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Abstract

Biometric identification often involves explicit compari-

son of a probe against each template stored in a database.

This process becomes extremely time-consuming as the size

of the database increases. Filtering approaches use a light

weight comparison to select a smaller set of candidate tem-

plates from the database for explicit comparison. However,

most existing filtering schemes use specific features that are

hand-crafted for the biometric trait at each stage of the fil-

tering. In this work, we explore the effectiveness of weak

features in a cascade for filtering fingerprint databases. We

start with a set of potential indexing features computed from

minutiae triplets and minutiae quadruplets. Each stage of

filtering consists of projecting the probe onto a specific line

and the removal of database samples outside a window

around the probe. The critical problem in this process is

the selection of lines for projection at each stage of the fil-

tering. We show that by using a set of random lines and

the proposed fitness function, one can achieve better results

that optimization methods such as PCA or LDA. Experimen-

tal results show that using an ensemble of projections we

can reduce the penetration to 26% at a hit rate of 99%. As

each stage of the cascade is extremely fast, and filtering is

progressive along the cascade, one can terminate the cas-

cade at any point to achieve the desired performance. One

can also combine this method with other indexing methods

to improve the overall accuracy and speed. We present de-

tailed experimental results on various aspects of the process

on the FVC 2002 dataset.

1. Introduction

Biometric identification is becoming a critical problem

with the emergence of large scale biometric implementa-

tions across the world. Among the biometric traits, fin-

gerprints are the most widely studied and accepted form in

identification systems. Most biometric systems that scale

to national population uses fingerprints as the one of the

modalities for identification due to the ease of acquisi-

tion, amount of discriminative information available in fin-

gerprints [18], acceptability in legal situations, as well as

the availability of low cost devices for authentication pur-

poses [10].

Matching of two fingerprint images is a computation-

ally demanding task due to non-linear deformation of the

skin during the acquisition process. The problem is com-

pounded for identification tasks in large databases. To re-

duce the amount of matching to be performed, a common

approach that is employed is the classification of the finger-

prints into a set of basic classes [14, 12, 4]. All fingerprints

in the database are classified into one of the basic classes

(loops, whorl, arches) and stored in partially overlapping

partitions. The input fingerprint is also classified, and is

only compared against the fingerprints of the corresponding

class in the partial database. If fingerprints were equally dis-

tributed into say five classes, the penetration rate would be

reduced to P = 0.2. Therefore, the processing time and the

False Identification Rate (FIR) would be reduced. However,

as the number of classes is small and the fingerprints are

unequally distributed among them (more than 90% of the

fingerprints are either right loops, left loops or whorl [17])

the penetration is usually larger. Furthermore, the classifica-

tion error and rejected fingerprints must be considered when

classification is performed automatically. These factors re-

duce the effectiveness of classification based approach to

narrow down the search space.

Fingerprint indexing algorithms reduce the number of

comparison by selecting the most probable candidates and

sorting them by the similarity to the input [5]. As indexing

techniques perform better than exclusive classification con-

sidering the size of space that need to be searched [2], many

indexing algorithms have been proposed recently. Germain

et al. proposed a flash algorithm for fingerprint indexing [6].

Bebis et al. proposed the Delaunay triangulation of minutia

points to perform fingerprint indexing [1]. Boer et al. used

the registered directional field estimate, FingerCode and

minutiae triplet along with their combination to index fin-

gerprint databases [3]. Bhanu and Tan [2] generated minu-

tiae triplets and used angles, handedness, type, direction,
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and maximum side as the features for indexing. They also

applied some constraints on minutiae selection to avoid spu-

rious minutiae. Jain et al. [11] use the features around a core

point of a Gabor filtered image to realize indexing. Another

indexing algorithm was proposed based on correlation of

the robustly detected singular points in [15].

Most of the indexing methods available for the finger-

prints are based on the detection of core and delta points.

The accuracy of the entire system is dependent on the ac-

curacy of detection of singular points. Other indexing

schemes rely on alignment of the fingerprints for a compact

representation, and the indexing accuracy is often depen-

dent on the quality of alignment.

Random linear projections has already been used for

the dimensionality reduction. It is en effective substitute

for Principal Component Analysis and Linear Discrimi-

nant Analysis and is often computationally desirable. In

other problems such as unsupervised learning, the objec-

tive function is either not defined or cannot be optimized

analytically. The distance preserving nature of linear pro-

jections into random subspaces were explored by Johnson

and Lindenstrauss [13] in 1984 (JL Theorem), who showed

that random projections preserve the structure of high di-

mensional data well in lower dimensions. Specifically,

the distortion in distances, when mapping n p-dimensional

points into a q-dimensional random subspace, where q ≥
O(log(n)/ǫ2) is less than a factor of 1 + ǫ. Another advan-

tage that random projection has over the other methods of

dimensionality reduction is that we do not have to recalcu-

late the objective function when a new sample is added to

the database.

