
Efficient Texture Mapping by Homogeneous
Patch Discovery

R.Vikram Pratap Singh Anoop M.Namboodiri

Center for Visual Information Technology, IIIT Hyderabad, India.
vikrampratap.singh@research.iiit.ac.in, anoop@iiit.ac.in

ABSTRACT
Texture mapping algorithms use mesh parameterization meth-
ods to find an optimal map for the vertices of a 3D model
in texture space. These techniques vary in the properties
they try to optimize such as stretch and skewness of the
texture when mapped onto the surface. While most of them
do well in terms of quality, they tend to be computationally
intensive for large mesh models, which limits their use in in-
teractive applications. We propose a greedy alternative that
is significantly faster than current algorithms and achieves
comparable quality. We use a priority queue to store poly-
gons and use tangential vectors to guide the texture over the
surface. Our algorithm is simple to implement and can tex-
ture over a million polygons per second on a typical desktop.
The algorithm does not impose any constraints on the mesh
topology and we do not require the model to be cut into
patches before texturing. Stretch and distortion measures
are stable across models and are comparable to current algo-
rithms. We also propose a method to generate self tile-able
textures for use in conjunction with our texture mapping al-
gorithm. We present qualitative and quantitative results in
comparison with several other texture mapping algorithms.
The efficiency and robustness of our algorithm makes it use-
ful in interactive modeling applications and texture mapping
large mesh models such as heritage monuments.

Keywords
Texture mapping, Mesh parameterization, Texture synthesis

1. INTRODUCTION
Any complex mesh model used in 3D graphics can be con-

verted to a 2D planar sheet of vertices with appropriate
stretching and cutting. Mesh parameterization is a bijective
function f : R3 → R2 that maps the 3D vertices onto a
2D plane. The parameterization should ideally be isomet-
ric, preserving the distances between vertices and the angles
of the triangle. The goal of a mesh parameterization algo-
rithm is to minimize the distortion of the triangle in terms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICVGIP ’12, December 16-19, 2012, Mumbai, India
Copyright 2012 ACM 978-1-4503-1660-6/12/12 ...$15.00.

Figure 1: Texture patch edges that are pushed to
the geometric edges of the 3D mesh.

of the angle (conformal maps) or the area (authalic maps)
to reduce the amount of skewing or stretching of the tex-
ture. Such parameterizations have applications in texture
mapping, re-meshing, morphing, mesh editing, mesh com-
pression etc. We refer to mesh parameterization only in
conjunction with texture mapping in all our further refer-
ences. Unfortunately, except for synthetic surfaces that are
inherently planar, it is difficult to flatten a 3D mesh without
any distortion. The distortion is particularly high if the sur-
face has got high curvature. We can reduce the distortion
by cutting the mesh into patches at points of high curva-
ture. However, increasing the number of cuts would intro-
duce more discontinuities in the pasted texture, leading to
deterioration in the perceived quality. A possible approach
to minimize the visual impact of the cuts is to constrain
them to edges of the 3D model (see Figure 1). A good mesh
parameterization algorithm must optimize between the size
of the texture patch and the amount of distortion within
the patch. There are three types of mesh parameterization
approaches: Planar, Spherical and Hierarchical.

Figure 2: Middle image shows a partially textured
mesh model. Enlarged portions of the image show
faces of the mesh at the boundary of the texture,
labeled in brown and gray colors alternately. Among
these faces, if we texture any brown colored face,
neighboring gray colored faces will have all the three
vertices textured and vice versa.

Planar mesh parameterization: Parameterization of
a planar mesh surface can be defined as bijective mapping
of the mesh vertices onto a 2D plane, such that there is no
overlapping and distortion of the triangles. Surfaces with
the topology of a disk can follow such parameterization. A
closed surface like a sphere (surfaces with zero genus) can-
not be flattened to a sheet. So the mesh has to be cut into
patches that are homeomorphic to a disk and then parame-
terized independently to map them to a 2D plane. A surface
with high genus would require large number of cuts. Fixed
boundary approaches flatten the boundary of the patch to a
predetermined simple convex polygon like a square or circle.
Here the optimization function minimizes the distortion of
the triangles with the constraints of fixed boundary vertices.

