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Abstract

Constructing a high-resolution (HR) image from low-
resolution (LR) image(s) has been a very active research
topic recently with focus shifting from multi-frames to learn-
ing based single-frame super-resolution (SR). Multi-frame
SR algorithms attempt the exact reconstruction of reality,
but are limited to small magnification factors. Learning
based SR algorithms learn the correspondences between LR
and HR patches. Accurate replacements or revealing the ex-
act underlying information is not guaranteed in many sce-
narios. In this paper we propose an alternate solution. We
propose to capture images at right zoom such that it has just
sufficient amount of information so that further resolution
enhancements can be easily achieved using any off the shelf
single-frame SR algorithm. This is true under the assump-
tion that such a zoom factor is not very high, which is true
for most man-made structures. The low-resolution image is
divided into small patches and ideal resolution is predicted
for every patch. The contextual information is incorporated
using a Markov Random Field based prior. Training data is
generated from high-quality images and can use any single-
frame SR algorithm. Several constraints are proposed to
minimize the extent of zoom-in. We validate the proposed
approach on synthetic data and real world images to show
the robustness.

1. Introduction

High quality image generation is an important prob-
lem that finds various applications in computer vision and
image processing. Super-resolution (SR) [20] is the pro-
cess of generating a high-resolution (HR) image from low-
resolution (LR) image(s). Various super-resolution al-
gorithms are commonly divided into two categories, viz.
multi-frame SR [7] and learning based SR [9]. Lin and
Shum [16] showed that the theoretical limit on magnifica-
tion for multi-frame SR is 5.7, and in practical scenarios
this limit is only 2.5. For higher magnification factors, the
number of images required increases exponentially, making
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the computational cost beyond practical limits for most ap-
plications. Multi-frame SR also requires accurate registra-
tion and blur parameters, which are very difficult to obtain
in many scenarios. These drawbacks limit the applicabil-
ity of multi-frame SR, and it is primarily used for revealing
the exact underlying details at a limited magnification. The
super-resolved images are useful to achieve higher recogni-
tion rates for various vision algorithms, e.g. [2].

In contrast, learning based single image SR, in theory,
can achieve magnification factors up to 10, as shown by
Lin et al. [15]. The HR image generation is formulated as
an inference problem. Correspondences between LR and
HR patches are stored during the learning phase, and the
HR image is inferred in a MRF framework with contextual
constraints. This category of algorithms perform well for
natural objects, where the perceptual quality is more im-
portant than accurate reconstruction of reality. They also
work well if the training set is optimized for specific ob-
ject/scene classes, such as faces [4]. However, the perfor-
mance drops significantly on man-made structures where
even with a magnification factor of 3 (see Fig. 4(a), in [15]),
the actual content need not be resolved in the final result.

We note that the bottleneck of a learning based SR algo-
rithm lies in the nature of the underlying data, and the mag-
nification factors achievable for various types of images or
regions within an image, vary considerably. In other words,
in order to get uniform perceptual quality after SR, different
regions of an image need to be captured at different mini-
mum resolutions. One could be conservative, and capture
the whole image at the maximum resolution required by any
image patch, which is both costly and redundant. Capturing
minimum number of images in the whole process require
us to use learning based approaches. In this paper, we pro-
pose a solution to this problem by capturing the image at
ideal resolutions. The minimum required resolution for ev-
ery patch of the image is predicted from a low-resolution
image. Different parts of the image are then captured at the
correct resolution, and thus sufficient amount of scene infor-
mation is gathered at the image capturing stage itself. Any
further magnification of the image can be achieved using
any off the shelf single image super-resolution algorithm.
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The ability to predict the ideal resolution for capture of
an image region also enables a variety of applications. Au-
tomatically selecting the right resolution or zoom would en-
able efficient mosaicing of very large panoramas. Instead of
capturing all the images at a high resolution [12], the final
mosaic can be generated with fewer number of images at the
right zoom level. The predicted resolution would also rep-
resent the minimum amount of information that is essential
to represent a scene, and hence would reduce the compu-
tational cost of many vision algorithms that attempt scene
understanding. Mobile robots could use this information to
interpret and navigate the world more efficiently. Removing
the redundant information that could be recreated using SR
would also enable effective compression.

