Detection and Segmentation of Approximate Repetitive
Patterns in Relief Images

Harshit Agrawal*

harshit.agrawal@research.iiit.ac.in

Anoop M. Namboodiri

anoop@iiit.ac.in

Center for Visual Information Technology, llIT-Hyderabad

ABSTRACT

Algorithms for detection of repeating patterns in images of-
ten assume that the repetition is regular and highly similar
across the instances. Approximate repetitions are also of in-
terest in many domains such as hand carved sculptures, wall
decorations, groups of natural objects, etc. Detection of such
repetitive structures can help in applications such as image
retrieval, image inpainting, 3D reconstruction, etc. In this
work, we look at a specific class of approximate repetitions:
those in images of hand carved relief structures. We present
a robust hierarchical method for detecting such repetitions.
Given a single image with reliefs, our algorithm finds dense
matches of local features across the image at various scales.
The matching features are then grouped based on their ge-
ometric configuration to find repeating elements. We also
propose a method to group the repeating elements to seg-
ment the repetitive patterns in an image. In relief images,
foreground and background have nearly the same texture,
and matching of a single feature would not provide reliable
evidence of repetition. Our grouping algorithm integrates
evidences of repetition to reliably find repeating patterns.
Input image is processed on a scale-space pyramid to effec-
tively detect all possible repetitions at different scales. Our
method has been tested on images with large varieties of
complex repetitive patterns and the qualitative results show
the robustness of our approach.

Keywords

Reliefs, Spatial Configuration, Repetitive Patterns, Scale-
Space Pyramid, Patch Matching

1. INTRODUCTION

Repetitive patterns are present in various structures and
shapes of the world at many different scales and forms.
In man-made environments, structures with repetitive pat-
terns or elements are often employed as they are aestheti-

*Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICVGIP *12, December 16-19, 2012, Mumbai, India

Copyright 2012 ACM 978-1-4503-1660-6/12/12 ...$15.00.

(c) Shri Senpaga Vinayagar Temple, Singapore

Figure 1: Example reliefs with approximate repeti-
tive patterns.

cally pleasing. In reliefs, structures often appear in different
repetitive patterns. Repetitions in themselves have redun-
dancy as all the structures have some common properties
like shape, style, texture, etc. The information extracted
by detecting repetitions can be used as prior in segmenta-
tion and reconstruction of elements of the structures. It can
also provide valuable information in case of partial occlu-
sions. Reliefs are a common form of decoration and medium
of depicting incidents and stories in man made structures
from ancient times. With time many of these structures get
weathered down and parts of the reliefs may get broken or
damaged. Repetitive patterns can also assist in single view
reconstruction of the scene [19].

Robust representation of repetitive patterns can be used
as an invariant descriptor to identify semantically relevant
objects to match across images [5]. Many algorithms have
been developed for detecting repetitions and translational
symmetry [7, 8, 9, 10, 12], but a fully automatic method
for detecting approximate repetitions in complex real im-
ages like reliefs is still a very challenging task. We pro-
pose a robust method to detect the approximately repeat-
ing structures on reliefs. The hierarchical method proceeds
from lower to higher level features, thus robustly detects
structures with partial repetitions.

We consider a generic notion of repetitive pattern as rep-
etition of a structure or an object. A repetitive pattern
can have both uniformly spaced repetitions or irregularly
spaced repetitions. In urban facades, the structural elements
like windows and doors usually have regularity in repetition.
The regularity can always be used as a reliable cue for de-
tecting such repetitive patterns. Different algorithms [6, 12,
14] have been developed that exploits the regularity of such
repetitions. Unlike facades, reliefs have irregular repetitions
with changes in the appearances. Perspective view of fa-
cade images can be rectified using vanishing points to get
the fronto-parallel view [12]. It is often difficult to extract
robust vanishing points in reliefs due to absence of linear
structures (see Fig. 1(a)). In our approach, we do not con-
strain the input image to have a fronto-parallel view.

