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Abstract—In spoken communication, intonation often conveys
meaning of an utterance. Thus, incorrect intonation, typically
made by second language (L2) learners, could result in mis-
communication. We, in this work, consider the problem of
automatically detecting the intonation of British English (BE)
utterances which could be useful for providing feedback to the
L2 learners. Typically, in BE, the meaning is conveyed through
four intonation classes – Glide-up, Glide-down, Dive and Take-
off. We hypothesize that these classes could be discriminated
using temporal structure in utterance-level pitch patterns. These
patterns could be represented by either stylized pitch or tones
from automatic tone and break indices (AuToBI) tool. We model
these temporal structures for the intonation classification using
three techniques, namely, n-gram, deep neural network and
long short term memory recurrent networks. Experiments are
conducted on the speech data collected from a spoken English
training material for teaching intonation of BE. We obtain better
unweighted average recall (UAR) with the proposed schemes
compared to the baseline scheme, that does not exploit temporal
structure in the utterance-level pitch patterns. Among different
proposed schemes, the highest absolute improvement in the UAR
is found to be 9.33% over the baseline scheme.

Index Terms—intonation classification, pitch stylization, tones,
computer assisted language learning.

I. INTRODUCTION

Intonation often adds meaning to words and word groups
[1], [2]. It also adds the speaker’s feelings, particularly in
British English (BE) [1]. Hence, incorrect intonation would
result in miscommunication. Thus, in the second language
(L2) training, for learning BE, L2 learners require to learn
BE intonation for obtaining a good proficiency in spoken
communication. Further, the L2 learners would be benefited
with an automated system that detects the learners’ proficiency
in the intonation [3][4]. Such systems would also be useful
in the applications like computer assisted language learning
(CALL) [3]. These systems could be designed by using
reliable native speakers’ intonation models. For example, in
detecting L2 learners’ phoneme proficiency, previous studies
have used phoneme models built from the native speakers’
speech data [5]. In a similar manner, in this work, we propose
models to identify/classify BE intonation which could be
useful for detecting L2 learners’ proficiency automatically.

In BE intonation training, L2 learners are required to learn
four different ways of producing intonation to match the
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Fig. 1. Pitch contours of four utterances belonging to four intonation classes
– Glide-up, Glide-down, Dive and Take-off along with a hypothetical stylized
pitch contour. The hypothetical stylized pitch is obtained by joining the
average pitch values within each voiced segments.

competence of a native BE speaker [1]. These are Glide-
up, Glide-down, Dive and Take-off [1] and we refer them as
intonation classes. These classes can be identified by modeling
variations in the pitch, since pitch is the acoustic manifestation
of the intonation [6]. Figure 1 shows the native BE speakers’
pitch contours from these four intonation classes, referred to
as raw pitch. From the figure, it is observed that in Glide-
down the pitch falls from a high to low value at the end
of the utterance (shown in red rectangular box). In contrast
to this, in the remaining three classes, pitch rises from a
low to high value. Typically, with the pitch fall, the Glide-
down could be discriminated from the remaining classes [1].
Within the three remaining classes, as observed from the
figure, the Take-off could be discriminated from Glide-up and
Dive with consistently low pitch values before the pitch rise.
Finally, Dive and Glide-up could be discriminated with a level
difference in the pitch at the end of the utterance as well as
with the temporal structures in the pitch before the pitch rise
[1]. From the figure, it is observed that in the case of Glide-
up, the low pitch value before the pitch rise is reached with a
gradual change from a high pitch value. However, in the Dive,
this value is reached with a fast change from a high pitch
and maintained consistently around the low value until the
pitch rise. Hence, the intonation classes could be discriminated
based on the properties of pitch rise, fall and level (RFAL) as
well as from their associated temporal structures.