For most man-made structures, a limit on amount of
scene information gathered can be quantified empirically.
Note that primitives such as step edges along smooth curves
can be enhanced effectively using single-frame SR. On the
contrary, for most natural scenes, a very high value of zoom
is required because of their detailed and intricate structure.
However, one could replace the lost information with high-
quality pre-captured content, without affecting the percep-
tual quality. We formulate the problem of capturing an im-
age at ideal resolution in a patch based framework, where
the ideal resolution/zoom is predicted separately for every
patch. The ideal resolution or zoom will thus depend on the
nature of the scene, the level of detail, and the information
that can be captured by learning based SR algorithms, mak-
ing the prediction challenging. We note the following points
about image patches to predict ideal resolution factors.

e The structures in the image are assumed to have edges

along smooth curves, which lends to enhancement by
SR algorithms. The basic patch provides sufficient in-
formation to predict up to smaller magnifications.

e For larger magnification factors, the context informa-
tion plays an important role, which is obtained from
the predicted zoom values of the neighboring patches.

e The size of the patch is appropriately selected to pro-
vide enough structural information for smaller magni-
fication factors and simultaneously include strong con-
text information for predicting larger magnifications.

Once the patch size is selected, we need to learn the predic-
tion function for the zoom level of individual patches, and to
model the contextual relationship with neighboring patches.
We use a Markov Random Field (MRF) framework, which
is popularly used to incorporate contextual constraints.

In short, we propose an approach for high-resolution
generation by capturing sufficient information at the im-
age capturing stage itself. The image is decomposed into
patches and zoom level prediction is modeled as an infer-
ence problem in a MAP-MRF framework. We use Bayesian
belief propagation rules to solve the network. As the op-
timization function contains numerous local minima, a ro-
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Figure 1. Fourier spectra of a hypothetical signal with
different sampling rates; (a) sampling rate is low; (b) sam-
pling rate is high enough so that the image can be zoomed
in further easily with minimum aliasing.
bust technique is proposed to initialize the solution. Various
practical constraints are proposed to minimize the extent of
zoom-in. The results are validated on synthetic data and
experiments are performed on real scenarios as well.

2. Related Work

There are different categories of work that address the
problem of automated zoom detection from different per-
spectives. [10, 1] address the problem on zooming in on a
pre-determined object by placing it to fill the image or by
zooming-in only on the focused areas. Tordoff and Mur-
ray [21] model the zoom control for a tracking system.
The goal is to zoom-in and out such that the target remains
within the field of view of the camera with high confidence.

Image-cropping algorithms [6, 17, 18] can potentially be
used to zoom the image to the desired target. The region
of potential interest is selected from an image using a pre-
defined criterion. The selected portion can be zoomed in
to emulate automatic zooming. However, these algorithms
do not address the resolution of the desired object and only
directs the attention to it.

In computer vision literature, the term zoom has been
used in different contexts. To avoid any ambiguities we
mention some of them in related work. Traditionally, zoom-
in refers to the change in focal length of the camera lens. Jin
et al. [11] proposed a probabilistic model to detect zoom-in
or zoom-out operations in an image sequence. Zooming-in
is also used to refer to magnification of image using super-
resolution algorithms, and not by camera e.g. [5].

3. Predicting the Right Zoom

In the paper, the right zoom of the camera is such that the
image captured at that zoom contains sufficient amount of
information. Image can then be magnified further with sim-
ple algorithms which enhances edges and certain features.
We first describe ’zooming-in sufficiently’ from Nyquist
view. Zoom prediction is modeled as an inference prob-
lem. The image is divided into patches and zoom factor is



predicted for each patch. Both structural cues and context
information around the patch are incorporated and modeled
in a MAP-MRF framework. The network is solved using
Bayesian belief propagation rules. Randomness measure is
defined to initialize zooming factor in the network.