Humans inherently recognize symmetries and repetitive
patterns in objects and images. Detection of repetitions for
humans happen at multiple levels of detail. At a coarse
level, we may use the overall texture of a scene or part of
it to find possible repetitions. We then analyze the parts
of objects within it and their arrangement to find objects
that repeat. If those pieces or objects are found in a similar
configuration elsewhere, we identify this object as a repe-
tition. The motivation for the design of our algorithm is
the same. We begin by finding reliable matches for indi-
vidual components in an image. These individual matches
are then verified and grouped together to get regions with
possible repetitions. These grouped matches are then used
to detect different repetitive patterns and elements.

We have collected images with various types of repeti-
tive patterns from different sources. It includes images with
identical and approximate repetitive patterns. We also test
our algorithm for facade images and images from PSU-Near
Regular Texture database. The images in the collection were
manually annotated to get the ground truth for quantitative
evaluation of the algorithm.

1.1 Related Work

Repetition detection in images is a long standing problem
and till date researchers in computer vision have made signif-
icant progress towards detection of symmetries and repeti-
tions not only in images but also in 3D data. Leung and Ma-
lik [7] proposed a simple window matching scheme followed
by grouping of patterns for finding repeating scene elements.
Schaffalitzky and Zisserman [15] proposed a RANSAC-based
grouping method for imaged scenes, which repeat on a plane
in a scene. Park et al. [14] developed an algorithm using an
efficient Mean-shift belief propagation for 2D lattice detec-
tion on near-regular textures. These approaches give good
result on grid-like repetitive patterns. However, it is very
rare to find a grid-like repeating pattern in hand carved
reliefs and are generally limited to one-dimensional repeti-
tions. Hence we cannot use the above approaches for de-
tecting repetitions in our problem. The proposed algorithm
does not require the presence of a grid-like repetitive pattern
and can detect the repetitions even if an element is repeated
only once at two arbitrary locations in the image.

Wenzel et al. [17] have proposed a method for detecting
repeated structures in facade images. They begin by de-
tecting the dominant symmetries and then use clustering of
feature pairs to detect the repeating structures in the image.
Wu et al.[18] developed an approach to detect large repeti-
tive structures with salient boundaries. They assume reflec-

tive symmetry in the architectural structures and use this
to localize vertical boundaries between repeating elements.
Their algorithm depends on accurate vanishing point detec-
tion for rectifying the image to a fronto-parallel view. Their
algorithm does not work if the repetition interval is larger
than the width of the repetitive structure. In reliefs, we can
not assume reflective symmetry, accurate vanishing point de-
tection, or regularity in intervals between repetitions. Our
algorithm does not pose any of the above constraints on
the input image. However, our algorithm does not output
complete repetitions for significantly large perspective dis-
tortions.

Zhao and Quan [20] describe a robust and efficient method
for detecting translational symmetries in fronto-parallel view
of facade images using joint spatial and transformation space
detection. Their algorithm outputs incorrect results if the
lattice is incomplete or the repetitions are non-uniformly
spaced. Recently, Zhao et al. [21] developed a robust and
dense per-pixel translational symmetry detection and seg-
mentation in facade images. Although their algorithm con-
siders most of the limitations of earlier approaches they can-
not be applied directly to detect repetitions in reliefs. They
create translational map in horizontal and vertical directions
only. Moreover, for segmentation of a repeating element,
they have used a learning based approach to classify each
pixel as either a wall pixel or a non-wall pixel. Such a clas-
sification based segmentation is impractical in relief carv-
ings due to the high textural similarity between foreground
and background. Our approach is different from all the pre-
vious approaches as we do not have any pre-assumptions
about the repetitive pattern or the repetitive element type.
We also compute pixel level correspondences of the repet-
itive elements after merging the results from all the scales
in the scale space pyramid. Cai and Basui [2] proposed a
region growing image segmentation algorithm for detecting
and grouping higher level repetitive patterns. Their algo-
rithm begins with manual marking of a region of repetition
and then they iterate between growing and refinement steps.

