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Abstract

Fourier domain methods have had a long association
with geometric vision. In this paper, we introduce Fourier
domain methods into the field of visual servoing for the first
time. We show how different properties of Fourier trans-
forms may be used to address specific issues in traditional
visual servoing methods, giving rise to algorithms that are
more flexible. Specifically, we demonstrate how Fourier
analysis may be used to obtain straight camera paths in the
Cartesian space, do path following and correspondence-
less visual servoing. Most importantly, by introducing
Fourier techniques, we set a framework into which robust
Fourier based geometry processing algorithms may be in-
corporated to address the various issues in servoing.

1 Introduction
The task of positioning a robot with respect to an object

may be defined as the constant manipulation of the posi-
tion of a robot with respect to object (s) of the environment,
while receiving and incorporating constant feedback about
localization from its sensors. The task of positioning is use-
ful for various reasons. For example, the simple task of an
automatically driven car requires the car to constantly mon-
itor its position with respect to the road, and to constantly
evaluate what turn to make and when; all these tasks amount
to the positioning of the car with respect to various points
on the road [17]. In any such task, a sensor is required to
provide constant input about the environment, which is then
coupled with positioning algorithms that determine and cor-
rect the position of the robot.

In this paper, we look at a positioning task called visual
servoing. Visual servoing can be explained as the task of
manipulating the motion of a robotic arm so that it moves
from one position known as the start position to the desired
or end position, with respect to a desired object (or target).
Along this path, constant feedback in terms of visual in-
put (through a camera) is coupled with servoing algorithms
which confirm whether the robot is on the correct path, or
corrects it when the robot goes astray. The nature of the
path followed depends on the control law (objective func-

tion whose outcome determines the direction of motion of
the robotic arm at each instant) designed, which in turn de-
pends on the image features being utilized in the objective
function for feedback. Visual servoing approaches model
robot motion as an error minimization process [14, 18, 9, 4],
which is a function of the pose of the camera and the fea-
tures used for navigation. Error models employed in the
past include image and pose errors [9], errors in homogra-
phy [20] and moments [19], etc. The path the robot has to
follow at any instant is directly derived as motion along the
gradient of this pose-feature (or pose-error) space. The es-
timation of the direction of motion is usually done using a
Jacobian which is a first order approximation of the gradient
in the pose space at that particular point.

Had the error function been convex, this approach would
have lead to a global minimization algorithm, which takes
the robot manipulator or end-effector from the initial to final
positions. However, the inherent non-linearity of perspec-
tive projection gives rise to problems such as local minima
of the error function which means that there exists points
in the pose-error space where the error is non-zero, yet the
above algorithm would be incapable of giving a particular
direction for the robot to proceed resulting in stagnation.
Another popular problem is the non-straight Cartesian paths
for the robot, during the minimization process. This means
that when the resulting error is a difference in image coordi-
nates (image points are considered as features) of an object
captured in the initial and final poses, the error minimiza-
tion ensures that the robot proceeds in a straight path in the
image space. Because perspective projection is non-linear,
this straight path in the image space results in a non-straight
Cartesian path, which means the manipulator travels more
than it needs to and runs the risk of reaching its joint lim-
its in the process (joint limits are reached when the robot
cannot stretch its arm beyond a point in order to reach a
particular position in space). In addition, exact correspon-
dence between points in the current and desired views need
to be estimated for accurate convergence.

In order to counter these problems, research on different
types of features and control laws has been carried out in
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the past [16, 13, 20, 3]. However, of all the methods pro-
posed, the traditional method of Image Based Visual Ser-
voing (IBVS) [15] has proven stability and convergence for
certain cases. Hence error functions defined in the image
space can benefit from these results.

A popular class of higher order primitives that may be
extracted from an image is Fourier descriptors. Fourier
transform has seen wide use in the computer vision com-
munity for geometry related computations. Specifically,
Fourier based methods have been used to estimate quan-
tities such as the Fundamental matrix for registering cam-
eras [12], and homography for registering images of con-
tours [10]. Geometric computations based on Fourier trans-
forms are robust to image noise, since each frequency has a
collection of measurements from the entire image or con-
tour. Recently, Fourier based techniques have also been
applied for correspondence estimation [10]. Thus, visual
servoing approaches set in a Fourier based framework have
the potential of bringing these advantages into the servoing
process. However, the restriction of Fourier based geomet-
ric computations to affine transformations [1] has been a
bottleneck in applying them to visual servoing. In this pa-
per, we resolve this problem in the context of visual servo-
ing, and present an approach for servoing based on Fourier
transforms.

