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Abstract—We consider the problem of automatic identification
of native language (L1) of non-native English (L2) speakers
from eleven L1 backgrounds. Analyzing the influence of each L1
pronunciation variabilities on L2 pronunciation, different sets of
linguistic units are chosen to compute supra-segmental features
by considering the acoustic and prosodic variations within and
across these sets. Using these features, we implement a multi-
class classifier comprising 55 binary (one versus another) support
vector machine (SVM) classifiers. We select optimal set of features
for each binary classifier using two feature selection strategies
(FSSs) based on Fisher discriminant ratio (FDR). The first
strategy considers the features that maximizes the each binary
classifier performance. However, the second strategy selects the
features by maximizing a multi-class classifier performance for
which an algorithm is proposed. Experiments are performed on
the ETS corpus of non-native spoken English, comprising 4099
files. When the proposed features along with FSSs are used,
the unweighted average recall (UAR) on the test set for each
selection strategy is found to be 1.3% and 2.1% (absolute) higher
compared to using all features; as well as 3.0% and 3.8% higher
than the baseline technique respectively.

Index Terms—Native language Identification, acoustic and
prosodic features, feature selection strategies.

I. INTRODUCTION

Speech carries linguistic information as well as para-
linguistic information including emotional states and speaker
idiosyncrasies [1]. The para-linguistic information could be
useful in predicting the person’s identity/social class, for
example nativity [1] [2]. Most of the existing works on
nativity address the problem of language identification when
a speaker is speaking his/her own native language (L1)
[3]. However, identifying speaker’s nativity (L1) remains a
challenge when the speaker speaks English (L2) [2]. This
problem is similar in many ways to the problem of ac-
cent/dialect identification [2]. An automated way of identifying
native language/dialect/accent could help in accent morphing
and in improving the automatic speech recognition (ASR)
accuracy [2]. Arslan et al. proposed an isolated word and
phoneme based algorithm to identify three different foreign
accents [4]. Piat et al. showed the benefit of prosodic patterns
in L1 identification of four different nativities [5]. Biadsy
examined frame-based acoustic and phonetic features along
with prosodic features for identifying three different foreign
accents [6]. Lope et al. used acoustic features from Gaussian
mixture model (GMM) super vectors and prosodic features for

identifying the nativeness in the TED talks, where speakers
have high proficiency in speaking English [7]. Unlike having
speakers with high proficiency in speaking English (L2),
we consider nativeness (L1) identification from spontaneous
speech with speakers having wide variety in their spoken
English proficiency.

Most of the existing works in nativeness identification
have been addressed based on acoustic and prosodic fea-
tures computed within different segments recognized using
ASR system. However in the case of spontaneous speech
with varying accents, obtaining reliable segment boundaries
could be challenging [8]. On the other hand, computing the
features using erroneous segment boundaries can reduce the
performance of nativeness identification [8]. The performance
could degrade further for spontaneous speech with different
accents when the accent specific pronunciation lexicon is
unavailable for each L1 [8] [9]. Obtaining features robust
to these variabilities is challenging [10]. We, in this work,
select a subset of segments instead of all ASR decoded
segments to compute the acoustic and prosodic features. These
selected segments contain the words that are chosen based
on their frequency of occurrence in the training data. This
is because, we observe that frequently occurring words are
decoded correctly by the ASR across all L1. We also observe
that the ASR decoded text has common language structures
within the nativities; to account these structural properties,
features based on topic models are proposed [11]. In addition
to all the above features, we compute features based on the
speech acoustics over the entire sentence instead of using ASR
decoded output. Proposed acoustic and prosodic features are
combined with the openSMILE features [2] to identify the
nativeness.

While different types of features can provide several useful
cues for nativity identification, Zhang et al. described that
the accuracy could degrade with increasing dimension of the
feature vector [10]. So it could be useful to select a subset of
features that maximizes the classifier performance. However,
a brute forced method for feature selection could be time
consuming when the feature vector dimension is large. In
order to circumvent this problem, different feature selection
strategies (FSSs) have been proposed in the literature [12].
However most of these methods are designed for binary



classifier (BC) and then generalized to multi-class classifier
(MCC), because a MCC could be implemented with multiple
BCs [13]. In all of these methods, a common subset of features
is selected for all BCs; however, different subset of features for
different BC could improve the classifier performance further.
Based on this hypothesis, we develop a strategy by following
the work by Huang et al. [14] using Fisher discriminant ratio
(FDR) to select a subset of features for each BC separately.
Further, we propose a method to select the best combination
of those features at each BC for achieving maximal MCC
performance.