Floater [5] takes such an approach and uses barycentric
coordinate system to represent an interior vertex property
by interpolating properties from its neighboring vertices.
This type of parameterization typically generates signifi-
cantly more distortion than free boundary techniques.

Yoshizawa et al. [22] starts with the method described
in [5] and uses an iterative approach to decrease the er-
ror at each step. The ABF [15] algorithm by Sheffer et
al. uses the Lagrangian function for optimizing the distor-
tion by enforcing constraints on angles. Later, [16] and [23]
improved on the speed of this approach. LSCM [8] uses
least squares approximation of Cauchy-Riemann equations
to produce quasi-conformal parameterization of the mesh.
Ray et al. [12] proposes a hierarchical version of LSCM.
Liu et al. [9] introduces ASAP and ARAP methods. While
ASAP has results similar to LSCM [8], ARAP produces bet-
ter parameterization results.

Spherical mesh Parameterization: Geometric mod-
els are often described by closed, genus-zero surfaces. For

Small Medium Large
0.49

0.5

0.51

0.52

0.53

0.54

%
 F

a
ce

s
P

ro
ce

ss
e

d
 (

0
−

1
)

Model Size

Figure 3: Proportion of faces that are explicitly tex-
tured with increasing model size.

such models, the sphere is the most natural parameteriza-
tion domain, since it does not require cutting the surface
into disks. Here we parameterize a triangular mesh onto a
unit sphere based on an optimality condition. This assign-
ment should reduce the distortion induced into the spherical
triangles and there should be no overlap. For complex and
highly deformed surfaces, generating a low distortion and
non overlapping parametrized spherical triangles is difficult.
Gotsman et al. [6] introduced the concept of spherical pa-
rameterization. Praun et al. [11] and Saba et al. [13] further
improved the method. Octahedral mesh parameterization
was proposed by Praun and Hoppe et al. [11], where an oc-
tahedron is used instead of a sphere.

Hierarchical mesh parameterization: Hierarchical
mesh parameterization is done by calculating parameteriza-
tion over a coarser mesh consisting of a small number of tri-
angles, which is then refined up the hierarchy. Lee et al. [7]
and Sander et al. [14] use hierarchical mesh parameteriza-
tion for texture mapping. Sander et al. [14] uses planarity
and compactness heuristics for parameterization and texture
packing.

Texture Synthesis: Texture synthesis is another area
where parameterization finds its application. Traditional
texture synthesis methods approach the problem in raster
scan order, considering the boundary of already synthesized
regions. In order to carry out synthesis on arbitrary sur-
faces, they need to be mapped to a planar surface using a
mesh parameterization technique. Wei et al. [20], Ying et
al. [21] and Praun et al. [10] use this approach to do texture
synthesis directly on mesh models.

All the above methods minimize some criterion function
to define a bijective function f : R3→ R2 that maps the 3D
vertices onto a 2D plane. Our algorithm avoids an explicit
criterion optimization and tries to minimizes the stretch of
the texture as it is grown over the 3D mesh.

2. PATCH DISCOVERY MAPPING
We present the algorithm for triangulated meshes, although

it can be extended to quad or any polygonal meshes. We
start by texturing a random face, by dropping it into the
texture plane of the face, calculated from the orientation

(a)

(b)

Figure 4: The seam that is formed on the hippo’s
side in (a) can be moved to a less visible position at
the bottom by manually marking a seam line using
our tool, resulting in (b).