Random projections have also been used in biometric

verification to derive lower dimensional feature represen-

tations of modalities such as face [7] and in palmprint and

Iris Recognition[9]

Principal Component Analysis (PCA) preserves dimen-

sions with maximum variance for the given data points (Y )

and hence are potential candidates for projection for filter-

ing. The first principal component, w1 is obtained as:

w1 = argmax||w||=1V ar{Y T w} (1)

While PCA is good for minimizing the error in represen-

tation of data in low dimensions, it does not promote the

separation of classes in the projected subspace. This nega-

tively affects the filtering performance on each projection.

Linear Discriminant Analysis (LDA) on the other hand uti-

lizes the class labels of the data and tries to maximize the ra-

tio of between-class variance to the within-class variance in

any particular data set, thereby guaranteeing maximal sepa-

rability. LDA considers maximizing the following objective

function:

J(w) =
wT SBw

wT SW w
, (2)

where SB and SW are the between and within class scatter

matrices. However, the objective function that we would

like to maximize in the case of filtering is not that of LDA

as it equally penalizes the increase in within class variance

and decrease in between class variance. For a sequential

cascade of filtering projection, one need to ensure that the

samples within the same class are not filtered out even at the

cost of reducing the filtering rate of non-matching classes.

In this work we propose a new objective function for

evaluation of the suitability of projections for the filtering

cascade and provide a method for designing a cascade based

on random projections.

2. Feature Extraction

One of the major problems with fingerprint identifica-

tion is that the feature vector is variable in length. Different

samples of fingerprints from the same user can have dif-

ferent number of minutiae extracted. This prohibits us from

using any indexing method that assumes that the pattern is a

point in a Euclidean feature space. Another problem faced

in fingerprint identification is the lack of alignment of the

query with samples in the database.

To overcome the issue with minutiae representation, var-

ious fixed length feature representations have been pro-

posed such as low order Delaunay triangulation [1], minu-

tiae triplets [2], and Finger Code [11]. In this work, we start

with the assumption that a set of fixed length features are

available for representing each fingerprint sample, and de-

rive a method for efficient filtering using the given set of

features.

We have currently used two different sets of features and

they are concatenated together so that every finger is repre-

sented using a fixed length feature vector. The first set of

features are extracted from the triangles formed by minu-

tiae in the image (referred to as minutiae triplets), and the

second set of features are extracted from the quadrilaterals

formed from the geometrical locations of minutiae, as pro-

posed in [8].

To extract the features from triangles, the largest side, l
(see Figure 1), and the two angles (α1 and α2) that involve

l are computed. The feature representation of each triangle

is (l, α1, α2), where (α1 < α2).

The features from minutiae quadruplets is as pro-

posed by Iloanusi et al. [8], which involves 7 features

< ϕ1, ϕ2, δ1, δ2, ρ1, ρ2, η > (see Figure 2). The two fea-

tures ϕ1 and ϕ2 are the differences of two opposite angles

in the quadrilateral, and δ1,δ2 are the lengths of the two di-

agonals. ρ1 and ρ2 are the heights of the parallelogram.

The last feature η is a global feature, and is a combina-

tion of sides and area of the quadrilaterals.

η = 100 log10(τν), (3)
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Figure 1. Triangles formed from the minutiae and the extracted

features.
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Figure 2. A minutia quadruplets

where

τ =
√

Ap + 4
√

x1 × x2 × x3 × x4 (4)

ν =
√

Aq +
√

y1 × y2 (5)

Ap is the area of the parallelogram, x1, x2, x3 and x4 are

the lengths of the sides of quadrilateral. Aq is the area of

the quadrilateral, and y1 and y2 are the length of the sides of

the parallelogram. We have removed concave quadrilaterals

and all quadrilaterals with crossed edges were uncrossed to

form regular convex quadrilaterals.

The above procedure gives us the features for each trian-

gle and quadrilateral. The number of triangles and quadri-

laterals vary considerably between images as it depends on

the number of minutiae that are detected. In our experi-

ment, we fixed the number of triangles and quadrilaterals

that were selected, which were empirically set to be 800
and 1200 respectively. To reduce the influence of deforma-

tions in fingerprints, we concentrate on local minutiae struc-

ture, and hence only the smaller triangles and quadrilaterals

are considered in computing the feature vectors. In short,

the smallest 800 and 1200 triangles and quadrilaterals were

used in construction of the final feature vector.

