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Abstract

Representation of fingerprints is one of the key factors
that limits the accuracy and efficiency of matching algo-
rithms. Most popular methods represent each fingerprint
as an unordered set of minutiae with variable cardinality
and the matching algorithms are left with the task of find-
ing the best correspondence between the two sets of minu-
tiae. While this makes the representation more flexible and
matching more accurate, the task becomes computationally
intensive. Fixed length representations with aligned fea-
tures are highly efficient to match. However, creating an
aligned representation without the knowledge of the sample
to which it is to be matched, makes the problem of repre-
sentation more complex. Some of the fixed-length repre-
sentations only provide partial alignment, leaving the rest
to the matching stage. In this paper, we propose a fixed
length representation for fingerprints that provides exact
alignment between the features, thus enabling high-speed
matching with minimal computational effort. The represen-
tation extends the idea of object representation using bag
of words into a bag of minutiae neighborhoods. The rep-
resentation is provably invariant to affine transformations
(rotation, translation and uniform scaling), and is shown to
be highly discriminative for the task of verification. Experi-
mental results on FVC 2002 and 2004 datasets clearly show
the superiority of the representation with competing meth-
ods. As the proposed representation can be computed from
the standard minutiae templates, the method is applicable
to existing datasets, where the original fingerprint images
are not available.

1. Introduction

The identification of people by measuring some physio-
logical or behavioral traits has led to the emergence of bio-
metrics as a prominent research field in recent years. Sev-
eral biometric technologies have been developed and suc-

cessfully deployed around the world : fingerprints, face,
iris, signature etc. Out of all biometric traits, fingerprints
are the most popular because of their ease of capture, dis-
tinctiveness and persistence over time[1], as well as cost and
maturity of products. As fingerprint sensors are becoming
cheaper and smaller, in addition to military applications, a
wide range of civilian applications such as passport control,
border crossings, national identity projects, driver licences,
fingerprint based smart cards etc. are using fingerprints as a
primary trait for identifying people.

Although what we get from a fingerprint sensor is usu-
ally a grayscale image of some resolution, only a few finger-
print recognition algorithms work directly on the grayscale
image. Before the matching stage, most of the algorithms
have a pre-processing or a feature extraction stage where
useful information is extracted from the fingerprint. This
information is then stored in databases and is known as
the representation for fingerprints. A good quality finger-
print representation should be robust to distortions, have
small storage size, should be able to handle noisy images,
should be easy to extract automatically from images and
it should be easy to match two representations. Most of
the above fingerprint authentication systems would benefit
from a fixed-length binary representation of a fingerprint
that has the above qualities. Many effective representations
have been proposed in the literature. Based on features ex-
tracted and stored, the traditional fingerprint representation
schemes can be classified as :

• Global Features based Representation : These rep-
resentations include global ridge-line frequency, core
points, orientation images, singular points etc. These
features represent the global pattern of the ridges in
the fingerprint. One disadvantage of these representa-
tions is that they cannot be easily extracted from poor
quality fingerprints. Also, these representations do not
offer good individual discrimination and are not good
at handling distortions. Further, such representations
cannot handle small local non-linear distortions and
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there is no standard definition for most of these fea-
tures leading to compatibility issues with most of the
existing fingerprint databases.

• Local Features based Representation : The local
approach refers to representing the fingerprint in the
terms of minutiae sets, local ridge orientations and lo-
cal ridge frequency. These local representations are
quite distinctive and generally outperform their global
counterparts. Ross in his work [2], uses representa-
tive local fingerprint patterns to construct a feature vec-
tor. Tuyls in his work [3] proposed a novel quantiza-
tion algorithm to get fixed length representation based
on local orientation of ridges. Minutiae based repre-
sentations are the most popular as they are compli-
ant with most of the existing fingerprint suppliers and
databases and have small template size. As per the
ISO/IEC 19794-2 minutiae template [4], each minu-
tia m is a triplet m={xm,ym,θm} where xm and ym
are the minutia location, θm is the minutia direction
(in the range [0,2π]). A fingerprint is stored as Fp
= {m1,m2,m3....mn} a collection of minutiae points.
The basic disadvantage is that two impressions from
the same finger can have different number of minutiae
leading to a variable length descriptions. Another dis-
advantage is that the representation suffers from mis-
alignment problem and require a preliminary registra-
tion step. Typical approach is to align the unregistered
minutiae sets (having different sizes) of the two finger-
prints and then find the overlap and similarity. Also, a
minutiae based representation due to its variable size is
not suitable for recently proposed template protection
schemes such as [3] and [5]. Bringer in his work [6],
transforms a minutiae set into a fixed-length quantized
feature vector by matching small minutiae vicinities
(or neighborhoods) with a set of representative vicini-
ties.

