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Abstract

This paper proposes a hash-based indexing method to

speed up fingerprint identification in large databases. For

each minutia, its local neighborhood information is com-

puted with features defined based on the geometric arrange-

ments of its neighboring minutiae points. The features used

are provably invariant to translation, rotation, scale and

shear. These features are used to create an affine invari-

ant local descriptor, called an arrangement vector, for each

minutia. To account for missing and spurious minutiae, we

consider subsets of the neighboring minutiae and hashes

of these structures are used in the indexing process. The

primary goal of the work is to explore the effectiveness

of affine invariant features for representing local minutiae

structures. Experiments on FVC 2002 databases show that

representation is quite effective even though the technique

performs slightly below the state-of-the-art methods. One

could use the representation in combination with other tech-

niques to improve the overall performance.

1. Introduction

Fingerprints have long been used as a reliable biometric

for identifying a person. Fingerprints are popular because

of their ease of capture, distinctiveness, and persistence over

time [5] and are commonly employed in both verification

and identification systems.

Although state-of-the-art fingerprint matching algo-

rithms are fast and highly accurate [5], identification over

a large database is an open problem and poses many chal-

lenges. The size of the database can be over a hundred

million in some forensic and civilian applications and there

can be significant distortions between different impressions

of the same finger. Due to the scale of these databases,

performing a sequence of one-to-one verifications to solve

an identification problem is not a feasible approach. We

need to use efficient filtering techniques to narrow down

the portion of database to be searched. The most common

solutions are fingerprint classification, indexing, and filter-

ing. Classification involves labeling each fingerprint image

into one of a few known global patterns and restricting the

matching of query to sample of the same class from the

database. Filtering uses a set of light weight comparisons

done on all samples in the dataset to narrow down the set of

potential candidates to match.

The third approach, that of fingerprint indexing is a

generalization of the classification approach, where the

database is automatically divided into a large number of

possibly overlapping subsets. The indexing function pre-

dicts the subsets that need to be searched for each query

image. The approach is quite promising and several repre-

sentation has been proposed recently in this direction. In

each case, the goal is to find a mapping (or feature repre-

sentation), that maps similar fingerprints to close points in a

multi-dimensional space. Retrieval is performed by match-

ing the input fingerprint with those in the database whose

corresponding vectors are close to the searched one. Based

upon the features used, these techniques can be classified

as:

Global Representations: Global features like average

ridge-line frequency, orientation flow around core points,

Poincare index etc. represent the global pattern of ridges

with uniform model. The algorithms used in [15] and [16]

belong to this category. However, these features are more

suited for classification purposes and are not particularly

good at handling distortions including translation, rotation,

shear, scale, occlusion, clutter and other non-linear distor-

tions. These techniques often require prior alignment of

fingerprint images in the database and use the location of

singular points. In many low quality images, it is tough to

locate the singular points reliably and thus, such images are

rejected in this case. These features are usually used in con-

junction with more discriminative features to further narrow

down the search [16].

Orientation Flow Features: Features such as local

ridge line orientations [10, 9] and local ridge-line frequen-

cies [13] fall under this category. However, one disadvan-

tage of using features obtained from orientation image is

that these features are not present in the ISO standard minu-
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tiae templates and have to be computed separately starting

with the original image.

Minutiae-based Features: Most minutiae based index-

ing techniques [12, 18, 6, 4], derive geometric features from

sets of minutiae points that are robust in presence of rota-

tions and translations variations and use hashing techniques

for searching. Some techniques like [17], and [11] form

complex structures from minutiae representations and use

them for indexing purposes. Minutiae Cylinder Codes or

MCC [11] was proposed recently and have been demon-

strated to be a highly effective method for representing

a minutiae neighborhood for the purposes of fingerprint

matching as well as indexing. While the MCC represen-

tation of a minutiae neighborhood is not provably invariant

to affine deformations, the regularizations performed during

the computation make them very robust. In this work, we

try to ensure affine-invariance of the minutiae neighborhood

features and explore their effectiveness for the purposes of

indexing.

Other Features: Features such as Fingercode [2] and

SIFT-based features [19] use wavelet responses to encode

local textures. Some techniques also try to combine differ-

ent types of features to improve the results [3]. There are

also techniques which are based on match scores [1] and

hash functions [14].

As mentioned above we develop a minutiae based fea-

ture representation that is provably invariant to affine defor-

mations and hence make it applicable directly to minutiae

based templates. The representation does not require detec-

tion of singular points or prior alignment of the templates.

Unlike MCC, we have even avoided the use of minutiae ori-

entations to make the method applicable to the widest va-

riety of existing templates. We also propose a way of han-

dling missing or spurious minutiae points.