vector and bi-normal vector of the orientation vector and
normal vector of the face. We then proceed to texture the
triangles around the initial one, expanding the texture by
incrementally pushing the texture boundary. The boundary
of textured region is pushed in the direction of homogeneous
orientations, stopping at faces with large change in orienta-
tion vectors. The process is implemented efficiently using a
priority queue for candidate faces to be textured, where we
use age of the face to strike balance between homogeneity
of the region and compactness of the boundary. Our algo-
rithm processes the mesh in terms of faces starting with a
randomly selected face, which is a triangle in our discussions.
The initial triangle ∆ABC, is textured by assigning any one
of its vertices to a random texture coordinate, say A is as-
signed the texture coordinates of the center of the texture
space.1 Now vertices B and C are projected onto the tex-

ture plane of the current face and the vectors
−→
ab and −→ac are

calculated. Texture coordinates of B (bx, by) are calculated
as follows.

bx = (ax +
−→
abx) (1)

by = (ay +−→acy) (2)

Similarly, we calculate texture coordinates for the vertex
C. We have now textured the first triangle in a direction con-
sistent with that of its orientation vector. Now we spread
this texture over to the adjacent faces in the direction of
orientation vectors. We can compute coherent orientation
fields using a variety of methods, including Tangent vector

1Upper case letters refer to geometric space and lower case
letters refer to texture space

NW

SW SE

NE

A

C D

B

B

D C

A

Seam
Lines

Figure 5: Quadrant swapping for creating the
tileable textures and resulting seam-lines.

fields suggested by Fisher et al. [4]. As we are interested
in increasing execution speed of texture mapping algorithm,
we have used a simpler approach to compute the orientation
field of the mesh model. We compute the principal direction
of stretch of the mesh model from PCA of the 3D vertices.
The orientation vector of each triangle is taken as the pro-
jection of the principal direction onto the triangle. For each
face, the sum of angle differences made by the current face
orientation vector with the orientation vectors of neighbor-
ing faces are precomputed and stored. From now onwards,
we refer to this value as the age of the face as the reason
for this would seem obvious during the further reading. The
neighboring faces of the textured face are pushed into a pri-
ority queue using the age as priority (larger age indicates
lower priority). We now pick the face from the top of the
heap for texturing. The reader may note that for a single
connected mesh, any face picked out of the queue will have
either two or three of its vertices textured. If there are n
disconnected components, there will be n − 1 faces while
processing which have zero vertices textured.

Faces with three textured vertices in the queue should be
given high priority to be textured first. If all three of its
vertices are textured, then there is nothing else to do, but
declare the face as textured and remove it from the queue,
while pushing its neighboring faces into the priority queue.
This step helps us in maintaining the scale of the texture,
while avoiding any stretch. In practice, about 50% (see Fig-
ure 3) of the faces are textured in this way. This happens
because if a face has two of its neighboring faces already tex-
tured, then it will have all its three vertices textured. This
observation can be clearly seen in Figure 2. If the trian-
gle to be textured has two of its vertices assigned, then we
project both the vertices onto the texture plane of current
face. Lets assume that we are texturing the ∆ABC where A,
B and C are its vertices. Vertices A, B are textured and C
is not. The texture coordinates of the third vertex C(cx, cy)
are computed as below.

cx =
(ax +−→acx) + (bx +

−→
bcx)

2
(3)

cy =
(ay +−→acy) + (by +

−→
bcy)

2
(4)

where ax, ay are texture coordinates of vertex A and bx,
by are texture coordinates of vertex B. The overall pro-
cess is summarized in the Algorithm 1. In equations (3) and
(4), we average the texture coordinates suggested by the two
vertices. If the texture coordinates suggested by the vertices
differ beyond a value errorThreshold, we do not process the

Algorithm 1 Proposed Algorithm

Input: Mesh model
Output: Texture coordinates assigned to vertices
Factor := 1/(number offaces);
while priority queue is not empty do

Pop the face with least age from the priority queue,
giving higher priority to faces with 3 vertices textured.
if error > errorThreshold then

Enqueue face again with age=age + LargeV al.
else

Process the face as explained in Section 2.
Enqueue neighbors with age = age + Factor.
Factor := Factor + 1/(numberoffaces);

end if
end while

face but push it back onto the queue with its age increased
by a largeV al. Value of the variable largeV al can be set
to anything that will push the face to the end of the queue.
This avoids the processing of such faces and hence propaga-
tion of distorted features is avoided. If the suggested texture
coordinates are within the errorThreshold, we assign the
average of those texture coordinates and push the neighbor-
ing faces in the priority queue. After processing, we decrease
the age of all the faces in the priority queue by some Factor.
We took this Factor to be 1/(number offaces). By doing
so we wish to process those faces that have stayed in the
queue for long time and hence they are given high priority
to be textured next. This helps in smoothly developing the
texture over the surface without leaving any holes.

