
Learning and Adaptation for Improving Handwritten Character Recognizers

Naveen Chandra Tewari and Anoop M. Namboodiri
International Institute of Information Technology, Hyderabad 500032, INDIA

{tewari@students., anoop@}iiit.ac.in

Abstract

Writer independent handwriting recognition systems are
limited in their accuracy, primarily due the large variations
in writing styles of most characters. Samples from a sin-
gle character class can be thought of as emanating from
multiple sources, corresponding to each writing style. This
also makes the inter-class boundaries, complex and discon-
nected in the feature space. Multiple kernel methods have
emerged as a potential framework to model such decision
boundaries effectively, which can be coupled with maximal
margin learning algorithms. We show that formulating the
problem in the above framework improves the recognition
accuracy. We also propose a mechanism to adapt the re-
sulting classifier by modifying the weights of the support
vectors as well as that of the individual kernels. Experimen-
tal results are presented on a data set of 16,000 alphabets
collected from 470 writers using a digitizing tablet.

1. Introduction
Development of a reliable writer independent recogni-

tion system for handwritten characters, whether for online
or offline data, is still an unsolved problem. The primary
challenge for such a system is the extent of variability in
writing styles of different users, coupled with the similarity
between certain pairs of characters (see Fig. 1). Develop-
ing a classifier that performs well, and generalize well to an
unseen handwriting is extremely difficult. For example, the
characters c and e are very similar in appearance, specifi-
cally, when the character c is written with a leading upward
stroke. In short, effective classification would require one
to concentrate on specific and minute differences between
two character classes, while accommodating for the large
variations in their writing styles.

We note that the nature of the character classes leads to
complex decision boundaries between pairs of characters.
Due to this nature of the problem, discriminative models
such as Support Vector Machines (SVMs) [5] that integrate
a collection of pair-wise classifiers tend to be the more ef-
fective [1]. Table 1 shows the classification accuracies of
four popular classifiers on the IRONOFF character dataset.

Table 1. Accuracies of various classifiers on
the IRONOFF character dataset.

Nearest Decision Multilayer Support Vec.
Neighbor Tree Perceptron Machine
84.5% 73.8% 87.6% 91.03%

To design better performing classifiers, one needs to pro-
ceed in one of the following major directions: i) Enhance
the models to deal with the larger variability of the different
styles of writing, or ii) Adapt the classifier to work better
for a specific person’s handwriting.

The use of classifier combination, where one integrates
the results of various classification algorithms have been
tried to achieve the first goal [3]. However, as the complex-
ity of the final classifier goes up, one is also faced with the
problem of overfitting during the training process. A viable
and more principled alternative to handle the variability is to
use a combination of kernels along with a maximum mar-
gin learning algorithm. The implicit regularization of the
classifier’s complexity during the training process that uses
structural risk minimization, avoids overfitting and lead to
solutions that generalize better. Multiple Kernel Learning
(MKL) can effectively accommodate classes that are gener-
ated from multiple sources. In our problem, we can assume
that a character class is composed of multiple generative
models, each corresponding to a different style.

In this work, we explore various kernels that are ef-
fective for the problem of online handwriting recognition,
and show that the MKL paradigm can be used to improve
the overall classification accuracy. We further propose a

Figure 1. Confused character pairs.

2009 10th International Conference on Document Analysis and Recognition

978-0-7695-3725-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDAR.2009.212

86

method to adapt the learned multiple kernel classifier to suit
a specific person’s handwriting. We assume that the charac-
ters are isolated (non-cursive), which is a valid assumption
is many applications such as English form filling as well as
many Asian and Indic scripts.

1.1 Previous Work

Development of writer independent recognition systems
has been an area of active research in the past few decades
due to its difficulty and application potential [9]. Generative
classifiers such as HMMs [6] and template matching ap-
proaches such as DTW [8] are popular for online handwrit-
ing due to the sequential nature of the data. However, dis-
criminative classifiers such as neural networks and support
vector machines have been demonstrated to perform better
to resolve similar looking characters. SVMs are discrimina-
tive classifiers with flexible decision boundaries based on a
kernel function that maps the input data to a higher dimen-
sional feature space [1]. However the use of appropriate
kernel function is critical for the success of the approach,
which has been studied in conjunction with the handwriting
recognition problem. Bahlmann and Burkhardt [2] incorpo-
rated the DTW based distance measure, which is suitable
for variable length feature vectors. However the accuracy
remains low to be acceptable in general use.