3.1. A Nyquist View of Zoom-in

The irradiance field observed by a camera requires very
large frequency range to represent all information. One ob-
servation to be made is that the magnitude of Fourier spec-
tra usually decreases as a function of increasing absolute
frequency. According to the Nyquist theorem [19], a signal
can be uniquely reconstructed from its samples if the size
of the band of input signal is less than the sampling fre-
quency. Fig. 1 shows the Fourier spectra of a hypothetical
signal at different sampling rates. If sampling rate is low,
Fig. 1(a), signal is highly aliased and significant information
is lost. On the other hand if sampling rate is high enough,
Fig. 1(b), the aliasing is low and significant information can
be recovered from the sampled information. Rest of the
high frequency are usually step edges, which can be recov-
ered by promoting step functions and edges along smooth
curves while zooming-in, and noise, which can be charac-
terized and ignored. This forms the basis of selecting the
right zoom of the camera. Sufficient information is gathered
at the image capturing stage so that any further resolution
enhancements requires only simple feature enhancements.

3.2. Probabilistic Model

Image at the right zoom is captured in two steps. In the
first step, a low-resolution image is captured and the zoom is
predicted for each patch. In the second step the image(s) are
captured at the right zoom. Before we describe probabilistic
model we define the resolution-front of an image.

Definition 1. Let ] = {71,12, ...jN} be the image captured,
represented as a concatenation of square patches, I;, on a
2D grid each of size m x m at image locations 1,2...N.
Resolution front R; = {f1, fo,...fn} of the image I is
the amount of minimum magnification f; required at image
patch location i, so that the block can be super-resolved fur-
ther by using only simple feature enhancement algorithms.

We essentially predict the resolution front rather than the
absolute zoom required. It has more usability in various
scenarios, some of which are discussed in experiments and
results section. The prediction strategy should follow three
principles mentioned before. We present our zoom predic-
tion algorithm as an inference problem similar to inference
problems presented by Freeman ef al. [9] in a Markov Net-
work. The Maximum-a-Posteriori (MAP) estimate of the
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Figure 2. Markov Network for zoom prediction. I; are
LR patches and the corresponding resolution front values
fi. The output value at any location is also dependent on
certain information of neighboring patches and the context.

resolution-front Ry 4 p is given by,
Ryrap = argmax P(Ry|[D),
Ry

= argmaxp(ﬂRf)P(Rf), ()
Ry

To simplify the inference problem, the formulation is re-
duced to a patch based model under Markov assumption
similar to the one used in [9]. However, our patch struc-
ture incorporates intensities of all pixels of the underlying
patch, L, at higher weights and some pixels from neigh-
boring patches at lower weights(see sec. 3.3). Lety, be a
column vector which contains intensity values of all such
pixels. Markov Random Field (MRF) is a popular frame-
work to include contextual constraints. Each node in the
network corresponds to either an image patch or a resolution
front value. Fig. 2 shows the graphical dependencies among
nodes. To maintain compatibilities of resolution-front value
predictions with neighbors, a 5-value resolution-front tu-
ple is predicted at each location. It includes the resolution
front values corresponding to underlying patch and its 4-
neighbors. Let f7 denote the resolution front value, pre-
dicted using pixel information at patch location ¢, for patch
at location j such that j € N(7) is one of the 4 neighbors.
The maximum likelihood estimate p(I|R ;) is,

p(I[Ry) = Hp(infi,ff)

(1)

-11 %e—axi—yiﬁz;l(xi—yi), 3)

(2

where x; is a vector from the training data for which the
equation is optimized and the corresponding resolution-
front assignment is ML estimate. ¥, is a diagonal matrix
which incorporates the weights given to different pixel val-
ues of the patch. The above equation is also known as pair-
wise compatibility function between input and output val-
ues in a Markov network [9]. The resolution front should
be compatible and dependent on the neighboring context,