The final feature vector contains the frequency count of

different triangles and quadrilaterals present in the finger-

print. To determine this, we first learn the most prominent k
clusters are determined from the training samples for both

triangles and quadrilaterals using k − means clustering in

the corresponding feature spaces. Let ck denote the kth

cluster.

To extract the feature from images, its triplets {tw|w =
1, 2, .., Q} are assigned to the nearest cluster based on the

Euclidean distance to the cluster centers.

Assign tw to ck, if k = argmin{|tw −nj|, j = 1..k} (6)

Here, nj is the centroid of the jth cluster and ck is the

cluster id. Each triplet is assigned to a single cluster. The

feature vector is constructed by counting the number of

triplets assigned to each cluster. Thus, the feature vector

of image Y is Ft(Y ) = {aY
1

, aY
2

, . . . , aY
k }, where aY

i is the

number of triplets from image Y that are assigned to clus-

ter i and k is the total number of clusters. We will refer to

ai as an accumulator for centroid i. The quadruplets based

features are also converted to a histogram using the accu-

mulation process as above.

In our experiments, the numbers of clusters k was empir-

ically set to 50 for both triplets and quadruplets, resulting in

feature vectors of length 50 for each. The two feature vec-

tors are then concatenated to form a single 100 dimensional

feature vector. The resulting feature vector may be written

as the concatenation: F (Y ) = [Ft(Y ) Fq(Y )]. As the in-

dividual features are rotation invariant, there is no need of

alignment between samples for the purpose of matching.

3. Filtering with Projections

As mentioned in the introduction, our goal is to develop

a fast filtering strategy using a given set of features. All

filtering methods make use of an efficient comparison strat-

egy to match a query with all samples in the gallery and

quickly eliminate any sample that is unlikely to match with

the query during explicit comparison. Since our primary

goal is efficiency, we explore the simplest form of compari-

son, where the representation of each sample is a single real

number. In other words, we want to develop a functionPj()
that maps the feature vector F (x) of a fingerprint image x:

vj(Y ) = Pj(F (Y )), (7)

where vj(Y ) ∈ R. Pj() may be thought of as a projec-

tion from the d-dimensional feature vector F (Y ) to a one-

dimensional feature space. As we require a cascade of fil-

tering stages, there should be a different projection for each

stage and is indexed by the subscript j of Pj . Using a one-

dimensional representation for each sample in a filtering

stage allows us to carry out extremely fast comparisons of

samples at each stage.

We explore the use of linear projections due to i) the ef-

ficiency of projection, ii) the ability of linear projections

to capture structure present in high-dimensional representa-

tions [13], and iii) robustness of linear mappings to avoid

overfitting during the learning process.
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Figure 3. Cascading random projections: P1, P2 and P3 are three

projections used in a sequence. Samples that are not falling within

a window of the probe are removed at each stage.

A random projection is a weak but efficient representa-

tion of a biometric trait. If the samples of a class are within a

bounding sphere of radius r in the feature space, they will be

within a window of size 2r in any linear projection. Hence

at each stage of the cascade, we discard all the gallery sam-

ples that are outside a window of size d around the projec-

tion of the query. Figure 3 shows the result of projection of

a set of two dimensional samples on to three random lines

and discarding the samples that lie outside a window. The

white polygon in the middle represents the samples that are

selected from this three-stage cascade. Although the final

set of samples that are selected are independent of the order

of projections, the efficiency of the cascade is clearly depen-

dent on it. If we can use the projections that remove a large

number of imposters in the initial stages of the cascade, the

number of comparisons at later stages can be minimized.

The property that we like to maximize is close but not

identical to the Fisher criterion: SB/Sw (see Equation 2).

ci =

∑

j /∈W

¬S(j)

∑

j ¬S(j)
; fi =

∑

j /∈W

S(j)

∑

j S(j)
, (8)

where S(j) is an indicator variable that takes a value 1,

when j is of the same class as the probe. The score of the

ith projection is defined as the ratio:

Scorei =
ci

1 + fi
. (9)

The size of the window to be selected for each projec-

tions is first calculated from the training samples. The size

is chosen in such a way that no sample that belongs to the

same class as probe, should be left out. Note that this quan-

tity is computed at each stage after leaving out the samples

that are filtered out in the previous stages of the cascade.

Algorithm 1 shows the algorithm for learning the cascade.