2. Arrangement Vector Representation

The atomic unit of our representation is a fixed-length

descriptor for a minutia that captures its distinctive neigh-

borhood pattern in an affine-invariant fashion. This distinc-

tive representation of each minutiae allows us to compare

two minutiae points and determine their similarity irrespec-

tive of the global alignment.

The process of calculating the arrangement vector for a

minutia (p5), shown in Figure 1, is as follows:

• We calculate the nearest n neighbors of minutia p5.

In Figure 1, let n = 7, and the nearest minutiae are

p1,p2,p3,p4,p6, and p7. We then enumerate all combi-

nations of m points of the aboven (
(

n

m

)

combinations).

• For each combination, we arrange the m points in

clockwise order. Now, we describe the local geome-

try of these m points around the minutia p5. As shown

in Figure 1, let m=6, and let p3, p4, p2, p1, p7 and p6

be the m minutiae arranged in clockwise order. With

four points denoted as A, B, C, D, we calculate the

following invariant features for indexing :

Ratio of Areas The first feature ϕ is the ratio of the

areas of the triangles formed by minutiae triplets

A, B, C and A, B, D.

Ratio of Lengths of Largest Side The second fea-

ture λ is the ratio of the lengths of the largest

side of the triangles formed by minutiae triplets

A, B, C and A, C, D.

Ratio of median and minimum angles The third

and fourth features α1 and α2 are the ratios

of the median and minimum angles of the

triangles formed by minutiae triplets A, B, C
and A, C, D.

• These features are invariant to affine transforma-

tions [4] and remain unchanged even when the fin-

gerprint is translated, rotated, scaled or sheared. A

weighted combination of these four features is com-

puted to get one final invariant value that describes

the local arrangement of these m points. By sliding

the points to regard A, B, C and D in clockwise rota-

tion, m such invariants are calculated (i.e.,a,b,c,d,e and

f in Figure 1). Thus, abcdef represents an arrangement

vector for minutia p5.

2.1. Enrolling a Fingerprint

The above vector depends on the initial choice of A, B,

C and D points and is not rotation invariant. To achieve ro-

tation invariance, we use cyclic permutations of this vector.

Cyclic permutation of these m invariants give us m vectors

(i.e.,abcdef, bcdefa, cdefab, defabc, efabcd, fabcde). Each

vector is considered for hashing and a hash value is calcu-

lated from it by Equation 1. The minutia ID, fingerprint

ID, along with the arrangement vector is stored in the corre-

sponding hash bin. Separate Chaining technique is applied

to resolve collisions that occur when two vectors map to the

same hash bin. Summary of the offline Enrollment stage is

shown in Algorithm 1.

Hindex =

(

m
∑

i=1

v[i] · ki

)

mod Hsize (1)

2.2. Querying the Index

For each minutia p′ in a query image and for each com-

bination of m points around that minutia, we calculate its

arrangement vector v′′ as described earlier. The hash value

of v′′ is computed, and the corresponding list of fingerprints

that contain a similar minutiae neighborhood is obtained

from the hash table. Each minutia in the query fingerprint
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Algorithm 1 Enrollment Algorithm

INPUT→ Entire Fingerprint Database db, n, m, k

OUTPUT→ Model Hash Table

for all fingerprint image fp in db do

for all minutia p in fp do

N→ nearest n neighbors of minutia p

L→ list of all possible combinations of m points

for all combination of m points in L do

find arrangement vector v

C→ list of all cyclic permutations of v

for all vector v′ in list C do

calculate Hindex from v’ using eq.1

register item (Fingerprint ID of fp, Minutia ID

of p, Arrangement vector v’ ) using Hindex

end for

end for

end for

end for

casts a vote for each fingerprint in its candidate list. Finally,

a list of top N fingerprints with the maximum votes is re-

turned as the output of the indexing algorithm. Summary of

the on-line indexing stage is given in Algorithm 2.

Algorithm 2 Indexing Algorithm

INPUT→ Query image im, n, m, k, N

OUTPUT→ List of top N fingerprints sorted by number

of votes received

for all minutia p′ in im do

N→ nearest n neighbors of minutia p′

L→ list of all possible combinations of m points

for all combination of m points in L do

find arrangement vector v”

calculate Hindex from v” using eq.1

lookup Hash Table with Hindex and retrieve the cor-

responding list

for all item in the retrieved list do

if v′′==item.Arrangement vector then

Increment vote count for FingerprintID corre-

sponding to item
end if

end for

end for

end for

Sort all fingerprints according to vote counts in descend-

ing order

Output list of top N as the indexing result

3. Experiments and Discussions

The experiments were conducted on the four FVC 2002

databases: DB1, DB2, DB3 and DB4. Each database con-

tains 800 fingerprints from 100 users (8 impressions per

user). For each user, the first 4 impressions were placed

in the gallery to build the hash table while the remaining 4

impressions were used as probes. Experiments were con-

ducted with different values of n, m and k. The best re-

sults were observed for n=6, m=5 and k=28 and Hsize =
1000000. Accuracy and efficiency are two main indicators

of the retrieval performance. In the experiments, the accu-

racy is denoted by Correct Index Power (CIP) where CIP

= (Nci/Nd), Nci is the number of correctly indexed probe

images, and Nd is the number of images in the database.