PRy =[IPu =11 11 Pl @

i i JEN(3)

The compatibility function (equivalent to above function
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P(fi|f;)) between the predicted resolution front values and
the neighboring values is proposed as,
W(fir f;) = —mme (U= 4= 1)7) /203
\/2mo2
where o2 is the variance. Substituting equation 3 and 5 into
equation 1 and after taking the logarithm we get,

Ryrap = argmin Z(Xl —yv) ' i —y)
R={f1...fn}
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3.3. Patch Representation

Smaller patch size is desirable to increase the generaliz-
ability and larger patches for specificity. Square patch sizes
having equal weights to all pixels are commonly used in a
Markov network. We use slightly larger patch sizes but as-
sign low weights to the pixels away from the center patch
while computing the Lo distance. Equation 7 is intuitive and
this patch representation is used. This behavior is embed-
ded in X1 in the MAP formulation. The function describing
the patch model is,

x| <=t

t<|x|<=p @

C7
T = { T exp(—35),

where c is a constant and 2¢ + 1 is the underlying patch size.
3.4. Training Data Generation

Training patches are generated from selected images
which a user believes that can be super-resolved further by
using any single-frame SR algorithm. To simplify descrip-
tions, we define resolution-rear similar to resolution-front
as,

Definition 2. Let I = {I1,I,....A1x} be the given image,
represented as a concatenation of square patches, I; each
of size m x m at image locations 1, 2...N. Resolution rear
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R, = {ri,ro,...rn} of the image I is the amount of maxi-
mum down-sampling, r; at image patch location 1, so that
the down-sampled block can be super-resolved to the origi-
nal block I; by using only simple feature enhancement algo-
rithms. The image I has a resolution front value Ry = {1}.

For each image ¢;, from the training images T, we cal-
culate how much down-sampling each block can tolerate.
We downsample' the image at various downsampling val-
ues D,,, = {d1,da,...d;} and then super-resolve the image
using an algorithm A. Block-wise sum of squared differ-
ences in intensity values is computed between the origi-
nal and super-resolved image. If the error is greater than
a threshold e then then downsampling factor just smaller
than current downsampling factor is assigned to r;. For
any down-sampled (by a factor k )version of image I, the
resolution-front is computed from resolution-rear as,

L (k) >
L

otherwise

The original image is downsampled at multiple resolution
factors in D, and resolution front is computed for each of
them. 5-value tuple having resolution front value of the
patch and its 4-neighbors are stored along with the patch in
the training database. Fig. 3 explains the training patch gen-
eration process. When an image is down-sampled the block
size varies at different downsampling factors. For the sake
of efficiency in searching, a constant patch size is required.
We take a constant block size and assign the second highest
(to avoid outliers) resolution-front value. Training data is
generated at various equally spaced non-integer zoom val-
ues as well. Fig. 4(a) shows patch intensity structures cor-
responding to integer zooms only.

For higher accuracy, images at various resolutions
should be captured from the camera. We prefer to down-
sample images offline because, a) Computation of lens dis-
tortions parameters, which are different at different focal
lengths, and estimation of registration parameters need to
be highly accurate and the process is computationally ex-

fi ®)

! downsampling factor=1/scaling factor
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Figure 4. some patch structures and corresponding zoom-
in values (a) computed in training phase. 4 x 4 is the central
patch and 8 x 8 is overall patch with pixels from neighbors.
(b) using randomness measure (sec 3.6).

pensive; b) Varying degree of error in measurements irra-
diance field and presence of noise. Certain relaxations are
incorporated in error limits at various stages.

