Montagut and R. Molva, Augmenting Web Services Composition with
Transactional Requirements, Proc. IEEE Int. Conf. on Web Services (ICWS
2006).

http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/WS-BusinessActivity.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/WS-BusinessActivity.pdf

Bibliography - 2

◼ J.E.B. Moss, Nested Transactions: An Approach to Reliable Distributed

Computing, MIT/LCS/TR-260, Laboratory for Computer Science, Massachusetts

Institute of Technology, U.S.A, 1981.

◼ M. Papazoglou, Web Services and Business Transactions, World Wide Web:

Internet and Web Information Systems, 6, pp. 49-91, 2003.

◼ C. Pu, G. Keiser and N. Hutchinson, Split-Transactions for Open-Ended

Activities, Proceedings of the 14th International Conference on VLDB, 1998.

◼ H. Schuldt, G. Alonso, C. Beeri and Schek Hans-Jorg, Atomicity and Isolation

for Transactional Processes, ACM Transactions on Database Systems, 27(1), pp.

63 – 116, 2002.

◼ D. Skeen and M. Stonebraker, A Formal Model of Crash Recovery in a

Distributed System, IEEE Transactions on Software Engineering, 9(3), pp. 219-

228, 1983.

◼ K. Vidyasankar, Serializability, Encyclopedia of Database Systems, Editors-in-

chief: Liu Ling; Ozsu, M. Tamer, Springer 2009.

◼ K. Vidyasankar. and G. Vossen, Multi-Level Modeling of Web Service

Compositions with Transactional Properties, Journal of Database Management,

Special issue on Service-oriented Computing.

Bibliography - 3

◼ K. Vidyasankar and G. Vossen, A Multi-Level Model for Web Service
Composition, Proceedings of International Conference on Web Services (ICWS
2004), San Diego, July 6-9, pp. 462-469, 2004.

◼ K. Vidyasankar, P. Radha Krishna and Kamalakar Karlapalem, A Multi-level
Model for Activity Commitments in E-contracts, 15th Int. Conf. in Cooperative
Information Systems (CoopIS 2007), Vilamora, Protugal, LNCS Vol. 4803,
Springer 2007, pp. 300-317, 2007.

◼ K. Vidyasankar, P. Radha Krishna and Kamalakar Karlapalem, Study of
Execution Centric Payment Issues in E-contracts, Proc. IEEE Services
Computing Conference (SCC), Hawaii, Vol. 2, pp. 135-142, 2008.

◼ K. Vidyasankar, P. Radha Krishna and Kamalakar Karlapalem, Study of
Dependencies in Executions of E-contract Activities, 13th East-European
Conference on Advances in Databases and Information Systems (ADBIS 2009),
Riga, Latvia, September 2009, LNCS Vol. 5739, 2009, pp. 301-313, 2009.

◼ Zhang Liang-Jie, Zhang J. and Cai H., Services Computing, Springer and
Tsinghua University Press, 2007.

◼ OASIS Committee Specification, “Business Transaction Protocol,” version 1.0,
May 2002.

◼ OASIS Web Service Atomic Transaction (WS-AtomicTransaction), 2007,
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-os.pdf

◼ OASIS Web Service Business Activity (WS-BusinessActivity), http://docs.oasis-
open.org/ws-tx/wstx-wsba-1.1-spec.pdf

◼ OASIS Web Service Coordination (WS-Coordination), 2007, http://docs.oasis-
open.org/ws-tx/wscoor/2006/06.