It has been noted that a user’s handwriting style is unique
and by that account it can be used for identification of the
writer [13]. It means that for a particular user’s handwrit-
ing, the amount of variation present is relatively small, and
is easier to model. Writer adaptation systems try to im-
prove the performance of a generic classification system by
modifying the model parameters to suit a particular person’s
handwriting.

Connell and Jain [4] extracted unique styles from general
handwriting and train separate models on these styles. The
writer adaptation is done by recognizing the styles present
in a particular user’s handwriting, and retraining the corre-
sponding models using his handwriting. Vuori et al. [12]
uses a generative model (character templates) for captur-
ing the styles present in multi-writer data. They compare
several adaptation strategies for template matching such as
reshaping the prototype, adding the user’s samples as pro-
totype, and removing the confusing prototypes, for adapta-
tion. Prototypes are generated using linear vector quantiza-
tion (LVQ), which are adapted to the candidate samples by
moving them towards or away from the user sample, based
on their contribution to classification performance. Platt
and Matic [10] exploited the fact that the output of a neural
network is a function of its inputs even when the output is
incorrect, and build an output adaptation module based on
RBF network to adapt the recognizer.

2 Learning to be Writer Independent

The intra-class variability present among characters of-
ten result in decision boundaries that are too complex to be
modeled by a single classifier. Combination of the classi-
fiers [7] is commonly used to better model such cases. Each
classifier can be based on a different model or they could be
trained on different feature vectors. However, there are two
important problems that limit such approaches. The individ-
ual classifiers are often trained independently, and hence do
not guarantee optimal performance when combined. More-
over, as the number of classifiers are increased, the classi-
fier training algorithms tend to overfit the training data. An
ideal algorithm should be flexible to fit the complex distri-
butions generated by the character classes, while avoiding
overfitting.

2.1 Multiple Kernel Learning

Support vector machines (SVMs) provide a principled
way of avoiding overfitting while learning from a set of
training samples. The nature and complexity of the deci-
sion boundary of an SVM classifier depends on the kernel
that is employed. The choice of kernel to optimize the per-
formance depends on the problem at hand. Multiple kernel
learning allows us to define a kernel as a weighted combina-
tion of multiple basic kernels, and learn the weights during
the training phase, effectively selecting the most appropriate
kernels and their relative importance. Given a set of kernels,
k1, k2, . . . , km, a combined kernel function may be defined
as:

K(xi, xj) =
m∑

r=1

βrkr(xi, xj),

where βr ≥ 0 and
∑

r βr = 1. The process of learning the
suitable βs that can solve the problem optimally is known as
multiple kernel learning. This combined kernel function can
be incorporated into the framework of SVM objective func-
tion during training. Multiple kernel SVM learning solves
the following convex problem [11]:

min
f,β,b,ξ

1
2

m∑

r=1

1
βr

‖fr‖2
Hr

+ C

N∑

i

ξi, (1)

under the constraint: yi (
∑m

r=1 fr(xi) + b) ≥ 1 − ξi, with
additional constraints on positivity and cumulative sums of
β and ξ. Here, fr is a function belonging to a reproducing
kernel hilbert space (RKHS) Hr associated with kernel kr,
yi is the label of sample xi, b is the bias of SVM kernel, ξis
are slack variables, and C is a regularization constant.

The challenge in applying MKL to a specific problem is
to decide on the set of candidate kernels for combination
by the learning algorithm. Too large a set could make the

87

problem computationally infeasible and increase the chance
of getting trapped in local minima while searching for the
weights, βi. In our experiments, we selected a set of poten-
tial kernels from a large set of possible ones using indepen-
dent training, although this does not guarantee the optimal
solution.

The optimization in SVM-based multiple kernel learn-
ing is done in two steps. In first step, all the weights are
set to be equal and the SVM objective function is mini-
mized. The second one consists of updating the weight vec-
tor d by an appropriate amount towards the minimum of
the SVM objective function, while keeping the SVM coef-
ficients constant. The steps in learning and classification of
SVM-based multiple kernel learning are described in detail
in Algorithm 1.