Our contribution lies in choosing different properties of
Fourier transforms to address different problems in tradi-
tional servoing.

• A correspondence-less visual servoing algorithm, built
over the traditional IBVS framework, which is capa-
ble of positioning the robotic arm at a desired position
without knowledge about explicit point-to-point corre-
spondences between the object contour imaged in the
initial and final views.

• Traditional IBVS algorithms result in a non-straight
Cartesian path due to the non-linearity of perspective
projection, mainly due to the effect of out-of-plane
rotation. We show how a Fourier transform based
method employing Taylor series can resolve this prob-
lem in the case of a 5 DOF robot.

• A control law employing weighted Fourier features,
capable of following a user given path while minimiz-
ing the corresponding error funtion over time.

Currently, we consider servoing in the case of 1D Fourier
transforms of planar object contours, since it simplifies the
underlying geometric transformations to the extent that ap-
proximations provide reasonable solutions. One could po-
tentially extend this approach to non-planar objects as well
as 2D Fourier transform.

2 Related Work
Some of the initial works that inspired our approach

was the application of frequency domain techniques to the
estimation of multiple view geometric quantities like the
homography [10, 11]. In [11], the authors propose the
correspondence-less estimation of an affine transformation
between planar contours imaged in two views as the estima-
tion the transformation between their respective frequency
transforms. This problem is then solved by imposing a rank
constraint on a measurement matrix obtained from the re-
spective Fourier coefficients. Additionally the correspon-
dence between the two images is obtained by computing
the shift between the Fourier components of the respective
contours. This has been extended in [10], where the authors
start from the solution provided by [11] and iteratively es-
timate the projective transformation between the input im-
ages of the planar contour, again with correspondence as the
by-product.

The closest work to our approach is the work by
Chaumette et. al. [19, 2], where the authors define a set
of moments as features for the purposes of visual servo-
ing. Moments are higher order equations in terms of the
image coordinates, and are shown to be able to capture cer-
tain properties about the shape of the contour in consider-
ation that is independent of the angle of view of the cam-
era. These moments have nice properties like allowing the
individual control of each of the 6 degrees of the pose of
the camera. The representation of Fourier transforms as
exponentially weighted image pixels is close to the repre-
sentation of image moments. Indeed, this leads to several
similarities like the linearization of projective transforma-
tions in order to decouple rotation and translation. How-
ever, unlike [19], our attempt is to improve IBVS by using
Fourier based processing rather than proposing a novel con-
trol scheme for servoing. This in turn, allows us to make
use of stability and convergence properties of IBVS. Again,
for example, it is possible to combine the path following
method with IBVS to get a control law that follows a given
path while keeping features in the field of view.

3 Fourier Based Visual Servoing
Since in visual servoing, the basic aim is to get a di-

rection to move the robot at every instant, the application
of Fourier analysis seems promising. In this section, we
show how the properties of Fourier representation of con-
tours may be used to do three important tasks in visual ser-
voing.

3.1 Correspondence-less Servoing

Image Based Visual Servoing (IBVS) defines the path
followed by the manipulator as descent along a pose-image
error function. This function is described as the sum of
squared differences between the corresponding points in the
initial and final views. This function, however, implicitly
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makes the assumption that correspondence between the two
views has been established apriori. This is a problem when
correspondence between views cannot be established easily
or accurately. Correspondence-less visual servoing is par-
ticularly useful when the two views of the object are widely
separated leading to inaccurate correspondences. Tradi-
tional IBVS cannot correct this error, hence there is a need
to address this problem. We show now that in case of pla-
nar contours, this problem may be addressed by the use of
frequency domain techniques [10, 11].