Thank you

	Slide 1: Tutorial on Advanced Transaction Models for e-Services
	Slide 2: Motivation
	Slide 3: Motivation - 2
	Slide 4: Motivation - 3
	Slide 5: Database Transactions versus Web Services Transactions
	Slide 6: Database Transactions versus Web Services Transactions - 2
	Slide 7: Adaptation of Transactional properties
	Slide 8: Agenda
	Slide 9: Brief Introduction to Database Transactions
	Slide 10: Transaction Definition
	Slide 11: Transaction Properties - 1
	Slide 12: Transaction Properties - 2
	Slide 13: Transaction Management – Concurrency Control
	Slide 14: Transaction Management - Recovery
	Slide 15: Recoverability Properties
	Slide 16: Relaxing the ACID properties
	Slide 17: Early Advanced Transaction Models
	Slide 18: Sagas
	Slide 19: Nested Transactions
	Slide 20: Types of Nested Transactions
	Slide 21: Atomicity Properties of Nested Transactions
	Slide 22: Compatible Transactions
	Slide 23: Relative Atomicity and Relative Serializability
	Slide 24: Split-Join Transactions
	Slide 25: Execution in Distributed Environments
	Slide 26: (Homogeneous) Distributed Database Systems
	Slide 27: Replicated Database Systems
	Slide 28: Mobile Database Systems
	Slide 29: Heterogeneous Distributed Database Systems - 1
	Slide 30: Heterogeneous Distributed Database Systems - 2
	Slide 31: Data Item and Operation Granularities
	Slide 32: Data Items, Abstract Data Types and Objects
	Slide 33: Concurrent executions of non-atomic (operations and) methods -1
	Slide 34: Concurrent executions of non-atomic (operations and) methods -2
	Slide 35: (Transactional) Workflows
	Slide 36: Services
	Slide 37: Service definition
	Slide 38: Characteristics of a service
	Slide 39: Services
	Slide 40: Issues
	Slide 41: Service composition
	Slide 42: Transactional Web Services
	Slide 43: [VV] References
	Slide 44: General Vision of Web Services
	Slide 45: Web Services Composition
	Slide 46: Hierarchical Composition
	Slide 47: Transactional Composition
	Slide 48: Atomicity
	Slide 49: Multidatabase Global Transactions
	Slide 50: Multidatabase Transaction -1
	Slide 51: Multidatabase Transaction - 2
	Slide 52: Multidatabase Transaction - 3
	Slide 53: Transactional Processes
	Slide 54: Process Model Example
	Slide 55: Execution Example - 1
	Slide 56: Execution Example - 2
	Slide 57: Execution Example - 3
	Slide 58: Execution Examples - 4
	Slide 59: Approach
	Slide 60: Different Terminations
	Slide 61: Execution Example - 1
	Slide 62: Execution Example - 2
	Slide 63: Execution Examples - 3
	Slide 64: Execution Example - 4
	Slide 65: Pivot Graphs
	Slide 66: Pivot Graph
	Slide 67: Pivot Graph
	Slide 68: Recoverability
	Slide 69: An Application Semantics
	Slide 70: Example
	Slide 71: Atomicity of Composite Activity
	Slide 72: Transactional Properties for Composite Activities
	Slide 73: Atomic Execution of Composite Activities
	Slide 74: Example
	Slide 75: Recovery Possibilities
	Slide 76: Suffix of [p1]
	Slide 77: Multi-pivoted Activities
	Slide 78: Added Value
	Slide 79: Electronic Contracts
	Slide 80: [VRK] References
	Slide 81: Electronic contract (e-contract)
	Slide 82: Example: Contract for building a house
	Slide 83: Complexity of contracts
	Slide 84: Goals of the e-contract
	Slide 85: Properties of activities in e-contracts
	Slide 86: Some examples
	Slide 87: Closure and E-contract Commitment
	Slide 88: Multi-Level Composition Model
	Slide 89: Properties of e-contract activities
	Slide 90: Basic activities
	Slide 91: Constraints
	Slide 92: Example – Painting a wall
	Slide 93: Change of constraints
	Slide 94: One way of adjusting - Compensation
	Slide 95: Another way of adjusting - Retry
	Slide 96: Execution states of an activity
	Slide 97: Execution states of an activity
	Slide 98: Progression of states
	Slide 99: Execution stages of an activity
	Slide 100: Some points
	Slide 101: Additional points
	Slide 102: Hierarchical composition
	Slide 103: Composition graph – Bottom level
	Slide 104: Composite activity
	Slide 105: Composition example
	Slide 106: Execution example - 1
	Slide 107: Execution example – 2
	Slide 108: Composite activity - Terminations
	Slide 109: Commitment of constituent activities
	Slide 110: Transactional properties
	Slide 111: Transactional properties (cont’d)
	Slide 112: Partial backward recovery – Simple case
	Slide 113: Partial backward recovery – General case
	Slide 114: Dependencies
	Slide 115: Dependencies between executions
	Slide 116: Procurement example
	Slide 117: Procurement activities
	Slide 118: Dependencies-1
	Slide 119: Dependencies-2
	Slide 120: Dependencies-3
	Slide 121: Dependencies-4
	Slide 122: Dependencies Summary - 1
	Slide 123: Dependencies Summary - 2
	Slide 124: Multi-level model - Composition
	Slide 125: Multi-level Model - Composite Activity
	Slide 126: Multi-level Model – Transactional Properties
	Slide 127: Transactional properties (Cont’d)
	Slide 128: Example of “relative to” aspect in compensatability
	Slide 129: Dependencies between activities at different levels
	Slide 130: Multi-level commitment and closure
	Slide 131: st- and ce-predicates
	Slide 132: Capabilities for execution adjustment
	Slide 133: Multi-level Model Discussion - 1
	Slide 134: Multi-level Model Discussion - 2
	Slide 135: Multi-level Model Discussion - 3
	Slide 136: Payment issues
	Slide 137: Two aspects of payments
	Slide 138: Payments
	Slide 139: Cost and payment
	Slide 140: Calculating cost and payment
	Slide 141: Payment and Cost - 1
	Slide 142: Payment and Cost - 2
	Slide 143: Payment and Cost – 3
	Slide 144: Payment Trees
	Slide 145: Execution example – cont’d
	Slide 146: Multi-level Model Transactional Properties and Payments
	Slide 147: Payment Issues Discussion - 1
	Slide 148: Payment Issues Discussion - 2
	Slide 149: Summary
	Slide 150: Open Issues
	Slide 151: Recent Transaction Model Proposals for Services
	Slide 152: Web Services Composition with Transactional Requirements
	Slide 153: Transactional Web Services - 1
	Slide 154: Transactional Web Services - 2
	Slide 155: Services States/Transitions
	Slide 156: Transactional Composite (Web) Service
	Slide 157: An Example - A composite service for online computer purchase.
	Slide 158: ATS used in the example
	Slide 159: Dependencies between services
	Slide 160: Objective and Overview
	Slide 161: Objective and Overview - 2
	Slide 162: Achieving Atomicity Using Commutativity
	Slide 163: Motivation - 1
	Slide 164: Motivation - 2
	Slide 165: Proposed Method
	Slide 166: Protocols for commitment
	Slide 167: Two-Phase Commit (2PC)
	Slide 168: Limitations and variations of 2PC
	Slide 169: Limitations and variations of 2PC- 2
	Slide 170: 2 PC in e-services context ?
	Slide 171: Web Services Transaction Management
	Slide 172: Business Transaction Protocol (BTP) - 1
	Slide 173: Business Transaction Protocol (BTP) - 2
	Slide 174: Tentative Hold Protocol
	Slide 175: WS-Transaction - 1
	Slide 176: WS-Transaction - 2
	Slide 177
	Slide 178: WS Transaction
	Slide 179: WS-Scheduler - 1
	Slide 180: WS-Scheduler - 2
	Slide 181
	Slide 182: Bibliography - 1
	Slide 183: Bibliography - 2
	Slide 184: Bibliography - 3
	Slide 185: Thank you