Typically, in teaching these four intonation categories, L2
learners’ are trained by representing the entire raw pitch
contour into small discrete symbols within syllable segments
called tones [1][6], instead of teaching them by showing a



native speakers’ raw pitch. Generally, tones are proposed to
indicate RFAL changes in the raw pitch. For BE, these tones
are obtained automatically from the speech signal using the
automatic tone and break indices (AuToBI) tool [7]. Li et
al. have shown the effectiveness of these tones for intonation
classification [8]. However, they have considered manually
annotated tones. Also, they have not considered the temporal
structures in utterance-level tone patterns. In contrast to the
tones reflecting RFAL changes, pitch stylization techniques
convert the raw pitch into a contour composed of line segments
called stylized pitch [9]. Typically, these techniques retain
perceptually relevant information in the raw pitch [10], which
could be indicative of the RFAL changes. Figure 1 shows a
hypothetical stylization of a raw pitch belonging to Take-off.
From the figure, it is observed that the stylized pitch has less
variations than the raw pitch. Hence, we assume that the styl-
ized pitch could represent the RFAL changes better compared
to the raw pitch. Thus, considering temporal structures in the
stylized pitch could provide better discrimination among all
the intonation classes. Wypych has introduced models based
on thr stylized pitch for Polish language intonation recognition
[11]. However, no experiments on the intonation classification
accuracy is reported. To the best of our knowledge, there have
been no studies with the stylized pitch for the BE intonation
classification task.

Arias et al. [3] have assessed the L2 learners intonation
by comparing their raw pitch with the experts’ raw pitch
contour. Ke et al. have used the same strategy to assess
Chinese learners, considering tone and duration based features
from the pitch contours [4]. However, in both the studies,
temporal structures in the raw pitch have not been exploited.
Unlike the previous studies, we use temporal structures in the
utterance-level pitch patterns (tones or stylized pitch) for the
BE intonation classification task. We hypothesize that these
temporal structures of the pitch patterns would provide better
class discrimination than using the temporal structures of the
raw pitch, which is evaluated using two baselines.

In this work, we represent the raw pitch of an intonation
class using two pitch patterns – tones and stylized pitch. For
each class, we model the temporal structures in these patterns
separately using three modeling techniques – n-gram, deep
neural networks (DNN) and long short term memory (LSTM)
recurrent networks, for which, we compute features specific
to each model using each of these patterns. We use posterior
probabilities or likelihoods obtained from these models to
classify the BE intonation. Experiments are performed on the
speech data collected from a spoken English training material
for teaching BE intonation [1]. We consider three baseline
schemes to validate our experiments – work proposed by Li
et al. [8] for overall comparison and hidden Markov model
(HMM) with raw pitch & DNN with raw pitch to know
the effectiveness of the pitch patterns compared to the raw
pitch. Among the different proposed schemes, the highest
improvement in the unweighted average racall (UAR) [12] is
found to be 9.33%, 8.90% and 7.80% (absolute) respectively
on three baseline schemes.

II. DATABASE AND EXPERIMENTAL SETUP

In this work, we use the speech data from a spoken English
training material [1] used for teaching BE. We consider entire
speech recording containing all the utterances belonging to
intonation lessons for our experiments. We manually seg-
ment the entire speech recording into individual speech files
belonging to every utterance. We obtain the annotated text
transcription as well as the intonation class labels belonging
to each utterance from the same training material [1]. In the
speech data, the total number of utterances is 232 out of which
50, 68 , 82 and 33 belong to Glide-up, Glide-down, dive and
Take-off intonation classes respectively. The entire speech data
considered in this work has been spoken by one male and one
female native BE speakers. To the best of our knowledge, there
is no speech data larger than this that has these four intonation
class labels annotated from the experts.

III. PROPOSED APPROACH

The block diagram in Figure 2 describes the two major
stages involved in the proposed approach. The first stage
extracts two different sets of pitch patterns from the speech
signal, namely, stylized pitch and tone labels. The second stage
computes features (f ) from each of these sets of pitch patterns
and estimates the class conditional probabilities, p(f|C), or
class posterior probabilities, p(C| f), using three modeling tech-
niques separately – n-gram, DNN and LSTM, where C denotes
the class label. We train these models using the parameters
optimized on the development data. We compare the class
conditional or posterior probabilities from each model with
each feature set belonging to a test utterance and consider the
class with the highest probability as the estimated intonation
class (Ĉ).