We present a robust algorithm for repetition detection and
segmentation in reliefs with fewer assumptions about the
nature of repetition compared to existing approaches. Our
hierarchical pairwise matching approach is closely related to
the work of Carneiro and Jepson [4]. They have developed
semilocal image features to improve the robustness of fea-
ture matching between a pair of images with possible rigid
or non-rigid deformations. The hierarchy of matching levels
in our approach can also be compared to levels in a deep
learning network, where higher level features and concepts
are defined in terms of lower-level ones. We propose a robust
pairwise matching approach that detects pairwise matches
with high confidence scores. In image matching, interest
point groups are matched using pairwise spatial constraints
[13]. We have also used pairwise spatial constraints to en-
hance the confidence of a match. Barnes et al. [3] finds dense
pairwise matches using k-NN search.

To improve the correspondences they use the offset val-
ues of the neighboring pixels. In contrast, we start with
confident pairwise matches, found independently and then
impose the neighboring constraint while doing hierarchical
grouping. The hierarchical approach reduces the search space
considerably, and is critical to establish matches with ap-
proximate repetitions. Our approach is different from image
retrieval in the sense that we are not using a Bag-of-words

(f) Segmented image regions.

(g) Detected repetitive patterns.

Figure 2: (a) Dense sift features after removal of false matches (b) Pairwise sift matching, blue features are
pairwise matches of yellow (c) Pairwise patch matching, green patches are correct match of yellow patch and
red patches are false matches (d) Connectivity graph at various scales in the scale-space pyramid (e) Score
Image for the corresponding connectivity graph in (d). (f) Segmented image regions after merging all score
images with distinct labels for each region. (g) These labels are merged and grouped to produce the final
output of our algorithm with color-coded convex hulls of repetitive patterns.

representation of features. We would like to have strong
matches between features and in a bag-of-words represen-
tation, many features will be denoted by a representative
visual word which will increase the number of false matches
among the features.

2. OBSERVATIONS AND ASSUMPTIONS

Repetitive patterns in reliefs have certain interesting char-
acteristics that are different from the typical patterns found
in the urban facades. This section lists some of the ob-
servations and assumptions that lead to the design of our
repetition detection algorithm.

1. In general, repetitions in reliefs do not occur in a reg-
ular grid or at regular interval. Repetitive patterns of-
ten appear non-uniformly in an image (see Fig. 1(b)).
Our algorithm is independent of factors including the
number of repetitions, repetition interval and repeti-
tion direction.

2. Occasionally, in reliefs it is difficult to define repetitive
patterns where each object is a single unit. Repeating
elements generally have some variance in appearance

from other repetitions (see Fig. 1(c)). Elements can
have partial repetitions and we achieve robust detec-
tions for such reliefs with our algorithm.

3. It is often difficult to apply traditional rectification
techniques on reliefs as detecting the vanishing line
is not robust enough in images such as Fig. 1(a). Our
algorithm is not constrained to any requirement of in-
put image to be fronto-parallel or rectified. Detection
is robust to significant image skews.

3. PAIRWISE MATCHING

As a brief overview, our algorithm initiates by building a
scale-space pyramid of the given input image. Fig. 2 shows
the complete pipeline of our algorithm. We process each
scale independently. At each scale, we extract feature de-
scriptors and a list of matching features are found for each
feature. We then consider the features in image patches and
search for similar patches using our similarity score function.
These pairwise patch-matches give us a confidence score for
matching image patches. Confidence scores are then used
to identify the regions that are repeating using watershed
segmentation of the confidence score image. We begin by

presenting our framework for finding pairwise patch corre-
spondences, then describe the detection and segmentation
of repetitive patterns.