Algorithm 1 Multiple Kernel Learning

1: Set βr = 1
m for r = 1, . . . , m

2: for t = 1, 2, . . . do
3: Minimize the SVM objective function keeping,

K =
∑

r βt
rkr

4: Compute the gradient of objective function w.r.t βt

5: Update the weights: βt+1
r = βt

r + γtBt,r,
where B is the gradient direction.

6: if (change in β is negligible), break.
7: end for

Once the kernel weights and the support vectors are
learned, the classification of a new sample is straight for-
ward as given in Algorithm 2.

Algorithm 2 Multiple Kernel Classification

1: Compute the combined Kernel matrix K =
∑

r βt
rkr

2: Solve the standard SVM classification problem with
Kernel matrix K

Experiments in section 4 show that MKL can effectively
model the variations in multi-writer datasets and hence im-
prove the recognition performance. We now take a look at
the second aspect of our problem, where we want to adapt a
high performing generic handwriting recognizer to suit the
writing style of a specific user.

3 Adapting Multiple Kernel Classifiers

The problem of writer adaptation is different from tradi-
tional classifier adaptation, where an existing generic clas-
sifier adapts to changes in distribution of data over time. In
the latter case, our goal is to keep a generic classifier in tune
with gradual variations in data, while for writer adaptation,
we seek a new classifier that is specific to a writer, while uti-
lizing the information gained from the generic classifier. In

other words, we need to decide, what information from the
original classifier is useful and what needs to be discarded
to accommodate the adaptation samples.

The adaptation of MKL classifiers consists of two parts:
i) adaptation of the support vectors to better model the de-
cision boundary of a specific writer, and ii) adapt the pa-
rameters of the kernel combination (βs) to suit a specific
writer’s distribution. We primarily concentrate on the adap-
tation of the support vectors as they directly control the de-
cision boundaries.

Multiple kernel classifiers are able to extract the com-
plex boundary by mapping the samples into the higher di-
mensional feature space. However, the inter-class similarity
among classes the decision boundary can be too complex,
resulting in a large number of support vectors, while there
variations present in a single user’s handwriting is often lim-
ited. Hence, for a particular user, the decision boundary can
be simple and be modeled with fewer support vectors. This
can also help us to improve the recognition speed of the
system, as the classification requires the computation of the
kernel function for all support vectors. More importantly,
certain support vectors that help model specific styles that
are not present in a user’s data could be negatively affecting
the classification of that user’s data. The removal of such
support vectors can improve the recognition accuracy of the
that particular user’s handwriting.

To characterize the effect of support vectors, we define
an influence function of the support vectors over the adap-
tation samples. For such a function, we would like to have
the following properties: i) It should consider the amount
of influence of a support vector on the discriminant func-
tion value of the adaptation samples, and ii) It should give
higher weights to those samples that are near the decision
boundary. The influence function of a support vector SVi

based on the user samples xj is defined as:

Inf(SVi) =
∑

j

αi ∗ labeli ∗ labelj ∗ K(xj , SVi)
1 + |∑k αk ∗ labelk ∗ K(SVk, xj) − b| ,

(2)
where K is the kernel matrix. In the above definition, the
numerator describes the effect of a support vector on the
classification function. Moreover the sign, labeli ∗ labelj ,
indicates whether the influence is positive or negative. The
denominator is the absolute discriminant function value,
which is related to the distance of the adaptation samples
from the decision boundary. The resulting influence func-
tion gives higher weight to support vectors that contribute
significantly to classification of a sample, relative to other
SVs. The effect of a specific support vector around its loca-
tion for an RBF kernel is shown in fig 2. For RBF kernels,
we note that a support vector’s influence depends on the
distance from the sample, as well as the distance from the
decision boundary.

88

−50510

−10

0

10

0

0.5

1

Figure 2. Influence of a support vector.

Note that a negative value for the total influence indi-
cates that the specific support vector is doing more harm
than good for classifying samples belonging to the user un-
der consideration. Hence, we propose to remove such SVs
from consideration during adaptation. It may so happen that
even after removing support vectors with high negative in-
fluence, some of the misclassified sample may still be clas-
sified incorrectly. The adaptation process now re-runs the
SVM optimizer with the remaining support vectors, along
with the adaptation data. For re-training we keep only those
samples that are near the decision boundary and may help
in the recognition at later stage. If the amount of adapta-
tion data is significant in size, one could rerun the com-
plete MKL algorithm, thus adapting the kernel coefficients
β also. Fig 3 shows the adaptation results on a synthetic
dataset in two dimensions. The samples of the two classes
are denoted by + and o and the larger symbols denote the
support vectors. The second column shows two different
adaptation datasets along with the initial decision bound-
ary, while the third column shows the results of adaptation,
along with the modified support vectors.