Decrease in the length of the texture patch boundary can
be observed, as there is a potential possibility that these
small holes left untextured may grow into bigger holes, caus-
ing an increase in the texture patch boundary. Operations
on the priority queue are the core part of our algorithm. In
order to avoid decreasing the age of all faces in the queue(time
complexity O(n)), we increase the age of the faces that are
being pushed on the priority queue incremented by Factor.
The value of Factor keeps incrementing in every iteration
by a value 1/(number offaces). Instead if we increment by
a value larger than 1/(number offaces) say 100/(number
offaces), the algorithm will lose its capacity to form texture
patches at geometric edges as the new faces introduced into
the priority queue will always be inserted at the last and
hence acts like a normal queue. Flow of texture will be in a
spiral fashion around the starting face. This will introduce
a lot of texture distortion, but will decrease the execution
time.

Decrease in execution time depends on two things: 1)In-
sertion into the priority queue and 2)Deletion from the prior-
ity queue. In the above case with large increment in Factor
value, faces are inserted always at the back of the priority
queue, as it will make only one comparison at the end of the
heap and gets inserted there. Deletion includes deleting the
top of the heap and a re-heap of the priority queue which is
of O(logn) complexity. On a whole the time required for ex-
ecution will decrease. The value of the increment is critical
to the proper functioning of our algorithm. errorThreshold
used in the Algorithm 1 is initially set to 25 pixels and
if all the faces left in the priority queue are giving a error

(a) (b) (c)

(d) (e) (f)

Figure 6: Different weight maps produce different
textures. (a)-(d), (b)-(e) and (c)-(f) are texture and
weight map pairs. The rectangular perimeter region
of all the images are same, which is a desired quality.

more than errorThreshold, we increment it by 10 pixels and
restart the algorithm. This would avoid a potential infinite
loop in the algorithm.

2.1 Salient Features

1. Most striking feature is the speed of the algorithm (see
Figure 7(a)). Vertices are textured by considering only
the other two vertices and the orientation vector of
the face. Only half of the faces are actually processed,
saving much time (see Figure 3).

2. A priority queue based patch discovery algorithm that
grows into homogeneous regions, as the priority of a
face is inversely proportional to the orientation distor-
tion at the face.

3. The patch discovery process tends to terminate at faces
of large variations in normals resulting in patches get-
ting bounded by edges of the model at places where the
seam is less visible. This improves the perceptual qual-
ity of texturing (see Figure 1) and helps to reduce the
stretch. This property of our algorithm results in cut-
ting the mesh into patches. However, unlike most mesh
parameterization methods this is an inherent part of
our algorithm. Sorkine et al. [17] also proposes a mesh
parameterization technique that does texture mapping
and mesh cutting simultaneously.

4. Our algorithm does not have any restriction on the
topology as it incrementally textures the surface and
cuts it at appropriate places.

5. Increase in complexity of the mesh topology has a neg-
ligible effect on the run time of the algorithm and its
texture quality(see Figure 7(b) and 7(c)). Other mesh
parameterization algorithms like ABF++[16] drasti-
cally increase their execution speed and texture bound-
ary length with increase in complexity of mesh topol-
ogy. This suggests that our algorithm is robust to com-
plex surface topologies.

(a) stonechariot (b) Our result (c) ABF++ result
[16]

(d) Mannequin-devil

Figure 7: (a) Stone chariot, a heritage monument having 1, 586, 181 faces was textured in 3.28 sec. (b) and
(c) show a noisy mesh model having 20k faces was texture in 0.012 sec by our algorithm and in 7.21 sec by
ABF++[16]. (d) shows our texturing result on a complex model.