3.1 Pairwise Feature Matching

In order to cover the entire image, we have extracted SIFT
descriptors using sift interest points and dense SIFT descrip-
tors with a fixed step size (10 pixels, in our experiments).
We convert the SIFT descriptors to ROOT SIFT. This has
been shown to work well on many computer vision tasks [1].
We denote the set of SIFT descriptors S,, for the image at
current level n. For each s; € S, k nearest neighbors are
found using efficient implementation of kd-tree data struc-
ture. We consider s; as a reliable match for s; if their scales
and orientations are very similar. For a pair of sift descrip-
tors, we define a similarity score as:

sd(si, 85) + od(si, ;) + dd(si, s5) (1)
3 7

where sd(s;,s;) is absolute difference between the scales,
od(s;,s;j) is absolute difference between the orientations and
dd(si,s;) is the L1 norm of difference vector of their descrip-
tors, each of them normalized between 0 and 1. We consider
the sift pair as a strong match if SS(s;,s;) is more than a
threshold sim_thresh (= 0.7 in our experiments). We discard
the pair if any of sd, od, dd exceeds the individual threshold
(nearly sim_thresh/3).

Remove false matches: Trivial repetitions in images
like the background plane or repetitions with very small in-
terval are considered insignificant. To remove false matches
for sift feature, we find its num_neighbor nearest neighbors
in sift descriptor space. We use the following false match
removal algorithm to filter the set of SIFT descriptors. We
remove a feature s; from S, if:

SS(Si,S]') =1-

e No nearest neighbor has similarity score greater than
sim_thresh, else check the following conditions.

e At least two nearest neighbor has spatial euclidean
distance less than the minimum repetition interval al-
lowed or,

e At least one nearest neighbor are spatially very close
to s;.

The minimum repetition interval is chosen as the patch size
(section 4.2) of the current scale. This step removes a large
number of insignificant features, which increases the effi-
ciency of the algorithm. All the remaining features in S,
have strong and reliable matches along with their corre-
sponding similarity scores. We denote the " strong match
of s; as sift_match;; and score with sift_score;;.

Images with reliefs are noisy due to their textures. Al-
though strict thresholds are used for similarity scores, we
further want to increase the reliability of matches. We use
a higher level matching after sift feature matching to fur-
ther remove the remaining false matches. In next step of
our algorithm, we introduce a higher level feature matching
technique that boosts the robustness and reliability of the
feature matches found in this step.

3.2 Pairwise Patch Matching

Matching a set of features has proved to be more reliable
then matching a single feature. Next higher level of SIFT
matching is matching a set of SIFT features spatially close

to each other in the image space. We consider a set of over-
lapping image patches P = {p.}, where each patch p. is of
size Tn X Tn(71 ~ 15) is centered at a regular interval in the
image. Let s. = {s;} be the set of SIFT descriptors lying
within the image patch p.. We present our patch-match
algorithm for finding matches for each patch in P.

For each image patch p. € P, find all the patches that
can possibly match p.. To find the possible patches we use
sift_match;; for all s; € s.. Each possible patch is centered
such that the spatial position of s; and s; are same in their
corresponding patches. We define matching_score(p;, p;)
using the spatial configuration of matching sift features in
pi and p;. To provide flexibility, we divide each patch in
2 x 2 cells and use soft-binning for each matching sift feature.
We find the distance of each matching sift feature in the
patch to the centers of the 4 cells and then give a weight
w; = ﬁ, where d; is spatial euclidean distance from the

center of i*" cell. After considering all the matching sift
features, we will get a pair of vectors v; and v; of size 4 x 1.
For a pair of patches, the matching_distance is defined as
the L1 norm of the difference vector of v; and v;. So the
matching_score = 1 — matching_distance. Two patches
have a strong match if their matching score is greater than
a threshold (0.7 in our experiments).

Algorithm 1 Patch-Match Algorithm

1: patch-match < ¢
2: for all p. € P do

3: patch-match(pe) < ¢

4: pos_match(pe) < ¢

5: for all s; € s do

6: p < patch corresponding to sift_match;;

7 pos_match(pc) < pos_match(pe) + p

8 end for

9: for all pos_match(p;) € pos_match(p.) do

10: score(p.) < matching_score(p., pos_match(p;))

11: if score(p.) > threshold then

12: patch_match(pe) < patch_match(pc)+
pos_match(p;)

13: end if

14: end for

15: patch_match < patch_match + patch_match(p.)
16: end for

After this step, patch_match(p.) stores position of all the
matching patches of p. along with their matching scores.
The patch-match algorithm proposed above will further re-
move features that are not matched in groups. We remove
from P all the patches that do not have any strongly match-
ing patch. The correctness of retained features are increased
after the patch-match algorithm.