• Combination of Local and Global : These schemes
combine the local and global information present in a
fingerprint. Fingercode proposed by Jain[7] , utilizes
both local and global ridge descriptors and texture in-
formation. It is a fixed 640 byte representation that
is extracted by tessellating the image around the core
point. The feature vector consists of an ordered collec-
tion of texture descriptors from various sectors of the
tessellation. The disadvantage of fingercode is that it
requires the core point to be accurately located which
in itself is a difficult problem. Sha [8] proposed an
improved version of fingercode but the same problem
still persists. Benhammadi [9] also proposed a new
representation called oriented minutiae codes based on
minutiae texture maps. They use the response of eight
gabor filters to generate the codes. However, represen-

tations based on textures and gabor response are not
discriminative enough and are not robust to small local
non-linear distortions.

• Transform based representations : Tico [10] pro-
posed a 48 byte length representation using Digital
Wavelet Transform (DWT) features. Amornraksa [11]
proposed a 24 byte representation using the Digital Co-
sine Transform (DCT) features. However, drawback of
transform-based representations is that they are not ro-
tation invariant and rotation has to be handled explic-
itly. This was handled by Xu in his work [12], in which
he proposed a spectral minutiae representation based
on Fourier-Melin transform. By representing minutiae
as a magnitude spectrum, he transforms a minutiae set
into a fixed length feature vector. But still the scheme
is not very robust to non-linear distortions.

Most of the representations described above either can-
not handle global transformations like rotation etc. or are
not tolerant towards small local non-linear distortions or are
variable in size. This implies that the accuracy of match-
ing using the quantized feature vector representations still
is very low as compared to classical minutiae based match-
ing. We need a fixed length (binary prefered) representation
that is tolerant towards these distortions, can handle miss-
ing/spurious minutiae, is suitable for template protection
schemes, small enough to be stored on smart cards and has
a minutiae-only construction so that it can be applied to ex-
isting databases. In the next section we propose a new local
minutiae structure called an arrangement structure that cap-
tures the complete geometry of neighboring points around a
central minutia. Given a fingerprint database, we extract all
the arrangement structures to populate the high-dimensional
structure space. We then use k-means clustering to clus-
ter this high dimensional space of arrangement structures.
From this we get k cluster centers, which correspond to the
k most prominent neighborhood structures learned from the
fingerprint database. Then every fingerprint in the database
is expressed as a collection of these cluster centers to get a
fixed-length (of length k) representation for a fingerprint.

2. Representing Local Neighborhoods

We need an affine invariant method of representing all
the information in the locality of a minutia point. We be-
lieve that there is sufficient information present in the local-
ity of a point that can help us get an aligned representation
without any knowledge of the sample to which it is to be
matched. Bhanu [13] proved that relative geometric fea-
tures around the locality of a minutia point are invariant to
affine distortions (rotation, translation and uniform scaling).
We try to use such local features to come up with an affine
invariant representation of each minutia that allows us to
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Figure 1. The process of creating an arrangement structure for minutia X. In step1, we find the nearest n minutiae of X. In subsequent
steps, we take two points A,B and calculate invariants a,b,c,d,e (see Section 4.3). abcde is the required structure that describes the local
neighborhood of central minutia X.

Figure 2. The geometric features computed from ΔAXB. Rela-
tive distances AX and BX, Relative Orientations φA and φB and
angles ∠B and ∠A

compare two minutiae points and determine their similarity
irrespective of the global alignment.

2.1. The Arrangement Structure

Our local structure, called the arrangement structure, is a
fixed-length descriptor for a minutia that captures the geom-
etry formed by its neighboring points around that minutia.
This distinctive representation of each minutiae allows us to
compare two minutiae points and determine their similarity.

The process of calculating the arrangement structure for
a minutia (X), shown in Figure 1, is as follows:

• We calculate the nearest n neighbors of minutia X
based on their euclidean distances from X. In Figure
1, let n = 5, and the nearest minutiae are p1,p2,p3,p5

and p6.