6. Texture patches follow the orientation vectors and re-
main in coherence with neighboring texture patches
making the seam less obvious. This phenomenon can
be observed in the Figure7(b) and 7(c).

2.2 Constraining patch seams
In some situations, it will be quite useful if we can de-

cide where the patch seams occurs. Taking advantage of
the local nature of patch growing in our algorithm, we can
specify where the texture patch seams are formed on the
mesh model. To achieve this, our texturing tool allows us
to select the faces where we want the seam to appear and
while texturing, the algorithm treats those faces similar to
those with high variation in orientation, pushing it back onto
the queue for later processing. This effectively transfers the
seams onto these regions even if they are smooth in nature.
Figure 4 shows a typical example, where the original method
created a seam on the side of the hippo model, where it is
quite visible. By selecting faces at the bottom of the hippo,
the seam was pushed to the bottom, making it less visible.

3. CREATING SELF-TILEABLE TEXTURES
Use of mesh parameterization for texture mapping as-

sumes that the texture on to which the mesh is parameter-
ized is large enough to cover the complete model. If not, the
texture patch is repeated to make it large. This will result in
periodic discontinuities unless the patches are self-tileable:
i.e., it should satisfy the property that the south edge of
the texture should be seamlessly tileable with north edge
and similarly east edge with west edge. In simple terms, we
wish to make our texture toroidal in nature. Our approach
to acquire this property is similar to the procedure to create
Wang tiles [1]. We start by dividing the input texture image
into four equal pieces of 2X2. The north-west piece is then
swapped with south-east piece and similarly swap north-east
piece with south-west piece. As seen in Figure 5, we now
have a texture patch that is tileable on all edges, but with

possible seams in the interior portions. We use texture syn-
thesis and the same image for searching neighborhood, to
make the center portion smooth and continuous. A weight
map is used to keep the tileable edges from changing during
the synthesis process. We use the image quilting method
proposed by Efros et al. [3] to correct the center portion.
We can also generate variants of the texture patch with the
same tileable edges by changing the weight map as seen in
Figure 6. Some examples of our tileable patch generation
algorithm are shown in Figure 8.

3.1 Aperiodic Tiling
In the above algorithm we consider only one tileable tex-

(a) Input Texture1 (b) Input Texture2

(c) Output Texture1 (d) Output Texture2

Figure 8: (a), (b) are input images and (c), (d) are
corresponding output images which are self tileable.

(a) Floater et
al. [5]

(b) Eck et
al. [2]

(c) Ray et
al. [12]

(d) Sheffer et
al. [16]

(e) Liu et al. [9] (f) Our algo-
rithm

Figure 9: Results of various algorithms on Isis model. The proposed algorithm (f) preserves scale much
better than state-of-the-art methods while limiting distortion.

ture, which can introduce periodicity in the texture pasted.
Jos Stam et al. [18] proposed a substitution rule to generate
an infinite array of tiles that tile seamlessly with other tiles
based on the color coding given for the edges. We can use a
simplified approach for this by synthesizing more than one
self-tileable texture, which can be produced by the same al-
gorithm as mentioned, by using different weight maps. This
produces different texture as shown in Figure 6. These vari-
ants may be used interchangeably to create aperiodic tiling
during texture mapping.

4. RESULTS AND DISCUSSION
Table 1 shows the time taken and errorThreshold val-

ues of various mesh models, calculated on a Intel Core 2
Duo CPU E4600 @ 2.40 GHz and our algorithm has been

Serial Model Faces Time (sec) Error
1 Buddha 100,000 0.1298 55
2 Gargoyle 20,000 0.0138 95
3 Bunny 69,451 0.0628 35
4 Heptoroid 573,440 0.7830 25
5 Pegasus 127,099 0.1343 465
6 Maxplank 98,260 0.0812 25
7 Fertility 483,226 0.5678 25
8 Dragon 100,000 0.1284 45
9 Laurana 499,998 0.6355 155
10 Hand 23,186 0.0128 45
11 Horse 96,966 0.1057 125