4. GROUPING PATCHES

The pairwise patch matches found in the previous section
must be grouped together to accomplish our goal of identify-
ing repetitive patterns. Before grouping patches, we want to
remove overlapping patches that have strong matches to the
same patch. Repetitions in reliefs are not identical and hence
there could be multiple places at which the same matching
patch is centered. To find a single patch out of multiple over-
lapping patches, we follow a variant of the non-maximum
suppression technique. For each patch match we have a

matching score that is the confidence of the match between
the two patches. We say that two patches are overlapping
if the Euclidean distance between their centers is less than
the patch width 7, where n is the current level in the scale-
space pyramid. For all overlapping matching patches we
only retain the patch with maximum matching_score and
discard the rest of the overlapping patches. We have also
experimented by taking the average position of all the over-
lapping patches but the resulting patch often gets misplaced
as the average patch does not correspond to a valid patch.
Hence we have used the former approach.

We consider grouping of patches as the next higher level
of patch matching. In this section, we propose a grouping
algorithm that tries to group neighboring patches based on
the configuration and confidence of their individual match-
ing patches. If a region is repetitive at two places then its
sub-regions should also repeat in the same spatial configu-
ration in both the places. Following the above intuition we
design the grouping algorithm as follows:

We consider two patches to be neighboring patches if the
euclidean distance between their centers is less than o X 7,
(o = 1.2, in all experiments). It is similar to 8-neighborhood
in pixel space. For grouping patches, we find neighbor-
ing patches neighbor(p.) for each patch p. € P. From the
patch-match algorithm (Algorithm 1) we know that both
pe and the neighboring patch p; € neighbor(p.) have some
matching patches with strong matching scores. If a pair of
matching patches of p. and p; have the similar neighborhood
property as p. and p; then the confidence of the matches are
further increased. As the spatial distance between p. and
pi is small there is a high possibility of both the patches
belonging to a single repetitive unit. We have exploited this
fact to design the patch grouping algorithm (Algorithm 2).

Algorithm 2 Patch Grouping Algorithm
// All considered patches € P
1: for all p. € P do
neighbor(p.) < neighboring patches of p.
3: for all p; € neighbor(p.) do
4: for all pair €
(patch_match(p.), patch-match(p;)) do

»

5: if config-matches({pc,p:i}, {pair}) then
6: join centers of p. and p;

T join centers of patches in pair

8: end if

9: end for

10: end for

11: if p. is not joined to any patch then

12: patch_match < patch_match — p.

13: end if

14: end for

In reliefs, the individual repetitive unit can have small
variations in the shape and structure. So the neighborhood
property is defined to have the trade-off between robustness
and accuracy. Consider two pairs of patches (pa, py) and
(Pam,pbm) where p, and pp are neighboring patches, pom
and pp.m, are their matching patches respectively. We con-
sider two criteria for the pairs of patches to have a matching
configuration. First, spatial distance between the neighbor-
ing patches and second, relative spatial arrangement of the
neighboring patches in the image space. We have kept a re-
laxed threshold for both the criteria providing robustness to

the grouping, where as the correctness is already been veri-
fied at each level before this step. If the absolute difference
of the dist(pa, pp) and dist(pam, Pom) (dist(:,) is euclidean
distance) is less than a threshold(~ 5 pixels) then it satisfy
the first criterion. For spatial orientation, we find the angle
made by the line joining the centers of each patch with the
horizontal axes. If the absolute difference in the angles is less
then a threshold (~ 35° to 45°), then it satisfy the second
criterion. We say that con fig-matches({pa,ps}, {Pam, Dbm })
is true if both the criteria are satisfied. After joining the
center of the grouped patches, we get a connectivity graph
(Figure 2(d)) in the image space where nodes are the patch
centers and the edges denotes that patches have high chance
of belonging to a single repetitive unit.