The retrieval efficiency is indicated by the Penetration Rate,

which is the average percentage of database probed over all

test fingerprints. Ideally, we would want a high CIP and a

low Penetration Rate.

0 5 10 15 20 25 30

0.4

0.5

0.6

0.7

0.8

0.9

1

Penetration Rate

C
IP

 

 

DB1_2002_M

DB1_2002_N

DB1_2002_S

Figure 2. Performance on FVC 2002 DB1 database in case of 20%

missing minutiae data(M), original minutiae (N) and 20% spurious

minutiae (S).

Dealing with missing or spurious minutiae

Handling the case of missing or spurious minutiae

is a major challenge for minutiae based indexing tech-

niques [12], [18], [6], [4]. We deal with this problem by first
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Figure 3. Performance on FVC 2002 DB2 database in case of 20%

missing minutiae data(M), original minutiae (N) and 20% spurious

minutiae (S).
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Figure 1. This figure describes the process of creating the Arrangement Vector for minutia p5. In step1, we find the nearest n minutiae of p5

(n=7). In step2, we take all combinations of m points out of those n points. In subsequent steps, we take four points A,B,C,D and calculate

invariants a,b,c,d,e,f (see Section 2). abcdef is the required vector that describes the arrangement of p3,p4,p2,p1,p7 and p6 around p5.

choosing nearest n neighbors for a minutia and then out of

these n, we choose all possible combinations of m minutiae

points. This rule of choosing m out of n neighbors helps

us to deal with missing and spurious minutia. Experiments

were done with datasets having 20% spurious minutiae and

20% missing minutiae. Minutiae were removed and added

randomly to the database. For each experiment, the follow-

ing three cases were considered: datasets in their original

form; datasets with 20% spurious minutiae; and datasets

with 20% missing minutiae. As the plots show (Figures

2,3,4 and 5), even removing or adding 20% extra minu-

tiae did not affect the low penetration rates at the hit rate

of greater than 97%. This shows that the scheme is able

to handle low quality noisy images, where there are lots of

missing or spurious minutiae points.
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Figure 4. Performance on FVC 2002 DB3 database in case of 20%

missing minutiae data(M), original minutiae (N) and 20% spurious

minutiae (S).
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Figure 5. Performance on FVC 2002 DB4 database in case of 20%

missing minutiae data(M), original minutiae (N) and 20% spurious

minutiae (S).

Dealing with distortions

Handling the case of non-linear distortions and transfor-

mations is a major challenge for indexing algorithms that

use global features [15] and [16]. We deal with this prob-

lem by using features, like ratio of sides, angles and areas,

which are invariant to geometric transformations like rota-

tion, translation, scaling and shear [4]. It is known that

non-linear distortion happening in local minutiae structures

is small enough to be ignored compared with the much

larger global non-linear distortion [7]. The arrangement

vector, the proposed local minutiae structure, can tolerate

non-linear distortion as indicated by the experimental re-

sults.
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Figure 6. CIP vs. Penetration for database size of 799.

3.1. Time Analysis

The major benefit of using a fingerprint indexing algo-

rithm is that it reduces the number of expensive one-to-one

matchings, resulting in significant reduction in the overall

time for identification. To find the time required for each

identification test, each image in DB1 was used as a probe

for identification against a gallery containing all the 799
other images. A test image is considered to be correctly

classified, if at least one impression from its class is present

in the list returned by indexing algorithm. Figure 6 presents

the CIP vs. Penetration plot for this experiments. We now

use this result to compute the expected time taken by a new

query in a database of this size.

Consider a case in which, upon receiving a test image,

the entire DB1 is searched exhaustively for a match. This

resulted in 799 one-to-onematches and took a time of 7 sec-

onds in the worst case when entire database was searched.