Algorithm 1 Learning the Projection Cascade.

for i ⇐number of projections do

for each projection Pj do

if the projections not selected then

calculate the Score based on equation 9

end if

end for

select the projection with the highest score and remove

the samples that fall outside the window.

end for

Return the sorted order of projections

The indexing score is usually defined in two parameters–

Hit Rate and Penetration Rate. The hit rate is defined as the

probability that the correct user identity is retrieved. The

penetration rate defines the fraction of user identities re-

trieved from the database upon presentation of the query

print. At each stage of the cascade, as set of samples are fil-

tered out, which might include some that belong to the same

class as the query. We declare a miss if the set of samples

after filtering does not contain any sample that belongs to

the same class as the probe. After each stage, the miss rate

tends to increase and the penetration rate decreases. One

can decide to stop the filtering cascade after stage s, de-

pending on these values.

In practice we note that the initial stages of the cascade

results in large reduction in the penetration, while maintain-

ing the hit rate close to 100%. As the cascade progresses,

the filtering rate (reduction in penetration) at each stage

tends to decrease and the hit rate also tends to decrease.

3.1. Query

For each query image Q, we determine vj(Q) for j =
1..t. For each stage j, we remove all the samples from

gallery that falls outside the window Wj , which calculated

during the training phase. The set of samples that remain

after the cascade is returned for explicit comparison. The

algorithm 2 shows the computation of the candidate list.

Algorithm 2 Computing Candidate list for a probe.

CandidateList ⇐ {All templates in gallery}
for each projection Pi do

Retrieve projected values for CandidateList for Pi

Find the window around the projection of probe on Pi

Remove templates outside window in CandidateList
end for

Return CandidateList
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4. Experimental Results and Analysis

We used the FVC2002 (DB1,DB2,DB3,DB4) [16] for

evaluating the proposed algorithm. Each DB consists of

eight prints each of 100 distinct fingers captured by optical

sensors (500 dpi). We separate each dataset into indepen-

dent training and testing sets of equal size.

First the window size Wj for each projection is calcu-

lated from the training samples. The size of the window

should be such that the samples of the same class falling

outside the should be minimal and number of sample falling

within the window should be maximum. For each probe

template (testing sample), the features are extracted and

projected into a lines. We will search only in the dataset

which falls in the window centered around the probe as

shown in the figure 3. To extract the features from finger-

prints we have used 50 clusters for both quadrilaterals and

triangles, giving us a combined feature vector of size 100.

The number of projections to be used for cascading and size

of the window is decided by the experiments and the dataset

we are using.

To generate the cascade, we start with a set of 3000 ran-

dom projections and select the best 100 projections. The

final cascade is typically terminated within 50 projections.

We also added 100 LDA and 100 PCA projections values

for comparison purposes. However, there were no percep-

tible changes in the results, confirming the effectiveness of

random projections for the problem.
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Figure 4. Hit Rate vs. Penetration Rate on FVC 2002 DB1,..,DB4.

Figure 4 shows the hit rate vs penetration rate on differ-

ent DBs of FVC 2002. Figure 5 clearly shows our method is

significantly better in terms of efficiency as compared to [8],

and the difference increases with the size of database. Fig-

ure 6 shows the nature of filtering rate with increasing num-

ber of projections. We note that significant portion of the

filtering takes place within the first 10 projections in the

cascade, and one might stop there for efficiency purposes.

We note that as the number of training samples increase,

we can do a better estimation of the window size and the

performance improves as seen in Figure 7.
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Figure 5. Time taken for indexing with increasing number of train-

ing samples.
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jections.
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Figure 7. Effect of training sample size on filtering performance.

One of the advantages of the proposed method is that

it efficiently and effectively combine different feature sets.
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als) and combined feature sets.

Method Penetration at Time taken

99% Hit Rate in µ secs.

Quadruplets[8] 20% 147

Combined Features 26% 74

Table 1. Result in FVC 2002 DB2 datasets, with equal number of

training and testing samples.

Figure 8 shows the results of using the two feature sets con-

sidered independently and when combining the two. As the

final cascade is based on projections, the length of the fea-

ture vector does affect the database and the effect on the

filtering process is minimal.

5. Conclusions

We explore the method for fingerprint database filtering

using cascaded projections. The cascade is built on a set

of random projections applied to a given feature set. The

results are comparable to the state of the art fingerprint

indexing methods. Experiments show that the proposed

method extremely efficient and can give a significant ad-

vantage when used as the first stage in identification. While

we do not propose any new features for fingerprint index-

ing, our method is able to combine a large number of exist-

ing feature descriptors into a compact and efficient cascaded

filter, irrespective of the feature vector size. This results in

significant savings in time during identification of finger-

prints. Due to it efficiency, the method may be used as the

first stage while combining multiple indexing and filtering

methods.
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