Let X = {xi}, Y = {yi} and X s = {x si}, Y s =
{y si} be the x and y coordinates of a set of two contours
that are images of a planar contour in 3D, imaged in two
cameras. Let us assume that the correspondence between
the two images is unknown, however, by creating X, Y
such that the points of the contours are either stacked in a
clockwise direction or anticlockwise direction, we can re-
duce the correspondence estimation problem to an estima-
tion of shift between the two contours [10]. We wish to be
able to servo so that the camera moves from the first view
to the second view in the absence of knowledge about this
shift. LetF represent the 1D fourier transform. This change
in shift comes up as a multiplicative factor in the Fourier
transform

Fk(X s) = Fk(X) exp2πjkλ (1)

Fk(Y s) = Fk(Y ) exp2πjkλ (2)

where Fk represents the kth frequency component. When
the views are related by an affine transformation, several
methods are available to estimate the correspondence be-
tween contours [11]. But in the case where the contours are
transformed by a more general projective transformation,
these algorithms only give an approximate estimate of the
correspondence. However, this approximation gives rise to
a simple algorithm that can be used to perform servoing in
a Fourier based framework.

We define correspondence less servoing as a two step
process, when a generic projective transformation exists be-
tween the initial and desired images. In the first step, shift
between the two contours is estimated using the algorithm
of [11]. In the next step, IBVS is performed by using an es-
timation of this shift to generate the error vector [18]. As the
servoing process converges the robot to the desired view, the
two views (current and desired) approach each other, and in
such a case, the transformation between the two planes is
known to be affine [7], for which estimation of shift is ac-
curate. The reasoning behind our approach is the following.
Affine transformations are known to be good approxima-
tions of projective transformations [6], since effects of per-
spective projection get prominent only when the object un-
der consideration is very close to the camera or the camera
moves drastically [7]. Thus, estimation of shift assuming

affine transformations is a close approximation to the actual
shift present between the contours. Since IBVS is robust
to such small errors in feature correspondence, the servoing
is minimally affected because of this erroneous correspon-
dence and so the robot moves in the correct direction. Even-
tually, when the views get close enough, the affine part of
the transformation takes over and more accurate correspon-
dences are obtained. The overall algorithm is summarized
in Algorithm 1.

In practice, in comparison to the algorithms proposed in
[11] for shift estimation, we found the following derivation
to be more robust in estimating the correspondence under
projective transformations.

Fk(X s) = Fk(X) ∗ exp(2πikλ/n) (3)

log(
Fk(X s)

Fk(Y )
) = 2πikλ/n (4)

λ = max
λ
|(F−1

(
n

2iπk
log(
Fk(X s)

Fk(x)

)
)|, (5)

which in words, means that we are trying to minimize the
maximum possible shift between the two contours in consid-
eration. This is particularly useful, when the contour does
not have a random shape but has a specific pattern to it, like
the one shown in Figure 1.

Algorithm 1 Algorithm for correspondence-less visual ser-
voing.

Input: Initial and desired contour images.
Extract contour points,X = (xi), Y = (yi) andX sk =
(x si), Y sk = (y si).
for k = 1 . . .∞ do

Estimate shift λ between the two contours using Equa-
tion ( 5).
Construct error matrix using λ [18].
If contours are sufficiently close, exit.

end for

3.2 Straight Cartesian Paths for 5 DOF
Servoing

In the previous section, we formulated a simple algo-
rithm for correspondence-less servoing that can work even
in scenarios where correspondence is difficult to obtain. In
this section, we focus on the straight Cartesian trajectory
problem, and propose a new algorithm that can achieve
near-straight Cartesian paths in the case of a 5 DOF (de-
grees of freedom) visual servoing process. Since we achieve
straightening of the path by a linearization in the rotation
space, it becomes exceedingly complex to handle a 6 DOF
robot with 3 degrees each for translation and rotation. Thus
we consider only 2 degrees of rotational freedom in our cur-
rent work.

Let the image of a 3D contour in the initial and desired
views be represented by {X2

i } and {X1
i }, where superscript

denotes the frame number and the subscript denotes the
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ithpoint. Each point Xk
i =

[
xk

i y
k
i

]
. Let us further assume

that the two contours are related by a homography f .
In the case of planar contours, an affine transformation

is comprised of the effects of 4 parameters of pose out of
the existing 6 [7]. These are translation in x (tx), y (ty) and
z (tz), and rotation about the z axis (rz). The non-linearity
of the image motion - Cartesian motion relationship is pri-
marily due to the remaining rotation parameters (rx, ry).
Our aim is thus to get an estimate of rx or ry , given the
contours, since in a 5-DOF robot, the other pose parameters
can be readily decoupled.