Merging Results of all Scales: A region of the graph
with high connectivity among the neighboring patches cor-
responds to a strongly repeating region but we cannot guar-
antee that a region with low or no connectivity is not a
repeating unit. All the computation is done at each scale of
scale-space pyramid. Each scale could possibly detect dif-
ferent patches. To ensure completeness, we need to merge
the output of all the scales. We have outputs in the form of
matching patches and the connectivity graphs at each scale.

To merge the results from different scales, we create a
score image from the connectivity graph at each scale. Score
image has a score (between 0 and 1) at each pixel and the
score denotes the confidence of that pixel belonging to a
repetitive pattern. While joining the patches in Algorithm 2,
we removed all the patches that are not joined to any neigh-
boring patch. So all the patches in patch-match(p.) is joined
with valid neighboring patch. We create a score_patch(p.)
of size 7, X 7, with each value as the maximum score among
all the matches patch-match(p.) of a patch p.. A Gaussian
mask with o, = = is applied to give more weight to the
center of the patch. The score_patch(p.) for p. is added
in the score image at the corresponding place. We add the
score patches for all p. € P to the score image at the cur-
rent level. After repeating this for all scales, we will have a
score image at all the scales. Then, each image is mapped
to the image at the highest scale of the pyramid. For each
pixel, we take the maximum score among all the score im-
ages. We also merge patch_match(p.) for all patches at all
scales to the patch_match(p.) of the highest scale. After
merging the results at all scales, we create a repetition field
rep_field in the image space where rep_field(z,y) stores
the patch_match(p.) information along with the matching
scores for patch p. which is centered at (x,y).

S. DETECTION AND SEGMENTATION OF
REPETITIVE PATTERN

After grouping patches in the above section, we have the
following information available for the given input image.
Score image in which each pixel gives the confidence of be-
longing to a repetitive pattern. For each pixel in the image
space, rep_field stores all the matching pixel positions and
scores. To detect the repetitive patterns we segment the
score image using watershed segmentation technique [11].
We have no prior knowledge about the number of repetitive
elements in the image, hence we have to use an unsuper-
vised approach. Watershed segmentation is an automatic
segmentation that considers a topographic representation of
the image intensity. Intuitively, an infinite source of water

(a) Original

i

Figure 3: Example of an approximately repeating
structure.

is kept at the lowest basin and then watersheds or dams are
formed to prevent water flow from one catchment basin to
another.

In our score image, the matches with high matching score
will have high intensity values and an absence of a match
with zero intensity value. If we invert the score image then
region with high matching score corresponds to catchment
basins and hence watershed algorithm can be effectively
used. Watershed algorithm often gives an over-segmented
output. Inverted score image will form large number of
catchment basins as an evident of max operation while merg-
ing all the scales. Pre-processing of the image with smooth-
ing filters were also over-segmenting the image. So we first
converted the gray-scale score image into a binary image by
keeping a low threshold (between 0.01 to 0.15) and then
convert it back to a gray scale image using euclidean dis-
tance transform of the inverted image. This reduces the
over-segmentation to large extent and outputs larger seg-
ments with unique labels corresponding to possible repeti-
tive regions. We develop a label merging algorithm to get
the correct repetitive regions. Each watershed pixel sepa-
rates two regions with labels /1 and l2. Given the repetition
field rep_field, we can say that if no pixel in /3 has a re-
peating pixel in l2, then both /1 and l2 must constitute the
same label. If more than S (8 = 10, in our experiments)
watershed pixels satisfy the constraint then we merge [1 and
l> into one label.

After appropriate merging of the regions, we get possible
repetitive regions associated with unique labels. To detect
the repetitive pattern, we need to find correspondences be-
tween the repeating element. For each pixel in a label, we
find the labels corresponding to its matching pixels using
rep_field. Large number of correspondences between two
labels implies that both the label belongs to same repeti-
tive pattern. After finding the pairwise correspondences, we
group the regions to get the correct repetitive patterns with
the repetitive elements.