Fig. 2. Block diagram summarizing the steps involved in the proposed
approach.

A. Pitch pattern extraction

We obtain tone labels and stylized pitch from speech signal
separately. The tone labels are extracted using AuToBI, which
takes the speech signal and its text as the inputs. A total of
8 different tone labels is obtained from AuToBI on the entire
speech data considered in this work. These tone labels are !H*,
H*, H+!H*, L*, L*+H, L+!H*, L+H* and NOACCENT. The
stylized pitch is estimated using the pitch stylization technique
proposed by Ghosh et al. [13]. This technique provides styl-
ization of the raw pitch using a set of line segments for each
voiced region separately, taking the number of line segments
per voiced region as the input. We consider the number of



line segments to be equal to the number of syllables in a
voiced region, since the teaching of intonation is done using
the representations within the syllable segments [1][6][9]. We
estimate the number of syllable segments from speech signal
and its text in two steps. Firstly, phone segments along with
their transcriptions are obtained using force alignment process
and then syllable transcriptions are obtained by automatically
syllabifying the phone transcriptions. We obtain the raw pitch
using the sub-harmonic to harmonic ratio (SHR) algorithm
proposed by Sun et al. [14].

B. Modeling

We propose different sets of features depending on the
modeling technique as well as the pitch pattern to represent
the temporal structures in that pitch pattern. Hence, we discuss
the feature computation for each pitch pattern along with the
following modeling techniques.

3.2.1. n-gram: In n-gram modeling, we create a finite set
of symbols to represent the pitch patterns. In the case of
tone labels, we consider tone symbols obtained from AuToBI
directly for modeling. However, for stylized pitch, we propose
a method to obtain symbols for each line segment. In general,
the slope and intercept values of the line segments are real.
Hence, it results in an infinite set of symbols when the absolute
values of these line parameters are considered directly as
symbols. We empirically find a finite set of symbols from
these line segments in three steps.

1) We obtain a normalized stylize pitch, xn(p) =
x(p)−min(x(p))

max(x(p))−min(x(p))) , where x(p) is stylized pitch with
the frame index p.
We use m(k) and c(k), 1 ≤ k ≤ K, to indicate the
slope and the intercept values of the lines belonging to
xn(p) in each segment, where K is the total number of
segments in an utterance.
With this normalization, it is easy to see that the values
of |m(k)| and c(k) are in between 0 and 1.

2) We obtain quantized slopes, mq(k) = round(m(k)∗Q),
for each line segment k, and indicate those segments
with the symbol Smq(k), where Q is the number of
quantization levels.

3) We re-symbolize the Smq(k);∀k such that mq(k) = 0
as Lcq(k), where cq(k) = round(Q ∗ c(k)).

After these steps, at each k-th line segment, we obtain the
symbol either Smq(k) or Lcq(k). We empirically set the Q to
be 4, for which the symbols are S1, S2, S3, S4, S−1,S−2,
S−3, S−4, L0, L1, L2, L3 and L4. However, in DNN and
LSTM modeling, we use m(k) and c(k) directly as a feature
vector instead of their quantized symbols (Smq(k) or Lcq(k))
representing as a binary feature vector. With this, we allow the
models to learn these representations from the training data.

3.2.2. DNN: In order to model DNN, it is required to obtain
feature vectors with uniform length across all the utterances.
However, we observe that the sequence length of tone labels
and the number of stylized pitch line segments are not uniform
across all utterances. Among all the utterances considered in
this work, the maximum sequence length and the maximum

number of segments are found to be 7 and 15 respectively. By
considering these maximum values (7 and 15) separately for
tone labels and stylized pitch, we obtain a 56-dim and a 30-
dim feature vector across all utterances, respectively, in three
steps. In the case of tone labels, we follow a procedure for
each utterance as below.

1) We represent a tone label sequence of an utterance as
an 8-dim binary vector sequence by replacing each label
with an 8-dim binary vector, since the number of distinct
tone labels is 8 in the considered speech data.