We implement the MCC with multiple support vector ma-
chine (SVM) BCs, each of which classifies one versus another
class. For each BC, features are analyzed separately and
ranked based on the FDR. We select top-ranked features for
each BC separately from the rank ordered list, that maximizes
the overall MCC performance. The features are computed
based on acoustic and prosodic variations within the selected
subset of ASR decoded segments, along with the features
based on the speech acoustics over the entire sentence without
considering ASR decoded output. In addition, features based
on topic models are proposed. Experiments are performed on
the ETS non-native spoken English data. The proposed method
performs better than the baseline technique [2] using selected
features with FSSs as well as using all features without FSS.
When FSS is used, the unweighted average recall (UAR) is
found to be highest and it is more than the baseline by 5.2%
and 3.8% on the development and the test sets respectively.

II. DATABASE AND EXPERIMENTAL SETUP

A. Database

We use the ETS corpus1 of non-native spoken English
[2]. This corpus includes more than 50 hours of speech
from 4099 non-native English speakers, with 11 different L1
backgrounds (Arabic (ARA), Chinese (CHI), French (FRE),
German (GER), Hindi (HIN), Italian (ITA), Japanese (JAP),
Korean (KOR), Spanish (SPA), Telugu (TEL), and Turkish
(TUR)). Every language has 358-385 speakers with varying
degree of proficiency in English speaking. Each audio record-
ing is about 45 seconds long and has been obtained in the
context of the TOEFL iBT assessment. This test is designed to
measure a non-native speaker’s ability to use and understand
English at the university level by asking a question from a
predefined set of seven questions. Each recording from the
data has been labeled with the speaker’s nativity along with
prompted question.

B. Experimental setup

We randomly divide the entire data into three sets – 1) 2,459
instances (60%, approximately 30.7 hours) as the training
set; 2) 821 instances (19%, approximately 10.3 hours) as
the development set; 3) 819 instances (17%, approximately
10.2 hours) as the test set. We use CMUSphinx ASR engine

1Source: Derived from data provided by ETS. Copyright © 2016 by ETS
(www.ets.org). Disclaimer: The opinions set forth in this publication are those
of the author(s) and not ETS.

[15] for decoding audio into text and obtain time aligned
word boundaries. ASR engine acoustic models are learned
from the Wall Street Journal-based CSR corpus [16]. The
ASR uses HUB4-trigram language model [17]. Using the time
aligned word boundaries, we obtain the prosodic markings
by using AuToBI [18] with Boston directions corpus based
prosodic models. The obtained prosodic information consists
of 8 different accents (NOACCENT, H*, L+H*, !H*, H+!H*,
L*, L*+H and L+!H*) along with their time of occurrence,
intonation boundaries and sentence boundaries [19]. Using the
decoded text, we build the topic models by using Stanford
topic modeling toolbox with latent dirchlet allocation [20].
For nativeness classification, we use SVM classifiers using
LIBSVM toolkit [13].

III. PROPOSED APPROACH

Figure 1 shows the block diagram summarizing the steps
involved in the proposed method, consisting of three main
stages. The first stage involves the computation of three
different types of features – 1) acoustic and segmental features,
which consider the acoustic variations within the selected
set of ASR decoded words as well as within the entire
sentence. 2) prosodic features, which consider the variation
in the prosodic markings including stress, tone and accent 3)
topic model features, which consider the common language
structures within each nativity based on ASR decoded text.
The second stage implements the MCC comprising multiple
BCs and determines the final decision strategy from each BC
output. The third stage uses the proposed plus OpenSMILE
features and selects the best subset of features for every BC
using FDR based rank ordering.