For the sake of simplicity, assume the two given views
only differ in rx in their respective camera poses. This
means that the values of (r8,r9) are the main parameters to
be estimated in Equation (9). The case for ry can be made
on similar lines. Extension to a generic pose change is dis-
cussed later. The points in the two images are related by f
which is an infinite homography [7].

X
2
i = f(R,X1

i
) =

[
fx(R,X1

i
) fy(R,X1

i
) 1

]>
(6)

fx(R,X1
i ) = x2

i
=

R1X
1
i

R3X
1
i

(7)

fy(R,X1
i ) = y2

i
=

R2X
1
i

R3X
1
i

(8)

R =
[
R1 R2 R3

]>
=

[
r1 r2 r3
r4 r5 r6
r7 r8 r9

]
, (9)

where R represents the rotation between the two views un-
der consideration. We now perform a Taylor expansion of
f with respect to R gives us a linear representation of the
rotation, about I3×3.

Linearizing the right hand side of Equations (7 & 8)
about the identity matrix, we get

fx(R,X1
i ) =

I1X
1
i

I3X3
i

+
∂f(I,X1

i )

∂ri
(ri − ii) (10)

fx(R,X1
i ) = (2− r9)x1

i − r8x1
i y

1
i (11)

fy(R,X1
i ) = y1

i − r8y1
i y

1
i + r6 (12)

where the values of R are set according to a rotation about
x-axis. Notice that the major cause of worry is the parame-
ter r6, which is conveniently decoupled from the rest of the
parameters, and present just as an addition term. This en-
sures that its effect can be removed by subtracting the DC
component from the Fourier transform.

We now take the Fourier transformation of both sides of
Equations (11 & 12), to obtain

F(x2i )= F(fx(R,X1
i )) = (2 − r9)F(x1i ) − r8F(x1i ) ∗ F(y1i ) (13)

F(y2i ) = F(fy(R,X1
i )) = F(y1i ) − r8F(y1i ) ∗ F(y1i ) + F(r6) (14)

where ∗ represents convolution.
The above equations expand into 2 equations per fre-

quency of the Fourier transform. Since all the points share

the same values of the rotation parameters, and since the
Fourier parameters (F(Xj

i )) are known to us, the estima-
tion of the remaining parameters (r8, r9) becomes a linear
estimation problem. By collecting the parameters to be esti-
mated in the above two equations into a matrix and inverting
the sides of the equations, we get the following[
F(x1

i
) F(x1

i
) ∗ F(y1

i
)

0 F(y1
i
) ∗ F(y1

i
)

][
(2 − r9)
−r8

]
=

[
F(x2

i
)

F(y2
i
) − F(y1

i
)

]
(15)

where F(r6) is assumed to be cancelled out due to sub-
traction of the DC component. The above equation can
be collected over all the frequencies except the base fre-
quency to obtain an over-determined set of equations that
can be solved in the least squares sense using SVD [8]. The
method is summarized in algorithm 2

Algorithm 2 Simple iterative estimation of rotation, be-
tween contours.

Input: Two contours, (X1
i ) and (Xi).

(X3
i ) = (X2

i )
while convergence is not achieved upto acceptable error
do

Compute F(X3
i ) and F(X2

i ). Discard DC.
Build error matrix (Equations 13, 14, 15).
Minimize the error using SVD [8].
Rotate (X3

i ) to obtain the new contour. Assign it to
(X3

i ) for the next iteration.
Collect the rotation matrix produced.

end while
Composition of all the collected rotation matrices provide
the entire transformation between (X2

i ) and (X1
i ).

Extension to general pose change The challenge now is
to estimate rx or ry when the remaining pose parameters
(tx, ty , tz , rz) are not assumed zero. Since these param-
eters form an affine transformation, results from [1] may
be leveraged to our advantage. Specifically, when a con-

tour undergoes an affine transformation H =
[
A b
0 1

]
,

the corresponding Fourier components undergo the same
transformation. Since (tx,ty) primarily contribute to the DC
component and (tz) to scale, higher frequencies are suitable
to estimate (rx) or (ry) robustly. Now consider an interme-
diate view X3

i , which differs from the current view (X1
i ) in

a rotation about the x or y axis. Thus Fourier transform of
the relationship between X3

i and X2
i may be described by

an affine transformation.