2) We append 8-dim zero vectors before the 8-dim binary
vector sequence to make that sequence length as 7.

3) We convert these seven length 8-dim vectors to a 56-
dim feature vector by stacking 8-dim vectors one below
another.

Similarly, for the stylized pitch, we follow the above three
steps to obtain a 30-dim feature vector. However, the 8-dim
binary vector is replaced with a 2-dim vector containing m(k)
and c(k) values of the line segments and the sequence length
is made to 15 in the place of 7.

We experiment with the 56-dim and 30-dim vectors sepa-
rately. For the training, we represent the class label as a 4-dim
binary vector and train DNN with the number of output units
equal to 4 and input units equal to 56 or 30. We use the
softmax activation function for all 4 output units. We consider
DNN with 3-hidden layers and we learn the number of hidden
units per layer (∈ {128, 256, 512, 1024, 2048}) in the training
stage. For each hidden layer, we consider the relu activation
function for all units. We use categorical cross-entropy as the
objective function for DNN training.

3.2.3. LSTM: LSTM has been shown to be effective in
capturing pattern in temporal sequences [15]. Hence, we use
LSTM to model the temporal patterns using the tone labels
and the stylized pitch for the intonation classification task.
For LSTM modeling, we use the sequences of 8-dim binary
vectors and 2-dim vectors respectively for tone labels and
stylized pitch. These sequences are obtained following the
steps outlined in Section 3.2.2. We use these sequence of
vectors directly to train and test LSTM. Similar to DNN, we
represent the class label as a 4-dim binary vector and train
LSTM with four number of output layer units with the softmax
activation functions. The number of units in the input layer
is 8 and 2 respectively for tone labels and stylized pitch. In
LSTM, we use 2-hidden layers with 128 hidden units using the
relu activation function for each hidden unit. Similar to DNN,
categorical cross-entropy is used as the objective function for
training LSTM. We consider the number of loops as 50 to
train LSTM.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

We consider UAR as the performance measure to evaluate
the classification performance [16]. We conduct the experi-
ments in a 10-fold cross validation setup where eight folds
are used for training, one fold for development and one fold



for testing in a round robin fashion. n-gram model is built
using the SRILM language model toolkit [17]. DNN and
LSTM are implemented using Theano [18] and Keras [19].
We obtain force-aligned phone boundaries using Kaldi speech
recognition tool kit [20] with Fisher-English [21] acoustic
models. Phone transcriptions are converted into syllables using
P2TK automated syllabifier [22]. For comparison, the work by
Li et al. [8] using DNN is considered as a baseline, referred to
as Li-baseline. Li et al. have used tone labels belonging to the
final pitch accent and the following edge tone as the features
for the DNN. However, in our implementation, we consider
only final pitch accent tone label, since we do not obtain any
edge tone labels with AuToBI.

Further, we analyze the usefulness of the pitch patterns in
comparison with raw pitch for the intonation classification
task. For this, we build classifiers using HMM with HTK
toolkit [23] as well as using DNN, referred to as HMM-
baseline and DNN-baseline respectively. In HMM-baseline,
we train HMM for each class using a low pass filtered raw
pitch as a feature. On the development data, the filter cut-
off frequency and number of states for HMM are learnt.
With these parameters, likelihoods are calculated using HMMs
for all classes for a test utterance and the class with the
highest likelihood is considered as the estimated label for
that utterance. In DNN-baseline, we use a setup similar to
that described in Section 3.2.2. However in this setup, we
consider the low-pass filtered raw pitch with a fixed number
of resampled values (N ) as a feature. We learn the filter cut-
off frequency and N on the development data. With these
parameters the class labels are estimated for the test utterance.

TABLE I
AVERAGE UARS AND STANDARD DEVIATIONS, IN BRACKETS, OBTAINED
WITH THE PROPOSED SCHEMES WITH STYLIZED PITCH AS WELL AS TONE
LABELS AND HMM & DNN WITH RAW PITCH ON THE DEVELOPMENT (IN

BLUE COLOR) AND THE TEST SETS.