Fig. 1. Block diagram describing the proposed approach

A. Feature computation

1) Acoustic and segmental features (ASFs): The acoustic
properties within a segment could vary across the nativity. For
example Robert has shown that the vowel formants change
across the dialects of US English [21]. Similarly Hönig et
al. has used short-time energy variations within segments
for identifying the degree of nativity [22]. In this work,
instead of using all the segments, we select two sub-sets of
segments for computing the features. Within these segments,
we hypothesize that the acoustic features would be consistent
and less noisy thereby reflects the nativeness specific cues
effectively. We believe that these segments are as follows –
1) the words from the ASR decoded text which appear one
or more times in every audio file of the training set, called at



least once words (ATOWs); the total count of such words is
found to be 19. 2) top L mono-syllabic words (MSWs) from
the rank ordered list of all MSWs in the training data; the
ranking is done according to their frequency of occurrence.
The L is empirically chosen to be 500. Within ATOWs and
MSWs, we obtain the features as follows:
• Average duration of each word across a sentence, results

in a total of 519 features.
• Statistics of the averaged short-time energy and temporal

correlation & selected sub-band correlation [23] (TC-
SSBC) of each word. The statistics are computed across
a sentence and are median, mean, geometric mean, mode,
range, skewness, kurtosis, standard deviation, maximum
and minimum. This result in a total 1038 features.

In addition to these features, we compute a total of 84 features
considering the segments containing silences, filled pauses,
cough and noise following above two steps. These together
results in a total of 1621, referred to as ASFs#1.

Nativity could also depend on phoneme specific variations.
For example, phoneme /w/ is typically replaced by /v/ in
Indian English [24]. This, in turn, could cause different nativity
specific patterns in the occurrence of various phonetic units. In
the absence of accent specific pronunciations in the lexicon, we
aim to capture this pattern using 46 phone models [15] and a
frame-wise likelihood computation. For this, we consider two
sets of models – 1) 138 GMMs (46 phone models ×3 states
per phone), 2) 42 GMMs by combining state GMMs with
equal weights for all phones excluding breath, cough, smack
and noise. Using each set of models, we propose two sets
of features: 1) fraction of the frames in an audio file with the
highest likelihood in each frame from every model, 2) average
likelihood across all frames in an audio file using every model
by ignoring likelihoods below a threshold, empirically set to
0.001. This results in 360 ((138+42)×2) features, referred to
as ASFs#2.

Speaking rate (number of syllables per second) is another
factor for discriminating the nativity. We observe that the
Japanese have lower speaking rate than Telugu nativity. For
each audio file, we compute the speaking rate contour (analysis
window of 2 seconds with a shift of 0.125 seconds) in two
methods – 1) counting the number of syllabic nuclei locations
obtained directly from the acoustics as proposed by wang et al.
[23] 2) counting the number of syllabic segments from ASR
output whose centers lie within the analysis window. Similar
to the speaking rate contour, a silence rate contour is computed
using ASR decoded silence segments with the same analysis
interval by following the second method. Considering these
three contours, we obtain 300 features from the statistics of
the statistics computed within every 2 seconds segment of each
contour, referred to as ASFs#3.

2) Prosody based features (PFs): Every L1 has its own
prosodic patterns, for example Hindi and Telugu are syllable
timed language whereas English is a stress timed language
[24]. The voice of the L1 speakers speaking L2 is also influ-
enced by their own native prosodic patterns [4]. To consider
this, we compute three sets of features considering prosodic

markings obtained from AuToBI [18]. Further, we group the
markings into four categories such as syllables with – 1) accent
2) accent and high pitch tone 3) no accent 4) primary stress.
The first set of features are obtained based on the duration
variations in the four categories computing statistics on 1)
segment intervals between two consecutive syllables and 2)
syllable duration in each category. This results in a total of
80 ((4×10)×2) features, referred to as PFs#1. The second set
of features are obtained from the statistics across a sentence
computed on the ten statistics of TCSSBC and short-time
energy separately within all the syllables as well as within
the syllables of MSWs belonging to all the four categories.
This results in a total of 1600 ((((10×10)×2)×2)×4) features,
referred to as PFs#2. The third set of features obtained from
the statistics of the statistics computed separately within every
2 seconds segment of four speaking rate contours, which
are computed as mentioned in section III-A1 considering the
syllables belonging to each category. This results in a total of
400 features, referred to as PFs#3.