• Starting with the nearest point, we arrange the n points
in clockwise order. This is because the clockwise or-
der of minutiae points remains unchanged even when
the fingerprint image is rotated, translated, scaled or
sheared.

• Now, we describe the local geometry of these n points
around the minutia X. As shown in Figure 1, let n=5,
and let p3, p2, p1, p6 and p5 be the n minutiae arranged
in clockwise order. Now starting with the nearest point
and with two points marked as A, B we calculate the
following geometric features fromΔAXB as shown in
Figure 2:

– Relative Distances : We calculate the euclidean
distances between points X and A,B. The first
feature is the ratio of these relative distances.

– Relative Orientation : We calculate the orien-
tations of points A,B with respect to the central
minutia X (relative orientation of A is the φA -
φX , where φA is the orientation of minutia A).
The second feature is the ratio of these relative
orientations.

– Angles of ΔAXB : The next features we use the
angles ∠XBA and ∠XAB of the ΔAXB. The
third feature is the ratio of these angles.

• These features are provably invariant to geometric dis-
tortions [13] and remain unchanged even when the fin-
gerprint is translated, rotated, scaled or sheared.
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Figure 3. Populating the n ∗ 3-dimensional structure space. The
arrangement structures are extracted from each fingerprint in the
database. Then the structure space is partitioned into K clusters
via the k-means algorithm.

We concatenate these three features to form a set of car-
dinality three (a = [a1,a2,a3] as shown in figure 1) that de-
scribes contribution of ΔAXB in the arrangement of these
n points around the minutia X. By sliding the points A, B
in clockwise rotation, n such invariant sets are calculated
(i.e a[a1,a2,a3], b[b1,b2,b3], c[c1,c2,c3], d[d1,d2,d3] and
e[e1,e2,e3] in Figure 1). Thus abcde is the arrangement
structure of length n*3 that describes the geometric layout
of these n points around our central minutia X. The structure
abcde depends upon the initial choice of points A, B and is
not invariant to rotations. To achieve rotation invariance,
we use cyclic permutations of this structure. All n cyclic
permutations of abcde (i.e bcdea, cdeab, deabc, eabcd and
abcde) are calculated and stored in a list as shown in Fig-
ure 3. So we generate many n ∗ 3 dimensional arrangement
structures in the learning phase as shown in Algorithm 1,
where each structure represents a minutiae neighborhood.
Now we use k-means to cluster this n∗3-dimensional space
as shown in Figure 3.

3. Representing a Fingerprint

Fingerprints can be seen as non-linearly distorted ar-
rangement of neighborhoods. Our goal is to create an
aligned fixed length representation for a fingerprint that
is invariant to affine deformations. We use unsupervized
clustering to achieve that. K-means results in K clusters
c1,c2,c3......cK where each cluster represents set of similar
neighborhoods. The centroid of each cluster cj , represented
by mj can be seen as the mean representative neighbor-
hood for that set of neighborhoods that map to cj . So, in
essence,m1,m2,m3.......mK are the most prominent neigh-
borhoods learned by our algorithm. Any fingerprint now
can be represented in terms of these representative neigh-
borhoods. When a new fingerprint comes, we extract all the

Algorithm 1 Learning Phase
INPUT→ Entire Training Database db, n, k
OUTPUT→ k-representative neighborhoods
L→ list of all arrangement structures
L→ NULL
for all fingerprint template fp in db do
for all minutia p in fp do
N→ nearest n neighbors of minutia p
find arrangement structure abcde
L.Append(all cyclic permutations of abcde)

end for
end for
K→ K-means(k,L)
K→ cluster centers returned by standard k-means Algo-
rithm

Figure 4. A fingerprint image represented in terms of represen-
tative neighborhoods. Given a image, we extract all the neigh-
borhoods and map them to the nearest cluster. fp is the K length
binary representation of the fingerprint.

neighborhoods from that and map each neighborhood fea-
ture vector to its nearest cluster center as shown in Figure
4. So, now each fingerprint is a binary feature vector fp of
length K where fpi tells whether a neighborhood similar
to mi is present in the fingerprint or not as shown in Algo-
rithm 2. So, we now visualize fingerprints as a collection of
neighborhoods rather than a grayscale image or a minutiae
set.