3.5. Energy Minimization

Solving equation 6 for global minima is computationally
prohibitive with large number of patches. Freeman et al. [9]
favored to obtain a local minimal solution which approxi-
mates the global minima. Using approximate nearest neigh-
bor data-structure [3] a smaller set of similar patches (usu-
ally 20-30) are obtained. Markov network is solved using
local message passing algorithm (belief propagation). Rules
are same as proposed in [9]. It was argued that these rules
can be applied on graphs with loops as well without signif-
icant deviation from solution. However, presence of multi-
ple local minimas requires a robust initialization, which is
often ignored. In the next subsection, a general method is
proposed to initialize the resolution-front values.

3.6. Robust Initialization

Each pixel value is initialized to a zoom value propor-
tional to randomness in intensity structure in the neighbor-
hood. Randomness measure P; at location ¢ is proposed as,

P = Z Ogrs (i+j)0'in3 (i+j): )

J=[=3,3]x[=3,3]

where o, is the variation in intensity values and o, is
the variation in gradient angle” in a 3 x 3 window. Their
product at every patch location in a 7 x 7 window is added.
Intensity of a patch is normalized before calculations. The
zoom value is directly proportional to the randomness mea-
sure. High intensity variations and low angle variation im-
ply ramp like structure. High angle variation and low in-
tensity variation imply noise. Higher value of both im-
ply higher zoom factor. To identify ridge like structure as
regular structure, gradient angle is computed in the range

2dr = w441 — T, dy = yer1 — yt, 0 = tan~ ' (dy/dx)
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[=7/2,7/2) instead of full 27 range. Proposed random-
ness measure fails to identify step edges because just after
the steep, gradient angle could be anything in presence of
noise. These edges are removed from consideration using
canny edge detector. Proportional to the randomness mea-
sure zoom value is assigned as successive integer levels and
Markov network is initialized. Fig. 4(b) shows some of the
patch structures and the estimated zoom values.

4. Calibration of Zoom Lenses

”Zoom lens model” defines the relationship between fo-
cus, zoom and aperture values. Scene magnification is con-
trolled by moving two or more lenses along the axis and
point of focus is selected by moving the whole lens as-
sembly to and fro. The functional relationship between
the various zoom lens parameters is obtained empirically
rather than mathematically [23] because of high complex-
ity of zoom lenses, unavailability of specifications of lenses
and missing markings of zoom and focus motor position.
We predict zooms upto 5X in experiments. We use two
zoom lenses with focal length in the range 18-55mm and
28-105mm because of unavailability of a single high zoom
lens. Virtually a 105/18 ~ 6X zoom lens is available. A
high precision scale is affixed on focus and zoom motors.
Images of checkerboard pattern are captured as a function of
distance (in feets) and zoom position (in motor units). Ho-
mography matrix is computed among between the base im-
age and other images of the pattern. Average of scale factor
along two axis is the effective magnification. Fig. 5 shows
the calibration graphs. Coupling table 1 is made which de-
fines the relationship between two zoom lenses. It is the
magnification achieved at minimum focal length by chang-
ing the zoom lenses.

Setting the Right Zoom: Let the first image is captured
at (z;,t;), z; and t; denote the zoom and focus motor posi-
tion respectively. Let m denote the required magnification
factor and (zy,t;) denote the desired zoom lens configu-
ration. If zoom motor position is fixed in the graph, then
the focus position is monotonous as a function of distance
from the pattern. This result follows from the fact that only
one depth point of the scene remain in focus. Let M (, ) and
F(,) are the magnification profile(Fig. 5(a),5(c)) and focus
profile(Fig. 5(b),5(d)) of the lenses. If M, ' and F} ' are
the inverse of M and F' at a constant k. The required zoom-
lens parameters (zy, ty) are obtained as,

d=F_"(t;),
zp = My (mM(d, z)),
ty = F(zf,d).

Intermediate values are computed by fitting higher order
polynomials as described in [23]. Coupling table is used
to switch to other zoom-lens and the equations are similar.
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Figure 5. Zoom lens calibration (a) and (c): magnification profile of two cameras as a function of zoom motor position and
distance of the camera plane from the checkerboard (measured in feets); (b) and (d) corresponding focus position in motor units.