3) Topic model based features (TMFs): We observe that
the words spoken by the L1 speakers for a question, which
is asked during the test, have a common pattern within one
nativity and different patterns across different nativities. To
explore these properties we built topic models specific to each
L1 and question (overall 11x7=77 cases). In the absence of
training data for two cases, a total of 75 topic models are built
using the ASR hypotheses from the training data. From these
topic models we obtain 75 features comprising likelihoods
from each model for an unknown spoken text.

Combining acoustic, prosodic and topic model based fea-
tures, a total of 4436 proposed features are combined with
the baseline (openSMILE) features [2], resulting in a 10809-
dimensional feature vector which is used for classification.
Schuller et al. have used the openSMILE features for native
language identification task [2].

B. Multi-class classifier

We use SVM classifier with linear kernel for identifying 11
nativities. The linear kernel has been found to perform better
than other choices of kernel [13], when the feature vector
dimension (10809) is greater than the number of training
instances (2459). In general SVM classifiers are binary and
discriminative. However, an effective multi-class SVM classi-
fier can be designed based on pair-wise coupling strategy [25].
In this work, we use the pair-wise coupling strategy; based
on this, the 11 class classification problem is broken into 55
(11C2) BC problems. In this strategy, each BC classifies/votes
every feature vector to one of the nativities along with a
confidence score. The final decision on the nativity is made
based on a majority voting scheme. However, in the case
of a tie the nativity with maximum total confidence score
is selected [25]. By implementing this pair-wise strategy,
we adapt each BC separately for achieving the best MCC
performance.



C. Fisher Discriminant Ratio based feature selection

When the dimension of the feature vector is larger than the
number of training instances, the SVM classifier tends to over-
fit the data [26]. Hence, the classifier can perform poorly on
unseen data [10]. However eliminating features without any
specific strategy could also degrade the classifier performance
because the features which discriminate well between a pair of
nativities might not work well with other pair of the nativities.
So a feature selection strategy (FSS) is required. By following
the work by Huang et al. [14], we propose FSSs based on
Fisher discriminant ratio (FDR). The FDR between class i
and j for each feature is computed by following the work
proposed by wang et al. [27]; and this value is high for the
features which discriminate well between two classes. So most
discriminative features could be selected for a BC by ranking
the features based on the FDR values.

Algorithm 1 FSS-2 algorithm – input=S k
I : Optimal set of

features selected in FSS-1 for k-th BC, output=S k
II : Optimal

set of features selected for k-th BC; ∀k : 1 ≤ k ≤ 55.
. N : Incrementing steps.
. Rk

{1:m} : Set of top m ranked features from Rk.
. MCC(X ): Function that returns the overall MCC perfor-
mance for the given set (X ) of features for each BC.
S k

II ← S k
I ,∀k : 1 ≤ k ≤ 55;

for each k ∈ {1 : 55} do
for each i ∈ {0 : N : 10809} do

X ← {S 1
II , ..,S

k−1
II ,Rk

{1:i},S
k+1
II , ..,S 55

II }
Ai = MCC(X );

end for
i∗ = argmax

i
Ai; S k

II ← Rk
{1:i∗};

end for

Considering this, we select the features for each BC using
two different strategies. In the first strategy (FSS-1), each BC
is trained separately, where we find the top-ranked features
from a ranked order features set (Rk ∀k : 1 ≤ k ≤ 55) by
maximizing the BC performance on the development set for
every increment of N features. In FSS-1, we hypothesize that
the selected features which maximizes individual BC perfor-
mance could result in better MCC performance. In contrast
to this, in the second strategy (FSS-2), top-ranked features
are selected for each BC that maximizes the overall MCC
performance instead of individual BC performance as in FSS-
1. The maximal performance is evaluated on the development
set. The detailed steps involved in FSS-2 are provided in
Algorithm 1. Using these optimal choices of features, the 11
nativities classification is performed.