−2 0 2 4 6
−2

0

2

4

6

(a)

0 2 4 6
−1

1

3

5

(b)

−2 0 2 4 6
−2

0

2

4

6

(c)

−2 0 2 4 6
−2

0

2

4

6

(d)

1 3 5
−2

0

2

4

(e)

−2 0 2 4 6
−2

0

2

4

(f)

Figure 3. (a,d): Training data with support
vectors and decision boundary, (b,e): adap-
tation data, and (c,f): adapted classifiers.

4. Experimental Results and Analysis

To study the effect of using multiple kernels for writer
independent handwriting, as well as its adaptation, we con-
ducted our experiments on two datasets from three sources,
two containing English lower-case alphabets, and the third
containing 64 characters from Telugu, an Indian language.

The Ironoff dataset consists of 10, 865 lower case En-
glish alphabets collected from around 400 users. We aug-
mented the dataset with another one containing 6, 186 sam-
ples collected from 70 users. We refer to this augmented
dataset as the Combined dataset in our experiments. The
Telugu dataset contains 16, 346 samples that covers the ba-
sic characters set (64 classes). All the datasets were col-
lected using digitizing tablets that sample the pen position
at around 100 hertz.

Each character sample is first normalized to a fixed size
and then smoothened by a Gaussian filer. For RBF and
polynomial kernels we spatially resampled each character
to contain exactly 60 points. For each point we have ex-
tracted the following feature vectors: 1,2) normalized x and
y coordinates, 3) curvature, and 4,5) sine and cosine of the
tangent direction. Each character is hence mapped to a 300
dimensional feature vector.

4.1. Writer Independent Recognizer

For multiple kernel experiments, we consider Polyno-
mial kernels of three orders and Radial Basis Function ker-
nels with different γ coefficients. We have also considered
a variable length feature vector kernel namely the Gaus-
sian Dynamic Time Warping (GDTW). In the GDTW ker-
nel space, the similarity between two sequences xi and xj is
defined based on the DTW distance (Dist(xi, xj)) between
the two sequences as: K(xi, xj) = exp(−γDist(xi, xj)).
Since DTW can deal with variability in the speed of writ-
ing, which was being lost in fixed length feature vectors, we
consider the original variable length sample points to com-
pute this kernel.

Table 2. Classification accuracies of single
and multiple kernel classifiers.
Method IRONOFF COMBINED TELUGU
RBF (1

2k) 88.36 89.51 91.67
RBF (k) 89.43 90.01 92.53
RBF (2k) 91.03 91.04 92.60
Poly (1st) 88.35 88.89 88.41
Poly (2nd) 89.20 89.56 89.34
Poly (3rd) 89.56 90.03 90.23
DTW 84.00 86.34 88.54

MKL 92.71 93.53 95.42

89

Table 2 shows the results of using an SVM classifier us-
ing each of the above kernels with different parameters, fol-
lowed by that of the MKL classifier. The best accuracies
obtained by the single kernel as well as the MKL are high-
lighted for comparison. The results on all three datasets
consistently shows improvements over the best performing
single kernel classifier, which in our problem, happens to be
the RBF kernel with γ = 2k (k is a scaling factor = 2−7).

We note that the accuracy of GDTW kernel is low com-
pared to kernels based on the fixed length features. How-
ever, it is interesting to note that MKL selects the RBF
(γ = 2k) and GDTW kernels to achieve the best perfor-
mance. We also note that addition of other kernels do not
provide significant improvements to the results and the cor-
responding weights (βs) turn out to be close to zero. It
is well known that presence of complementary informa-
tion leads to better results when combined, and in our case,
the complementarity comes from the comparison algorithm.
The purpose of our experiments is to examine the relative
merit of the multiple kernel classifier. The results presented
are not claimed to be optimal, but they are definitely repre-
sentative. One could further improve the overall accuracies
by including additional kernels as well as features.