‘ Distance (in feets) ‘ 2 ‘ 4

[10 J12 14 |
| Magnification [ 1.5617 | 1.5755

[6__[8
| 1.5695 | 1.5724 [ 1.5770 | 1.5898 | 1.5832 |

Table 1. Coupling table : computed at the minimum fo-
cal length between two lenses as a function of distance.

5. Experiments and Results

To evaluate the performance of the proposed algorithm
experiments are performed on a variety of real and simu-
lated data-sets. As data is lost near boundary, several con-
straints are proposed to minimize the extent of zoom. Later
in this section, several possible applications are also dis-
cussed. Around 54 images are selected which can be super-
resolved further using simple SR algorithms. Randomiza-
tion measure defined in section 3.6 is also used to check
the suitability of training images. The size of the training
patch is 8 x 8. It has 4 x 4 pixels from the underlying
patch and other pixels from neighboring patches. Around
110,000 training patches are generated. Each training im-
age is downsampled at various factors upto 8. 4-5 of these
images are chosen and resolution-front values of them are
computed. Patches are stored in the training database. Any
learning based SR algorithm can be used during training
phase (denoted as algorithm A in Fig. 3). [14, 8] are recent
such algorithms. References therein provide further details
on various similar algorithms. This algorithm is used in
our experiments. Zoom is predicted upto 5.X at intervals of
0.25. The desired zoom of the camera is calculated from
the predicted resolution-front value. It is done by finding
a largest rectangle (usually located at the center) for which
the maximum resolution-front value is less than or equal to
the size of the image divided by the size of the rectangle.

Performance on Synthetic Data: We take test images
and downsample it. The resolution-front of each of them is
computed as described in section 3.4 and also using our al-
gorithm. The comparison with initialization and prediction
in MAP-MREF framework is summarized in table 2.

Results on Real Data®: We first evaluate the perfor-
mance on Snellen eye chart, which has various random al-

3all images in this section should be enlarged to view them properly.
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Image MSE (initialization) | MSE (MAP-MRF)
Book-shelf | 0.3453 0.2671
Butter-fly 0.2921 0.2424
Bill-board | 0.3672 0.2938
Book-text | 0.3156 0.2398
Painting 0.2801 0.2250

Table 2. Evaluation results on synthetic data. Mean
square error (MSE) is computed between the actual
resolution-front value and computed using a) randomiza-
tion measure, b) MAP-MRFE.

phabets printed at different font size. Fig. 6 summarizes the
result. At various locations in Fig. 6(c) the resolution-front
values are highly regularized. Whereas in Fig. 6(b) regions
around the text are also marked for zoom. Prior information
learned from the training data (e.g. regions above and be-
low text should require no zoom) was useful. Fig. 6(f), 6(g)
and 6(h) are images captured at increasing zoom. Various
characters are clear at different zoom-levels.

Fig. 7 summarizes results on a slightly complex scene.
Contextual constraints was very helpful in regularizing
resolution-front values. In some of the cases, the final char-
acter size after zooming is slightly different. This is pri-
marily because of different font types. Also predicting high
zoom values from limited data could be slightly erroneous.

5.1. Constrained Zoom-in

To minimize the data loss near outer boundary of an im-
age, several constraints are introduced. Scene is zoomed-in
upto a level only if the constraints are met.

Visually Attentive Objects : To speed up many com-
puter vision algorithms, certain regions are preferentially
processed based on their visual attentiveness. This con-
straint is used to preferentially treat a region which is visu-
ally attentive. Publicly available *Saliency Toolbox’ which
implements the algorithm by Walther and Koch [22] is used
to locate such regions. Fig. 8§ summarizes the results.