IV. EXPERIMENTAL RESULTS

A. Hyper parameter optimization

We consider classification accuracy and unweighted average
recall (UAR) as objective measures for SVM based BC and
MCC respectively. We normalize every feature vector by the
mean and the variance of the training set before training as
well as performing classification on the test and development
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Fig. 2. Plot describing the selected number of top-ranked features for each
BC by using FSS-1 and FSS-2

sets. The complexity parameter (C) of each BC is learnt on the
development set using the model learnt on the training data
by searching over the values 1E-5, 1E-4, 1E-3, 1E-2, 1E-1, 1
and 10. The optimized range of C for all 55 BCs is found to
be from 1E-3 to 1E-1. The optimal feature set for each BC is
separately learnt on the development set with N=1000. Figure
2 shows the selected number of top-ranked features by FSS-1
and FSS-2 for each BC. From the figure it is observed that
the optimum feature set sizes for all BCs found within FSS-
1 and FSS-2 are not identical. This observation is consistent
across the feature set sizes found in FSS-1 and those in FSS-
2. For example, in FSS-1 the optimal feature set sizes are
found to be 1000 and 3000 for FRE vs ARA and SPA vs
ARA BCs respectively, while, in FSS-2 they are 6000 and
5000 respectively. This indicates that the optimum feature set
changes from FSS-1 to FSS-2 as well as across BCs within a
selection strategy.

B. Results and discussion

Table I shows the UAR on the development (devel) and the
test set for the baseline technique and the proposed method
with three different conditions – without using FSS (Wo-FSS);
with FSS-1 and with FSS-2. From the table, it is observed that
the proposed method performs better than the baseline for all
cases on devel and test sets. On the development and test
sets, the proposed method without FSS (Wo-FSS) is higher
than the baseline by 0.9% and 1.7%(absolute) respectively.
This indicates that the proposed features are complementary to
the baseline features. Also when the proposed FSS-2 is used,
the accuracy increases by 4.3% & 2.5% and 2.1% & 0.8%
(absolute) compared to Wo-FSS & FSS-1 for development and
test sets respectively. This indicates that FSS improves the
classification performance.

TABLE I
UAR COMPARISON BETWEEN THE BASELINE AND THE PROPOSED

METHODS ON THE DEVELOPMENT AND TEST SETS

% Baseline Wo-FSS FSS-1 FSS-2

Devel 42.4 43.3 45.1 47.6

test 41.3 43.0 44.3 45.1

Table II shows confusion matrix among all 11 native lan-
guages on the test set. From the table, it is observed that
the accuracies for FRE, ITA, TUR, HIN, JAP, KOR and CHI
(marked in blue) improve over the baseline; and the highest
improvement is found to be 13.5% (absolute) for JAP. This
could be because JAP has lower speaking rate compared to



TABLE II
CONFUSION MATRIX COMPUTED ON THE TEST SET USING THE PROPOSED METHOD FSS-2 (DIFFERENCES BETWEEN CONFUSION MATRICES OF THE

FSS-2 AND BASELINE ARE SHOWN IN BRACKETS).

% GER FRE ITA SPA ARA TUR HIN TEL JAP KOR CHI

GER 52.0(-2.7) 5.3(1.3) 4.0(0.0) 4.0(-6.7) 8.0(0.0) 9.3(2.7) 1.3(0.0) 0.0(-2.7) 4.0(2.7) 8.0(1.3) 4.0(4.0)
FRE 8.2(-2.7) 35.6(2.7) 12.3(1.4) 8.2(-1.4) 9.6(1.4) 4.1(-2.7) 4.1(0.0) 0.0(-1.4) 9.6(4.1) 4.1(-1.4) 4.1(0.0)
ITA 6.7(-2.7) 17.3(4.0) 49.3(4.0) 10.7(-1.3) 9.3(5.3) 1.3(-5.3) 0.0(0.0) 1.3(1.3) 1.3(1.3) 0.0(-4.0) 2.7(-2.7)
SPA 5.3(-5.3) 9.2(0.0) 11.8(3.9) 25.0(-1.3) 7.9(2.6) 6.6(-2.6) 3.9(2.6) 5.3(-1.3) 7.9(2.6) 10.5(-1.3) 6.6(0.0)
ARA 4.1(-4.1) 10.8(0.0) 6.8(-6.8) 1.4(0.0) 42.5(-1.4) 8.1(0.0) 5.4(1.4) 5.4(-1.4) 5.4(-2.7) 5.4(0.0) 1.4(0.0)
TUR 6.7(4.0) 2.7(-5.3) 4.0(-1.3) 1.3(-5.3) 14.7(-2.7) 49.3(12.0) 1.3(0.0) 0.0(-6.7) 5.3(1.3) 8.0(2.7) 6.7(1.3)
HIN 1.4(-1.4) 2.7(1.4) 4.1(1.4) 2.7(0.0) 4.1(-2.7) 2.7(-1.4) 47.3(2.7) 31.1(0.0) 0.0(0.0) 0.0(-1.4) 4.1(1.4)
TEL 1.4(-1.4) 0.0(0.0) 1.4(-1.4) 2.7(-2.7) 5.5(2.7) 1.4(-1.4) 27.4(6.8) 54.8(-1.4) 1.4(0.0) 1.4(0.0) 2.7(-1.4)
JAP 1.4(-1.4) 2.7(-2.7) 1.4(0.0) 5.5(-8.2) 8.2(2.7) 2.7(0.0) 4.1(2.7) 0.0(0.0) 45.9(13.5) 16.4(4.1) 15.1(4.1)
KOR 1.4(-1.4) 2.7(0.0) 2.7(1.4) 10.8(-2.7) 2.7(-4.1) 2.7(1.4) 2.7(-1.4) 2.7(0.0) 12.2(-1.4) 39.2(1.4) 20.3(6.8)
CHI 6.5(-2.6) 2.6(-2.6) 0.0(-1.3) 6.5(-1.3) 5.2(3.9) 2.6(-6.5) 3.9(-1.3) 1.3(-1.3) 7.8(-3.9) 9.1(5.2) 54.5(11.7)