Table 1: Execution time with models of various
sizes. Error(in pixels) denotes the largest shear of
triangle in pixels during texture mapping. These
mesh models are shown in Figure 10.

implemented for single core processors only. Table 2 shows
the real strength of our algorithm. All the values in bold
show the best in that particular column. Clearly in terms
of time and stretch our algorithm does the best. The best
nearest algorithm in terms of time is ARAP [9] and our algo-
rithm is 25.145 faster on an average for the 4 mesh models
in the Table 2. Texturing time reported does not include
the calculation of orientation vectors and assume it to be a
preprocessing step. Our algorithm is sensitive to orientation
changes. Smoothing of the orientation vectors over neigh-
boring faces can increase the texture quality sometimes. All
the results presented in this paper are without smoothing
of orientation vectors. Density of the mesh vertices do not
affect the quality of the texture, as this is the requirement
for some mesh parameterization algorithms. Despite being
simple, the algorithm can manage to texture complex sur-
faces because of the heuristics used for choosing a face while
texture mapping. If large values are choosen for Factor the
algorithm loses its property of cutting the texture patches at
geometric edges. But increasing the Factor value decreases
the execution time. Factor := 9/(nooffaces) strikes a good
balance between texturing time and texture patch boundary
length. On an average, 99.9% of faces are textured within
the errorThreshold of 25 pixels. The scale used for textur-
ing all the results is 800, which means for every square unit
area in geometric space 800 square pixels of texture space
was pasted. So, the stretch is bounded between 0.96 to 1.03
for every unit length vector in texture space. Sorkine et
al. [17] also proposed a similar greedy method approach
which approximately textures at a rate of 20k triangles/sec
on a 2.40 GHz processor. Our method textures at 1 Million
triangles/sec because of its salient feature as mentioned in
Section 2.1. Finally, we present our results on a number of
mesh models of varying complexity in Figure 10 to illustrate
the robustness and consistency of our algorithm.

Method Hand (Fig 10.10) Mannequin-devil (Fig 7(d)) Isis (Fig 9(f)) Gargoyle (Fig 10.2)
Time Stre Distor Time Stre Distor Time Stre Distor Time Stre Distor

Barycentri [19] 1.55 1.44 52.512 1.578 2.02 52.0 0.011 0.582 72.31 0.862 0.509 62.94
MeanValue [5] 2.28 1.369 17.94 2.63 1.80 31.55 0.016 0.52 32.92 1.08 0.48 29.08
Multiresol [2] 2.45 1.39 9.16 3.24 1.73 10.07 0.017 0.51 33.07 1.07 0.48 27.95
LSCM [8] 4.94 1.42 7.127 4.64 1.62 23.32 0.02 0.65 11.0 10.65 0.47 3.89
HLSCM [12] 170.35 0.38 1.32 169.63 0.207 1.63 2.09 0.248 4.39 261.56 0.29 2.28
ABF [15] 5.62 0.29 1.148 25.05 0.32 3.32 0.5 0.478 4.6 8.15 0.31 3.37
ABF++ [16] 4.57 0.135 1.146 15.91 0.322 2.44 0.51 0.48 4.57 5.59 0.31 3.37
ARAP [9] 0.328 0.40 96.80 0.39 0.39 71.69 0.016 0.226 19.07 0.343 0.20 26.87
Proposed 0.013 0.145 4.607 0.0149 0.175 4.534 0.0003 0.152 7.52 0.015 0.1903 8.289

Table 2: Time (sec), stretch (area ratio) and Distortion (angle difference in degrees) for various algorithms
of four models of differing complexity.

5. CONCLUSION AND FUTURE WORK
Our approach is highly robust and efficient, while produc-

ing texture mappings that are similar in perceptual quality
compared to recent mesh parameterization techniques that
are multiple orders of magnitude slower. Quantitative mea-
sures of stretch and distortion also shows the approach to
be among the best available. Our approach is also amenable
to interactive modifications, which can be easily integrated
into our patch discovery process. We are currently working
on a local optimization function that smoothens the stretch
tension over a specified local region. Thus the texture qual-
ity can be further improved, thereby avoiding the occasional
glitches in the texture.