F(X2
i ) = λ(AF(X3

i ) + F(b)) (16)

The unknown scale factor λ approximates the change tz ,
and may be described as the ratio of areas of the contour
in the two images [4]. Expanding the relationship between
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Figure 1. (Left-Right): (a) Current view (b) Desired view (c) First and second order Taylor approxima-
tions of the rotation about x-axis. (d) Different stages of the iterative minimization process.

X3
i and X1

i in Equation (6) using the Fourier relationship
derived earlier and ignoring the base frequency to eliminate
r6, we get a matrix along the lines of Equation (15) as

F(X2
i ) = λ(

 a11(2 − r9)F(x1
i
) + a12F(y1

i
) − r8a11

F(x1
i
) ∗ F(y1

i
) − r8a12F(y1

i
) ∗ F(y1

i
)

a21(2 − r9)F(x1
i
) + a22F(y1

i
) − r8a21

F(x1
i
) ∗ F(y1

i
) − r8a22F(y1

i
) ∗ F(y1

i
)

) (17)

These set of equations in 6 unknowns, 4 of A and 2 of
R can be solved in the least squares sense using the equa-
tions resulting from the various frequencies in the Fourier
transform. The parameter λmay be eliminated by imposing
the condition that A and R are rotation matrices and hence
have unit norm. Once the rotation values are estimated, the
translational degrees of freedom may be controlled sepa-
rately leading to a decoupled system. The entire method is
summarized in Algorithm 2, with the only change that step
4 is replaced by Equation (17).

3.3 Path Following

Having considered two problems with traditional visual
servoing in the previous sections, we now turn our attention
to a novel problem, that of altering the path of minimization
in the visual servoing process.

We show how a minimization of the weighted Fourier er-
ror can be used as a method to follow different paths in the
minimization process, while the robotic manipulator goes
from the same initial position to the same final position.
Thus, such an algorithm can take as input, say the output
of a path planning algorithm that plans the path of a robot
through an environment taking into consideration the obsta-
cles present along the way. Our algorithm will then follow
the obtained path, while minimizing the error between cur-
rent and desired frames.

We start the derivation of our control law by first ob-
serving a snapshot of the equations involved in traditional
IBVS, which is shown below, where e = s− s∗ s, s∗ being
the feature vectors in initial and final positions.

ė =
∂e

∂p

∂p

∂t
(18)

∂p

∂t
= Jė, J =

(
∂e

∂p

)+

(19)

where (e, ė) represent the image error and the rate of de-
crease of image error, respectively. p represents the pose of
the robot manipulator, while J represents the Jacobian that
ultimately decides the direction of movement at every step
of the convergence.

In traditional image based visual servoing (IBVS), the
control law is specified in terms of the image error e =
s − s∗, and the Jacobian Js (Equation (19)). The velocity
screw of the robot end-effector at any time is then given by

Js =
[
J1 . . . Jn

]>
(20)

Ji =

[
1/Zi 0 −vi/Zi −uivi 1 + u2

i
−vi

0 1/Zi −ui/Zi −(1 + v2
i
) uivi ui

]
(21)

v = J
+
e (22)

We now define the Fourier error to be

eF = F(e) = F(s)−F(s∗), (23)

where F(s) is a concatenation of the Fourier transforms of
the x and y coordinates. Since Fourier transforms are lin-
ear and invertible, the Jacobian of the Fourier error can be
computed in a manner similar to the traditional IBVS error.
It turns out to be

JF =
∂F

∂s
Js (24)

J+
F = J+

s

(
∂F
∂s

−1
)

(25)

= J+
s
∂(F−1)

∂s
, (26)

where F−1 denotes the inverse Fourier transform. By
defining the Fourier error and related control law, we have
ensured that the feature vector used for the minimization
process is the Fourier descriptor of the image points, which
may be a contour. The advantage of Fourier descriptors
is that each frequency component captures global proper-
ties about the contour in consideration, unlike image points,
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which are local in nature. Since we have already seen earlier
that Fourier components tend to capture the geometric prop-
erties of the transformation between initial and final views
[11, 10], we use this concept to argue that changing each of
these components has a different effect on the overall im-
age error of traditional IBVS, and hence the minimization
process.