4. Fingerprint Similarity Measure

Now given two binary vectors fp1 and fp2, representing
the two fingerprints, a formula based on simple bitwise op-
erations on the two vectors will give a measure of number
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Algorithm 2 Fixed Length Representation
INPUT → Entire Database db, List of clusters K from
learning phase, n
OUTPUT→Binary Vectors for each fingerprint template
fp in db
for all fingerprint template fp in db do
B→ Binary vector of length K initialized with zeros
for all minutia p in fp do
N→ nearest n neighbors of minutia p
find arrangement structure abcde
Let mi → nearest cluster center for abcde
Set Bi → 1

end for
end for

of similar neighborhoods present in them. Thus, simple bit-
oriented coding can now be used as a measure for finger-
print similarity. Similarity s between two binary vectors,
fp1 and fp2 is calculated by using the L2-norm of the XOR
of the two vectors . L2-norm is the square root of the num-
ber of one bits in the vector.

s(fp1, fp2) = 1− (‖fp1 XOR fp2‖)/(‖fp1‖+ ‖fp2‖)
(1)

5. Experiments and Results

Experiments were conducted on FVC 2002 db1, db2,
db3 and FVC 2004 db1 and db2 databases. Each database
consists of 800 impressions from 100 different fingers, 8
impressions per finger. The minutiae were extracted using
the standard NIST MINDTCT algorithm[14]. First six im-
pressions per finger were used for learning the cluster cen-
ters. Then all templates in the databases were converted
to their correspondening fixed length representations. The
performance evaluation protocol used in FVC 2002 (same
as in [15]) has been adopted. Experiments were done for
different values of k and n. The best results were obtained
for cluster size of 1000 (i.e k=1000) and neighborhood size
of 5 (i.e n=5). A total of 14,000 genuine matches (2800 per
database) and 24,750 imposter matches (4950 per database)
were done. The ROC curves with different number of clus-
ters have been plotted below. It was observed that the accu-
racy increased with increase in number of clusters upto an
extend and then it started decreasing gradually after 1000
clusters as shown in Figure 8. If the number of clusters
is less then the probablity of two different neighborhoods
mapping to the same cluster increases lowering the accu-
racy. On the other hand, if the number of clusters are too
high, then two similar neighborhoods can map to different
clusters which again will lower the accuracy. So, there has
to be an optimal value for number of clusters for which the
accuracy is maximized, in our experiments we observed that

the accuracy was maximum for 1000 clusters. The results
have been compared (see Figure 7) with spectral minutiae
representation [12] and binary representation through minu-
tiae vicinities [6]. These are the two major fixed-length
quantized fingerprint representations in the literature. The
ROC curves showing the accuracy on FVC 2002 databases
(see Figure 6) and FVC 2004 databases (see Figure 5) have
been plotted. To genuine-imposter class distribution for
FVC 2002 db2 is shown in Figure 9.
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Figure 5. ROC curve for FVC2004 databases
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Figure 6. ROC curve for FVC2002 databases

6. Conclusion

We proposed a novel binary fixed-length representation
for a fingerprint constructed from minutiae-only features.
We captured the local geometry around a minutia point into
our local arrangement structure. We then applied unsuper-
vised learning to learn prominent minutiae neighborhoods
from the database. A fingerprint was then represented as a
collection of neighborhoods resulting in a fixed 1000-length
binary representation. The matching of two fingerprints is
then reduced to a sequence of bitwise operation which is
very quick. Experiments conducted of FVC 2002 and 2004
databases showed the effectiveness of our representation as
compared with the major fingerprint representations exist-

6868



−3 −2.5 −2 −1.5 −1 −0.5 0
55

60

65

70

75

80

85

90

95

100

log10(FAR)

T
ru

e 
P

os
iti

ve
 R

at
e

Comparison with similar Fixed Length Representations

 

 

Spectral Minutiae[12]
Minutiae Vicinities[6]
Proposed Approach

Figure 7. Comparison of the proposed approach with spectral
representation[12] and minutiae vicinities [6]. The comparison is
done with proposed representation based on 1000 clusters on FVC
2002 db2.
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Figure 8. ROC curve for FVC2002 db3 database showing the in-
crease in accuracy with the increase in number of clusters.
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ing in the literature. Our representation is tolerant towards
distortions, can be stored easily on light architectures such
as smart cards and is suitable for biometric template protec-
tion schemes.
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