Acknowledgment
This work was partly supported by India Digital Heritage
project of the Department of Science and Technology, Govt.
of India. Polygonal models used were acquired from the
Gatech Large Geometric Models Archive, and the Stanford
3D Scanning Repository.

6. REFERENCES
[1] M. F. Cohen, J. Shade, S. Hiller, and O. Deussen.

Wang tiles for image and texture generation.
SIGGRAPH, 2003.

[2] M. Eck, T. DeRose, T. Duchamp, H. Hoppe,
M. Lounsbery, and W. Stuetzle. Multiresolution
analysis of arbitrary meshes. SIGGRAPH, 1995.

[3] A. Efros and W. T. Freeman. Image quilting for
texture synthesis and transfer. SIGGRAPH, 2001.

[4] M. Fisher, P. Schröder, M. Desbrun, and H. Hoppe.
Design of tangent vector fields. SIGGRAPH, 2007.

[5] M. S. Floater. Mean value coordinates. Computer
Aided Geom. Design, 2003.

[6] C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of
spherical parameterization for 3d meshes. In ACM
SIGGRAPH 2003.

[7] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar,
and D. Dobkin. Maps: Multiresolution adaptive
parameterization of surfaces. SIGGRAPH, 1998.

[8] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least
squares conformal maps for automatic texture atlas
generation. SIGGRAPH, 2002.

[9] L. Liu, L. Zhang, Y. Xu, C. Gotsman, and S. J.
Gortler. A local/global approach to mesh param-
eterization. In Symp. on Geometry Processing, 2008.

[10] E. Praun, A. Finkelstein, and H. Hoppe. Lapped
textures. SIGGRAPH, 2000.

[11] E. Praun and H. Hoppe. Spherical parametrization
and remeshing. SIGGRAPH, 2003.

[12] N. Ray and B. Levy. Hierarchical least squares
conformal map. In Pacific Conference on Computer
Graphics and Applications, 2003.

[13] S. Saba, I. Yavneh, C. Gotsman, and A. Sheffer.
Practical spherical embedding of manifold triangle
meshes. SMI, 2005.

[14] P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe.
Texture mapping progressive meshes. SIGGRAPH,
2001.

[15] A. Sheffer and E. de Sturler. Parameterization of
Faceted Surfaces for Meshing using Angle-Based
Flattening. Engineering with Computers, 2001.

[16] A. Sheffer, B. Lévy, M. Mogilnitsky, and
A. Bogomyakov. ABF++: fast and robust angle based
flattening. ACM Transactions on Graphics, 2005.

[17] O. Sorkine, D. Cohen-Or, R. Goldenthal, and
D. Lischinski. Bounded-distortion piecewise mesh
parameterization. In Proc. Visualization, 2002.

[18] J. Stam. Aperiodic texture mapping. Technical report,
European Research Consortium for Informatics and
Mathematics, 1997.

[19] W. T. Tutte. How to draw a graph. Proc Lond Math
Soc, 13, 1963.

[20] L.-Y. Wei and M. Levoy. Texture synthesis over
arbitrary manifold surfaces. SIGGRAPH, 2001.

[21] L. Ying, A. Hertzmann, H. Biermann, and D. Zorin.
Texture and shape synthesis on surfaces. In Proc.
Eurographics Workshop on Rendering Techniques,
2001.

[22] S. Yoshizawa, A. Belyaev, and H.-P. Seidel. A fast and
simple stretch-minimizing mesh parameterization. In
Shape Modeling and Applications, 2004.

[23] R. Zayer, B. Lévy, and H.-P. Seidel. Linear angle
based parameterization. ACM/EG Symposium on
Geometry Processing, 2007.

Figure 10: Results of texture mapping different mesh models of various complexities.