6. RESULTS AND DISCUSSIONS

We have tested our method on a PC with 2 GHz CPU and
4GB RAM. The Matlab implementation of our method has
3.8min average run time for a typical 500x500 image. We
tested our algorithm on a collection of various images. It
includes images of repeating reliefs, urban facades, Normal-
NRT images. The relief images includes bas-reliefs or low-
reliefs, high reliefs and sunken reliefs. We have used some
of the facade images from ZuBuD database [16]. The regu-
lar texture images are taken from PSU Normal-near regular
texture images. The collection also includes images from
flickr. We have shown results on representative images from
the collection of reliefs, facades and NRT images.

Our algorithm gives correct detection results for reliefs

Table 1: Repetition detection and segmentation per-
formance of our algorithm

Image Type | #Images Avg. Accuracy Avg. Recall
Reliefs 53 89.66% 79.77%
facades 22 85.3% 80.1%
normal-NRT 13 88.1% 58.3%

with highly similar repetitions in almost all the images.
When the repetition is approximate (see Fig. 3), the algo-
rithm robustly detects the repetitive pattern. In reliefs, only
particular parts of the object may repeat. In those cases,
algorithm properly segments parts that belong to the repet-
itive pattern such as in Figures 4.1 and 4.5, where the heads
are approximately repeating. Figures 4.2 and 4.3 show the
robustness of our approach for irregular repetitions. In Fig.
4.2, the partial elephant is grouped with the horse pattern
due to the matching back, which has same appearance to
horse’s back. Fig. 4.4 shows detection of multiple irregular
patterns. The red patterns are a result of matches between
sky patches. In Fig. 4.6, our algorithm detected parts of
the repetitive element as different pattern because of the
absence of matching patches in those regions.

We prepared the ground truth results for all the images
by drawing an approximate border around each repetitive
elements. We evaluate our detection and segmentation al-
gorithm using accuracy and recall measures. The segmen-
tation performance is explained mainly by accuracy and the
detection performance is explained by recall measure. We
call any detected region a true positive (TP) if it belongs
to the correct repetitive pattern. If a non-repeating region
is assigned to a repetitive pattern, then we call it a false
positive (FP), similarly a segmented region is false negative
(FN) if it does not belong to correct repetitive pattern. Sim-
ilar evaluation criteria is used by Basui and Cai [2]. Table 1
shows the detection and segmentation performance of our
algorithm on the collection of images. Figure 7 shows result
of our algorithm on facade and NRT images.

Limitations - Our algorithm has some limitations for ro-
bust repetition detections. Our algorithm is not robust to
occlusions and large projective skews because of insufficient
pairwise matches. In Fig. 6(d), the top-left window is par-
tially detected due to occlusion by a tree. In Fig. 6, robust
repetitions are detected, but for relatively large projective
skew like in Fig. 6(a), our algorithm fails to find reliable
matches. In images where the repetitive patterns are very
close to each other for example Fig. 6(b) and 6(c), our seg-
mentation algorithm incorrectly merge multiple elements or
segments one element into two parts but still we can get
satisfactory segmentations by tuning the threshold values.

7. CONCLUSION AND FUTURE WORK

We proposed a robust and efficient method for detect-
ing approximate repetitions in relief images. Our algorithm
outputs labeled segmentation of the repetitive patterns by
computing a convex hull of the repeating elements. We have
evaluated our algorithm on images with various types of rep-
etitions. The robustness of the algorithm is also tested on
facade and near-regular-texture images. Our algorithm out-
puts good results for repetitions with large texture varia-
tions. We allows small changes in scale and shapes to be
matched for the same repetitive pattern. Our algorithm

(6)
(I) Original Images

(II) Ground Truth Segmentations

(III) Our Results

Figure 4: Each row shows the result of detection and segmentation on varieties of reliefs images. (1) shows
detection in case of approximate repetitions. (2) Elephant’s back is wrongly detected as a horse’s repetition.
(3) is an accurate detection. (4) Red pattern is a false positive due to repeating sky. (5) Detected multiple
repetitions with irregular intervals. (6) As parts of the statue is repeating, they are identified as different

repeating elements.

works well for irregular and low count repetitions.