TABLE III
COMPARISON OF UARS OBTAINED USING PROPOSED THREE CATEGORIES

OF THE FEATURES AND THEIR COMBINATIONS ALONG WITH THE
BASELINE FEATURES ON TEST SET UNDER THREE CONDITIONS WO-FSS,

FSS-1 AND FSS-2.

Feature UAR Selected Features (%) UAR-drop (%)
Type (%) FSS-1 FSS-2 FSS-1 FSS-2

1 ASFs#1 29.5 25.8(18.0) 22.2(17.0) 4.0 6.3

2 ASFs#2 30.3 25.1(12.4) 23.2(12.1) 2.9 4.4

3 ASFs#3 17.1 26.8(17.2) 24.4(17.8) 2.4 3.1

4 PFs#1 16.7 31.1(20.6) 26.6(22.0) 1.9 3.5

5 PFs#2 20.1 32.6(19.5) 28.5(19.2) 3.9 5.1

6 PFs#3 15.4 23.0(15.9) 20.1(16.3) 2.9 4.2

7 ASFs 33.6 25.9(16.4) 22.6(15.6) 3.6 5.9

8 PFs 21.0 29.9(18.1) 26.1(18.1) 2.8 6.2

9 TMFs 7.7 8.8(13.1) 7.0(12.1) 1.8 3.2

10 7+8 33.0 27.5(16.8) 24.0(16.4) 6.9 8.6

11 7+9 33.1 25.4(16.2) 22.2(15.4) 4.6 5.9

12 8+9 20.6 29.0(17.8) 25.3(17.8) 4.7 5.2

13 7+8+9 28.0 27.2(16.7) 23.7(16.3) 7.7 8.2

14 OpenSMILE 41.3 39.2(18.6) 35.7(17.6) 8.4 10.2

15 7+14 44.6 35.2(17.6) 31.8(16.6) 9.9 10.1

16 8+14 38.9 37.1(18.2) 33.5(17.2) 11.7 12.3

17 9+14 41.6 38.8(18.5) 35.4(17.5) 9.0 10.4

18 7+8+14 43.3 34.3(17.5) 30.8(16.6) 28.3 30.4

19 7+9+14 44.2 35.0(17.6) 31.6(16.5) 10.0 10.1

20 8+9+14 38.6 36.8(18.1) 33.3(17.1) 12.1 13.1

other languages so the proposed features based on speaking
rate helps in better discrimination of JAP from other classes.
The accuracies of GER, SPA, ARA and TEL (marked in red)
reduce from the baseline; and the highest reduction is found
to be 2.7% for GER. In the table, GER, which is a stressed
timed language, is highly confused with its geographically
close syllable timed languages, namely, FRE, ITA and SPA.
So we hypothesize that the prosody based features could
discriminate GER from these languages. However, a drop
in UAR for these languages could be due to noisy prosody
marking because of poor ASR and/or AuToBI. From the
table, it is also observed that most of the confusions are
among geographically close languages – HIN-TEL; JAP-KOR-
CHI; GER-FRE-ITA-SPA, expect ARA-TUR. Therefore the
accuracies within these groups could be improved by adding
most discriminative features among these groups.