Raw pitch Stylized pitch Tone labels

HMM 41.1 (8.5) n-gram 37.6 (7.2) 35.1 (9.7)
26.0 (7.9) 27.0 (11.0) 33.7 (9.4)

DNN 31.4 (4.9) DNN 37.5 (13.7) 34.3 (9.1)
27.1 (5.2) 29.0 (10.4) 29.0 (11.7)

LSTM 29.7 (8.1) 15.6 (7.6)
34.9 (9.0) 19.7 (10.4)

B. Results and discussion

Table I shows mean and standard deviations (SDs) of UARs
across all the ten folds on the development and test sets for
HMM-baseline & DNN-baseline as well as for all the proposed
schemes with stylized pitch and tone labels. The average (SD)
UAR using Li-baseline is 25.72% (5.36) and 25.58% (7.00)
on the development and the test sets respectively. From the
table, it is observed that the UARs obtained with HMM-
baseline and DNN-baseline are found to be higher than that
using Li-baseline by an UAR of 15% and 6% & 0.5% and
1.5% on development & test sets respectively. This large drop
in UAR from the development to the test set indicates that
although the HMM captures temporal structures in the raw

pitch to maximize UAR on the development set, it does not
generalize well in the test set. Similarly, the improvements in
DNN and HMM performance over Li-baseline suggest that
for the intonation classification task, it would be beneficial to
consider the pitch pattern in the entire utterance compared to
that within the tone labels at the end of the utterance.

From the table, it is observed that, when the stylized pitch
is used, the highest (indicated by bold in Table I) and least
UARs are found with LSTM and n-gram models respectively
among all the proposed schemes. This indicates that n-gram
model with quantized stylized pitch parameters fails to capture
the temporal structure in the pitch patterns. Instead, original
stylized pitch patterns would be more beneficial for the clas-
sification task as done in LSTM model. In contrast, when
the tone labels are used, the highest (indicated by bold in
Table I) and least UARs are obtained with n-gram and LSTM
respectively. This could be because of poor training of LSTM
model with few data points and 8-dim tone label feature unlike
that with 2-dim stylized pitch feature. On the other hand, n-
gram model works with a symbol-set of size eight when the
tone labels are used compared to 13 when stylized pitch is
used. With limited training data, this smaller symbol-set could
lead to a higher UAR with tone labels compared to that with
the stylized pitch. Lowering Q may result in smaller symbol-
set in the case of stylized pitch. But that may not represent
the temporal patterns well. Thus, a better quantization strategy
with smaller sized symbol-set could also improve the UAR
with stylized pitch.
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Fig. 3. Illustrations of Take-off stylized pitch and raw pitch that are classified
(a) correctly by LSTM but incorrectly by HMM, (b) incorrectly by both LSTM
and HMM.

From the table, it is also observed that all the proposed
schemes perform better than HMM-baseline as well as DNN-
baseline on the test data. This indicates that the intonation
would be classified better with discrete pitch patterns like tone
labels and stylized pitch instead of the raw pitch. This could
be because the detail variations in the raw pitch may result in a
noisy representation leading to a poor training of the classifier.
As an example, in Figure 3a, we show a normalized raw pitch
and a normalized stylized pitch of an utterance belonging to
Take-off class. Where the utterance is misclassified by HMM
with raw pitch while it is correctly classified by LSTM with
stylized pitch. Similarly, it is observed that all the proposed
schemes perform better than Li-baseline except using LSTM
with tone labels. The highest improvement is found to be
9.33% over Li-baseline, when LSTM network is used with
stylized pitch. It is also interesting to observe that the n-
gram with tone labels results in an improvement of 8.1% over
Li-baseline. These together support the hypothesis that the



temporal structures in the utterance-level pitch patterns would
be better for the intonation classification task. Further, we
study the effectiveness of these utterance-level pitch patterns
on the classification of each intonation class using a confusion
matrix computed on the test set.