Let t be the time taken for one one-to-one match.

t = 7/799 = 0.00876 seconds (2)

Now let us consider a second case, when the above

indexing algorithm was applied first to get the list of top

N candidates and then one-to-one matching was done only

with these N candidates. Let t1 be the time taken to calcu-

late the list and let t2 be the time taken to do one-to-one

matchings with this retrieved list. t1 is the time taken by

indexing algorithm to come up with top N list for a query

fingerprint and had a average value of 1.01 seconds over

all queries. To calculate t2, we need to find the expected

value of the number of explicit one-to-one matches that we

need to do. Let this number be Ne. Using the values of

(CIP, Penetration) pairs from graph in Figure 6, (CIP =

0.82 at a Penetration rate of 3, CIP of 0.895 at Penetration

of 5, etc.) we can calculate the Expected value of number

of matches (for 100% CIP) Ne, as:

E(Ne) = (3 ∗ 0.82 + 5 ∗ 0.075 + 10 ∗ 0.0625 +
20 ∗ 0.0325 + 30 ∗ 0.01) ∗ (Nd/100)

Therefore, the total time taken for indexing followed

by the explicit comparisons, Ne, is given by:

t1 + E(Ne) ∗ t = 1.01 + 35.28 ∗ 0.00876 = 1.32 s

Hence, the total time taken in the second case when

indexing algorithm was used came out to be 1.32 seconds,

which is much quicker than the 7 seconds it took when the

entire database was searched exhaustively. In real-time bio-

metric applications, where time is a critical factor, indexing

algorithms play a vital role in creating usable solutions.

In other words, given a limit for the response time for an

identification query, the use of an indexing algorithm will

free up more time for explicit comparisons, and one could

employ a more rigorous matching algorithm at this stage,

resulting in improved accuracies. The implementation of

the indexing algorithm is in Matlab, and hence one can

expect to improve the indexing time significantly by an

efficient implementation in C/C++.

3.2. Comparison of Results

The proposed algorithm is compared with the quadru-

plet based indexing algorithm in [8], which is also a minu-

tiae based indexing algorithm. We have selected this work

for comparison as, to the best of our knowledge, it has the

highest accuracy among the affine invariant representations

that have been proposed till date. The Minutiae Cylinder

Code uses a richer representation of the minutiae neighbor-

hoods and performs better in practice. However, the fea-

ture has only translation invariance and rotation invariance

is achieved by orienting the cube using minutiae orientation.

Other invariances are not considered. While explicit invari-

ances are not necessary for practical systems (as indicated

by MCC results), we prefer to use them as they provide a

theoretically sound basis for future analysis of errors.

The evaluation protocol was based on [8], which uses

Hit Rate as a measure of correct indexing. Hit Rate is de-

fined as CIP ∗ 100%. As the results in Tables 1 and 2

show, the Hit Rate of the proposed algorithm is better than

that reported in [8] at lower penetration rates. However, the

quadruplet based algorithm performs better than ours for

100% Hit Rate. Figure 7 compares the Hit Rate vs Penetra-

tion graphs of both the algorithms. The tests were run on

FVC 2002 DB1 database. The plot for the quadruplet based

algorithm is reproduced from the graph given in [8].

In terms of storage, our algorithm requiresm2.
(

n

m

)

num-

bers (150 in our experiments) to be stored per minutiae,

while the quadruplet based indexing only requires around

50 numbers to be stored per fingerprint.

75



Hit Rate Minutiae Quad. [8] Proposed Algo.

60% 6.8 1

70% 8.68 1.9

80% 10.5 3.9

90% 15 8.6

95% 17.6 14

100% 21.5 57

Table 1. Average penetration rates using the proposed and quadru-

plets [8] approaches 480 at various Hit Rates on FVC 2002 DB1.

Hit Rate Minutiae Quad. [8] Proposed Algo.

60% 6.31 2.8

70% 8.15 4.14

80% 11.8 8

90% 17.89 13.5

95% 22.89 17.5

100% 27.89 60

Table 2. Average penetration rates using the proposed and quadru-

plets [8] approaches at various Hit Rates. The database used was

FVC 2002 DB1 with 20% minutiae removed randomly.
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Figure 7. Comparison of the proposed and quadruplets [8] ap-

proaches on FVC 2002 DB1.

4. Conclusions and Future Work

Experimental results show that the algorithm efficiently

narrows down the size of the database to be searched. It

is also shown to be robust under missing or spurious minu-

tiae. The proposed algorithm requires only the locations of

the minutiae points and no other high level features such

as orientation flow, directional field, etc. This makes the

proposed approach applicable to a large variety of existing

templates. It also avoids the need for prior alignment of fin-

gerprints or calculation of singular points. We are currently

investigating the use of minutiae orientations in the feature

computation as well as the use of the representation for the

purpose of fingerprint matching. Combination of the pro-

posed feature vector with other existing feature representa-

tions such as MCC and Quadruplet features is also being

explored for indexing purposes.
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