We, further, investigate the performance of the classifier
on the test data using different sub-set of features from
the total set of features. The sub-sets are considered from
three sub-categories of ASFs and PFs and 14 sets from all
possible combination of ASFs, PFs, TMFs and OpenSMILE,
excluding the combination containing all 10809 features. For
the comparison, we consider three performance measures – 1)
UAR under Wo-FSS 2) average percentage (standard deviation
in brackets) of selected features across all BCs and 3) UAR-
drop. The percentage is the ratio of selected number of features
to total number of features in each sub-set. The UAR-drop is
computed separately for FSS-1 and FSS-2. It is the difference
between the UAR in Table I and a UAR computed with MCC
using selected features in each sub-sets of features separately.
Considering this measure, we compare the contribution of each
sub-set in the overall UAR; the sub-set with the highest UAR-
drop indicates the most significant sub-set of features among
all.

Table III shows the three measures obtained from each sub-
set of features. From the table, it is observed that the UAR
obtained from each sub-set is not always higher than the UARs
obtained from its sub-partsall. For example, UAR obtained
with ASFs is found to be 33.6%, while that, with ASFs plus
PFs is 33.0%. However, it is also observed that the percentage
of selected features is more than 20% in all sub-sets except
TMFs with FSS-1 and FSS-2. This indicates that the selected
features in the sub-sets are complementary to each other. From
Table I and III, it is observed that FSS-2 achieves highest UAR
with lesser selected features in all sub-sets compared to FSS-1.
This indicates FSS-2 is better than FSS-1. It is also interesting
to observe that the standard deviations in the percentage of
selected features (show in brackets in Table III) are high in all
sub-sets. This indicates that the selected features are largely
vary among all BCs. This observation is consistent with the
observations made from Figure 2.

Among TMFs and sub-categories of ASFs & PFs, least
UAR and UAR-drops are achieved using TMFs. This could
be because of the errors in the ASR due to out of vocabulary
(OOV) words. This in turn causes inconsistent topic models
and provides less discrimination across the nativities. This
less discrimination is evident from the lower contribution of



TMFs in the selected features by FSS-1 and FSS-2. Highest
UAR and UAR-drops are obtained using ASFs#2 and ASFs#1
respectively. This indicates that the features deduced from
phoneme specific variations and based on ATOWs & MSWs
carry maximal cues for nativities. However, it is observed that
the UAR is lower and the UAR-drops are higher in ASFs#1
compare to ASFs#2. This could be due to elimination of
noisy features from ASFs#1 with FSSs. Among all sub-sets,
it is observed the highest UAR-drops (28.3% and 30.4%) are
obtained from 18-th sub-set (ASFs+PFs+OpenSMILE) under
both FSS-1 and FSS-2. However, UAR-drops (using FSS-1 &
FSS-2) obtained using ASFs+PFs and OpenSMILE are found
to be 6.9% & 8.6% and 8.4% & 10.2%. This indicates that
ASFs+PFs features are more complementary to OpenSMILE
features and hence together achieve the highest UAR-drop.

Further, it is observed that the UAR-drop obtained from
PFs is lower than that from PFs#2 and PFs#3 under FSS-
1. However, under FSS-2, the UAR-drop from PFs is higher
than that from those two. This indicates that FSS-2 selects
the features better than the FSS-1. Incontrast to this, UAR-
drops obtained from ASFs are lower than the ASFs#1 under
both FSS-1 and FSS-2. This indicates that both the FSSs fail
to select the optimal set of features. This could be because
of higher incremental step size (N = 1000). However, we
observe that the low value of N increases the computation
complexity. Hence, it is required to choose N by balancing
computational complexity as well as UAR.