TABLE II
CONFUSION MATRIX FOR LI-BASELINE, N-GRAM WITH TONE LABELS AND
LSTM WITH STYLIZED PITCH ON THE TEST SET. THE ROWS REPRESENT

THE GROUND-TRUTH CLASSES – GLIDE-UP (#1), GLIDE-DOWN (#2).
DIVE (#3) AND TAKE-OFF (#4) AND THE COLUMNS REPRESENT THE

ESTIMATED CLASSES. EACH CELL ENTRY IS THE AVERAGE PERCENTAGE
ACROSS ALL THE TEN FOLDS.

Baseline n-gram with LSTM with
tone labels stylized pitch

#1 #2 #3 #4 #1 #2 #3 #4 #1 #2 #3 #4
#1 17.0 23.3 59.7 0.0 25.8 31.4 32.9 10.0 26.4 29.4 22.9 21.3
#2 3.3 30.5 66.1 0.0 15.1 44.0 21.5 19.3 11.5 48.9 32.1 7.6
#3 13.0 32.2 54.8 0.0 25.2 29.6 22.7 22.5 13.3 25.0 56.0 5.8
#4 3.3 19.3 77.3 0.0 34.0 14.7 9.0 42.3 40.7 12.0 39.0 8.3

From the confusion matrices shown in Table II, it is ob-
served that, with Li-baseline, the Take-off and Glide-up are
classified as Dive in most of the cases. It is also interesting
to notice that not a single utterance is classified as Take-
off. This could be because Take-off has the same rising
tone pattern as Dive and Glide-up at the end of utterances.
Hence, considering the tone pattern only at the end of the
utterance could not result in better discrimination among these
classes. In contrast, the confusions among these classes are
less in n-gram model. This could be because n-gram model
uses the temporal structure over the entire sentence, hence,
reduces the confusion among these classes. However from
the table, it is observed that the accuracy (diagonal entry) of
Dive class reduces in n-gram model compared to Li-baseline.
But when LSTM is used, the accuracies are improved in
all classes compared to Li-baseline; the overall UAR (from
Table I) is also improved compared to Li-baseline and n-gram
models. However, when the stylized pitch is used, the Take-off
accuracy using LSTM is lower compared to n-gram model.
It could be that the stylization process fails to produce the
patterns that can distinguish Take-off from Dive and Glide-
up. Hence, it suggests that an improved pitch stylization could
reduce the confusion among the classes as well as improve the
overall UAR in the classification task.

From Table I, it is observed that the proposed schemes result
in an improvement in the UAR for the classification task.
However, the highest UAR is only ∼35%, which has further
scope to improve. The UAR from the proposed schemes are
dependent on the reliability of the models as well as the pitch
patterns – stylized pitch and tone labels. Further, these depend
on the pitch estimation algorithms that are used to obtain
stylized pitch or those used in AuToBI. Figure 3b shows a
normalized stylized pitch and a normalized raw pitch of an
utterance belonging to Take-off class, which is misclassified
by both HMM with raw pitch and LSTM with stylized pitch.
From the figure, it is observed that the raw pitch, hence,
the normalized raw pitch has sudden changes in the pitch

values from a low to high and a high to low probably due
to pitch halving and doubling errors [24], [25]. This results in
unwanted variations in the stylized pitch that lead to incorrect
classification. On the other hand, intonation also depends on
the linguistic measures like syllable stress [1][6], which can
be considered in the classification task to improve the UAR
further.

V. CONCLUSIONS

We model the temporal structures in the utterance-level
pitch patterns for the BE intonation classification task using
n-gram, DNN and LSTM. The pitch patterns are estimated
from AuToBI tone labels and pitch stylization techniques. We
also model the temporal structures in the raw pitch contour
using HMM and DNN to know the effectiveness of the raw
pitch. Experiments with the spoken English training material
with four intonation classes reveal that the proposed schemes
improve UAR compared to the baseline scheme as well as the
models with raw pitch. Further investigations are required to
develop better pitch patterns that could result in an improved
UAR under typical halving and doubling errors in the pitch
estimation. Future works also include the use of linguistic
features in addition to the pitch patterns for improving the
classification performance.
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