Penalty for not Zooming-in : The zoom is costly if a
few blocks require very high zoom. A graph is constructed
on zoom factor versus number of blocks requiring zoom
factor greater than various zoom factors. Graph is normal-
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Figure 6. Experiments on Snellen chart (a) base image
(b) zoom predicted using randomness measure with max-
imum zoom value 3 in the selected region (c) resolution-
front predicted after optimizing equation 6 having values 3,
3.25, 3.5 and 4 in the selected region (d) selected region

scaled by a factor 4 (e) super-resolved region; same patch
after capturing images at zoom: (f) 3X (g) 3.5X (h) 4X.

ized and the first zoom factor where the value falls below
a threshold is selected. It is also helpful to cope noise in
resolution-front prediction. Fig. 9 summarizes the results.

Other Scenarios : Pre-determined objects can be seg-
mented and such image regions is kept at higher priority.
Separating man-made and natural structures [13] also pro-
vide useful constraints for zooming. Natural objects and
scenes have fine details but they convey very little useful in-
formation. Whereas man-made object usually do not have
intricate structures. Natural structures can also be replaced
with any high quality texture while super-resolving.

5.2. Applications

Integration of the proposed technique with professional
or consumer cameras can provide a simple way to capture
high-quality images. The algorithm can also be used to pre-
dict required magnification factor for multi-frame SR algo-
rithms. Robotics and surveillance systems require the in-
terpretation of scenes which are usually unknown. It is im-
possible to scan scenes at maximum zoom value. Given
that the most of the scene information in real world do not
convey meaningful information or do not require very high
zoom values. The scene can be captured optimally with
minimum number of images at right zoom. For large scale
image mosaicing (e.g. giga-pixel camera [12]) such algo-
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Figure 7. (a) base image (b) zoom predicted using ran-
domness measure (c) resolution-front predicted after op-
timizing eq. 6; (d), (e) and (f): (i) selected regions from
image (ii) initial resolution-front (iii) resolution-front after
optimization (iv) regions shown at right zoom with values
(d.iv) 3.5X (e.iv) 2.5X (f.iv) 2.5X (g.ii) 2.5X.

rithms can optimize the number of images captured. In au-
tomated cropping systems, regions which require very high
zoom values can be removed after predicting the resolu-
tion front using our algorithm. As images captured at right
zoom has almost all the information for further resolution
enhancements, consequently the recognition accuracies of
many systems will improve. For many real-time applica-
tions e.g. video surveillance, two camera systems can be
used. One for capturing the whole scene and the other to
capture only certain regions in detail.

6. Discussions and Conclusions

In this paper, we have presented and addressed the prob-
lem of capturing the right amount of scene information from
the perspective of SR. The final captured image can be mag-
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Figure 8. (a) base image (b) visually attentive region se-
lected using saliency toolbox (c) selected LR region (d) Ry
predicted (e) at right zoom (2.5X).

nified further using any learning based SR algorithm. The
solution is proposed in a MAP-MRF framework. MRF al-
lows modeling of contextual constraints. In Fig. 7(d.ii) and
7(f.ii) the initialized resolution-front values are not con-
sistent and correct. With contextual constraints much of
the regularization is brought in and resolution-front values
are suppressed at unusual places. Places where underly-
ing patch information is insufficient to predict high zoom
values, context information played a significant role. In
Fig. 8(e), the vertical line and the text have almost similar
structure but the presence of context information is able to
define right resolution-front values at various places. Se-
lecting the right zoom value can as well be proposed as
a high-level vision problem where a particular object is
zoomed in at a pre-defined value. Proposing it as a low-level
vision problem provides high degree of generalizability for
a variety of scenes. Low computational speed is one of the
key issues. But with additional constraints (section 5.1) sig-
nificant speed up has been achieved. Camera shakes intro-
duce blur in images and deteriorates the zoom prediction.
But it can be controlled in autonomous environments. Fu-
ture work is towards developing complete real-time systems
for zoom prediction. We also plan to address the problem of
locating useful structures in images. We envision that such
a functionality would be introduced in consumer cameras.
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