V. CONCLUSIONS

We propose an FDR based acoustic and prosodic feature
selection strategy for MCC to identify the native language of
the speaker. We implement 11-class classifier by combining
55 SVM BCs using pairwise strategy. We propose a method
to learn the parameters and select the features for each BC
separately. We use FDR for selecting a subset of the features,
which are proposed based on acoustic, prosodic and linguistic
properties. Experiments with ETS corpus of non-native spoken
English reveal that the UAR of the proposed method improves
over the baseline technique. This improvement is highest when
the proposed FSS is used. Further investigations are required to
reduce confusion among the geographically close languages by
adding robust features. Future works also include the selection
of features jointly in FSS unlike ranking them individually as
done in the present work.
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Doddington, J. Hernández-Cordero, and L. P. Mason, “NIST language
recognition evaluation plans for 2015,” Sixteenth Annual Conference of
the International Speech Communication Association, pp. 3046–3050,
2015.

[4] L. M. Arslan and J. H. Hansen, “Language accent classification in
american English,” Speech Communication, vol. 18, no. 4, pp. 353–367,
1996.

[5] M. Piat, D. Fohr, and I. Illina, “Foreign accent identification based on
prosodic parameters,” Proc. of INTERSPEECH, Brisbane, Australia, pp.
759–762, 2008.

[6] F. Biadsy, “Automatic dialect and accent recognition and its application
to speech recognition,” Ph.D. dissertation, Columbia University, 2011.

[7] J. Lopes, I. Trancoso, and A. Abad, “A nativeness classifier for TED
talks,” IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5672–5675, 2011.

[8] M. Hasegawa-Johnson, J. Cole, P. Jyothi, and L. R. Varshney, “Models
of dataset size, question design, and cross-language speech perception
for speech crowdsourcing applications,” Laboratory Phonology, vol. 6,
no. 3-4, pp. 381–431, 2015.

[9] P. Jyothi and M. Hasegawa-Johnson, “Transcribing continuous speech
using mismatched crowdsourcing,” Sixteenth Annual Conference of the
International Speech Communication Association, pp. 2774–2778, 2015.

[10] Z. Zhang, F. Ringeval, B. Dong, E. Coutinho, E. Marchi, and B. Schuller,
“Enhanced semi-supervised learning for multimodal emotion recogni-
tioin,” IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5672–5675, 2011.

[11] S. Jarvis, M. Paquot et al., Native language identification. The Cam-
bridge Handbook of Learner Corpus Research. Cambridge: Cambridge
University Press, 2015.

[12] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,”
Computers & Electrical Engineering, vol. 40, no. 1, pp. 16–28, 2014.

[13] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 2, no. 3, p. 27, 2011.

[14] P. X. Huang and R. B. Fisher, “Individual feature selection in each one-
versus-one classifier improves multi-class SVM performance,” Avail-
able at http://homepages.inf.ed.ac.uk/s1064211/thesis/icpr14.pdf: last
accessed on 11 November, 2016.

[15] W. Walker, P. Lamere, P. Kwok, B. Raj, R. Singh, E. Gouvea, P. Wolf,
and J. Woelfel, “Sphinx-4: A flexible open source framework for speech
recognition,” Sun Microsystems Inc., Technical Report SML1 TR2004-
0811, 2004.

[16] D. B. Paul and J. M. Baker, “The design for the Wall Street Journal-
based CSR corpus,” Proceedings of the workshop on Speech and Natural
Language, pp. 357–362, 1992.

[17] sourceforge2015, “https://sourceforge.net/projects/cmusp
hinx/files/Acoustic%20and%20Language%20Models/.”

[18] A. Rosenberg, “AuToBI-a tool for automatic ToBI annotation.” Proc. of
INTERSPEECH, Makuhari, Japan, pp. 146–149, 2010.

[19] K. E. Silverman, M. E. Beckman, J. F. Pitrelli, M. Ostendorf, C. W.
Wightman, P. Price, J. B. Pierrehumbert, and J. Hirschberg, “ToBI:
a standard for labeling English prosody.” International Conference on
Spoken Language Processing, vol. 2, pp. 867–870, 1992.

[20] D. Ramage, C. D. Manning, and S. Dumais, “Partially labeled topic
models for interpretable text mining,” Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pp. 457–465, 2011.

[21] R. Hagiwara, “Dialect variation and formant frequency: The american
English vowels revisited,” The Journal of the Acoustical Society of
America, vol. 102, no. 1, pp. 655–658, 1997.
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