4.2 Writer Adaptation

For the purpose of writer adaptation, we need multiple
instances of data for each character class, preferably more
than ten. Hence we limit our experiments to a dataset of ten
writers, each contributing at least 20 samples per character.
Out of this data, 8 were used for adaptation, and the remain-
ing were used for testing. We start with the multiple kernel
classifier that was obtained from the previous experiments,
and adapt them to the each user, separately. The compar-
ison between writer independent and the adapted systems
is shown in Table 3. We note that there is a consistent im-
provement in the accuracy due to adaptation (average 5%).
However, the extent of improvement varies considerably
across the writers, depending on their consistency of writ-
ing. We note that most of the errors after adaptation are due
to badly written samples. As the adaptation algorithm is
designed to give high importance to the new user’s sample,
this can significantly affect the classification performance.
Our method has the ability to cope with such data, as the
number of adaptation samples increases.

Table 3. Recognition accuracies before and
after adaptation for 10 different writers.

Wr.ID Initial Adapted Wr.ID Initial Adapted
1 95.64 98.76 6 90.54 94.59
2 87.96 92.43 7 94.44 98.76
3 82.67 90.12 8 74.85 80.97
4 91.87 98.46 9 92.97 93.67
5 93.15 95.21 10 63.71 78.12

5 Conclusions and Future Work

We have presented an effective and efficient method for
training a writer independent handwritten character recog-
nition system using multiple kernel learning. Experiments
show up to around 30% reduction in error rate over the state
of the art, when tested on multiple datasets with English
and Telugu alphabets. The adaptation process shows fur-
ther improvement in accuracy, especially for those writers
for which the generic classifier is not performing well. We
are currently exploring ways to mitigate the problem of im-
proving the adaptation performance in presence of incor-
rectly written or labeled data.

References

[1] A. R. Ahmad, M. Khalia, C. Viard-Gaudin, and E. Pois-
son. Online handwriting recognition using support vector
machine. In Proc. TENCON’04, pages 311–314, 2004.

[2] C. Bahlmann and H. Burkhardt. The writer independent on-
line handwriting recognition system frog on hand and clus-
ter generative statistical dynamic time warping. IEEE Trans.
Pattern Anal. Mach. Intell., 26:299–310, 2004.

[3] K. Chellapilla, P. Simard, and A. Abdulkader. Allograph
based writer adaptation for handwritten character recogni-
tion. In Proc. 10th IWFHR, pages 423–428, 2006.

[4] S. D. Connell and A. K. Jain. Writer adaptation of online
handwriting models. IEEE Trans. Pattern Anal. Mach. In-
tell., 24, 2002.

[5] N. Cristianini and J. Shawe-Taylor. An Introduction to
Support Vector Machines and Other Kernel-based Learning
Methods. Cambridge University Press, 2000.

[6] J. Hu, S. Lim, and M. Brown. Writer independent on-
line handwriting recognition using an hmm approach. PR,
33:133–147, January 2000.

[7] J. Kittler, I. C. Society, M. Hatef, R. P. W. Duin, and
J. Matas. On combining classifiers. IEEE Trans. Pattern
Anal. Mach. Intell., 20:226–239, 1998.

[8] L. Niels, Ralph Vuurpijl. Using dynamic time warping for
intuitive handwriting recognition. In Proc. IGS2005, pages
217–221, 2005.

[9] R. Plamondon and S. N. Srihari. On-line and off-line hand-
writing recognition: A comprehensive survey. IEEE Trans.
Pattern Anal. Mach. Intell., 22, 2000.

[10] J. C. Platt and N. P. Mati’c. A constructive RBF network
for writer adaptation. In Advances in Neural Information
Processing Systems. MIT Press, 1997.

[11] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet.
More efficiency in multiple kernel learning. In Proc. of
ICML’07, pages 775–782. ACM, 2007.

[12] V. Vuori, J. Laaksonen, E. Oja, and J. Kangas. On-line adap-
tation in recognition of handwritten alphanumeric charac-
ters. In Proc. of ICDAR, pages 792–795, 1999.

[13] B. Zhang, S. N. Srihari, and S. Lee. Individuality of hand-
written characters. In Proc. 7th ICDAR, pages 1086–1090,
2003.

90