In future, we would like to exploit the pairwise correspon-
dences detected by our algorithm. We believe that the de-
tected repetition can be used in improving the 3D recon-
struction from a single image. The repetitions can also help
in reconstructing partially damaged structures using region
growing and graphical model techniques. The detected ob-
jects can possibly be used to describe and retrieve similar

objects from a large database of images. We would also
like to work and develop a general repetition detection for
multiple types of images.

8. ACKNOWLEDGMENTS

This work was partly supported by the India Digital Her-
itage(IDH) project of Department of Science & Technology,
Govt. of India.

Figure 5: Example of robustness of our detection and segmentation algorithm in presence of multiple
repetitive patterns and significant projective skews. Original image(left), Annotated image(center), Our Re-

sult(right).

Figure 6: Example failure cases (a) Large projec-
tive skews, (b),(c) close repetitive patterns, and (d)

partial detection due to occlusions.

1248 iy

[

Figure 7: Example of our detection performance on

Facades and NRT images.

9. REFERENCES
[1] R. Arandjelovic and A. Zisserman. Three things

everyone should know to improve object retrieval. In

CVPR, 2012.

[2] G. Baciu and Y. Cai. Higher level segmentation:
Detecting and grouping of invariant repetitive
patterns. CVPR, 2012.

[3] C. Barnes, E. Shechtman, D. B. Goldman, and
A. Finkelstein. The generalized PatchMatch
correspondence algorithm. In ECCV, 2010.

[4] G. Carneiro and A. Jepson. Flexible spatial

configuration of local image features. PAMI, 2007.

P. Doubek, J. Matas, M. Perdoch, and O. Chum.
Image matching and retrieval by repetitive patterns.
In ICPR, 2010.

T. Korah and C. Rasmussen. 2d lattice extraction
from structured environments. In ICIP, 2007.

T. K. Leung and J. Malik. Detecting, localizing and
grouping repeated scene elements from an image. In
ECCYV, 1996.

H.-C. Lin, L.-L. Wang, and S.-N. Yang. Extracting
periodicity of a regular texture based on
autocorrelation functions. Pattern Recognition Letters,
1997.

Y. Liu, R. Collins, and Y. Tsin. A computational
model for periodic pattern perception based on frieze
and wallpaper groups. PAMI, 2004.

G. Loy and J.-O. Eklundh. Detecting symmetry and
symmetric constellations of features. In ECCV, 2006.
F. Meyer. Topographic distance and watershed lines.
Signal Process., 1994.

P. Miiller, G. Zeng, P. Wonka, and L. Van Gool.
Image-based procedural modeling of facades. ACM
Trans. Graph., 2007.

E. Ng and N. Kingsbury. Matching of interest point
groups with pairwise spatial constraints. In ICIP,
2010.

M. Park, K. Brocklehurst, R. T. Collins, and Y. Liu.
Translation-symmetry-based perceptual grouping with
applications to urban scenes. ACCV, 2011.

F. Schaffalitzky and A. Zisserman. Geometric grouping
of repeated elements within images. In BMVC, 1998.
T. S. H. Shao and L. V. Gool. Zubud-zurich buildings
database for image based recognition. Technical
report, Swiss Federal Institute of Technology, 2004.

S. Wenzel, M. Drauschke, and W. Forstner. Detection
and description of repeated structures in rectified
facade images. Photogrammetrie, Fernerkundung,
Geoinformation (PFG), 2007.

C. Wu, J.-M. Frahm, and M. Pollefeys. Detecting
large repetitive structures with salient boundaries.
ECCV, 2010.

C. Wu, J. M. Frahm, and M. Pollefeys.
Repetition-based dense single-view reconstruction. In
CVPR, 2011.

P. Zhao and L. Quan. Translation symmetry detection
in a fronto-parallel view. In CVPR, 2011.

P. Zhao, L. Yang, H. Zhang, and L. Quan. Per-pixel
translational symmetry detection, optimization, and
segmentation. In CVPR, 2012.