Thus, to control this effect, we now introduce a weight
matrixW , that weights each component of the Fourier error.
Thus our new error model can now be defined as

eWF = WeF (27)

W = diag
[
w1 . . . wn

]
(28)

v = J+
s
∂F−1

∂s
(WeF ) (29)

The velocity screw at each iteration is then given by
Equation (29). Since each Fourier component is composed
of contributions from all the points in the image, weight-
ing the Fourier components has a global effect on the error
minimization. This allows IBVS to follow different paths
within the same minimization framework.

To demonstrate the application of the above control law,
assume that we have a sequence of relative pose estimates
{∆pi} with respect to the destination frame available to us.
These estimates may be the output of a constrained opti-
mization problem used in path planning [16]. In order to
ensure that the servoing algorithm makes the robot pass
through these given poses, we need to find the weight ma-
trix W that will guide the robot appropriately. In order to
do this, we observe that in Equation (29), the left hand side
represents the screw velocity, which is in turn defined as
change in pose over time (between successive frames, this
takes the value of one instant). Thus if we define v = ∆pi in
the above equation, the inversion of the right hand side will
give the difference between the estimated pose change in the
current instant and the desired pose change, represented by
∆pi . We can now define the desired weight matrix as the
value that minimizes this difference as

W = min
W

(−J+
FWeF −∆pi)

2, (30)

where the negative sign for error indicates the Jacobian at
the desired pose. Reordering the terms in the equation by
substituting W for a vector of its diagonal elements and eF
for a matrix with elements in its diagonal, we get

W = min
W

(−J+
F e
∗
FW

∗ −∆pi)
2 (31)

W ∗ = (−J+
F e
∗
F )−1 ∗∆pi (32)

W ∗ = −e∗−1
F JF∆pi (33)

As can be seen, although the relationship between pose
change and the different components of the Fourier trans-
form are not completely known, nevertheless we are able
to control the path of the robot by weight individual com-
ponents. This equation holds as well near the desired pose
as the approximation of the Jacobian for IBVS. The entire
method is summarized in Algorithm .

Algorithm 3 Path following using weighted Fourier servo-
ing.

Input: initial and desired images for the servoing.
Input: A list of poses (∆pi) to achieve.
Append desired pose ∆pdesired to the given list.
Set k = 1
while convergence to desired pose not achieved within
bounds do

Compute W to servo to ∆pk (Equation 31).
Obtain direction (Equation 29).
Servo.
if ∆pk achieved within error bounds then

k = k + 1
end if

end while

4 Results and Analysis
In the next few paragraphs, we present the results of our

three algorithms on simulation data. This kind of simulation
based experiments is actually a standard in the visual servo-
ing literature [5], with simulation toolkits in Matlab being
released by some of the pioneers in the field.

4.1 Straight Cartesian Paths for 5 DOF
Servoing

Figure 1 shows the setup in which the current and de-
sired views are separated by 10 degrees of rotation about
the x-axis and z-axis. The decoupling involves minimizing
the error in rotational components of the views first, fol-
lowed by translation. Each iteration of the minimization
process consists of finding the least square solution for the
angle (rx) and minimizing the rotational error by rotating
the camera appropriately. Since the initial and final views
are widely separated, at first this minimization is approxi-
mate. However, as the camera moves nearer to the desired
pose, the relationship between the two views moves towards
an affine transformation, which can be handled better by
Fourier transforms. It is interesting to note that each fre-
quency component gives 2 equations for a total of 2(n− 1)
equations barring the base frequency. Had correspondences
been unknown, we would still have (n − 1) equations fol-
lowing the idea in Section 3.1 which opens up the possibil-
ity of pose computation without correspondence in planar
scenes, useful for PBVS.
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Figure 2. Cartesian straight path for 5 DOF (Left-Right): (a) Image error increases during rotation. (b)
Observe how the rotation is corrected first and then the translation. (c) The slight error towards the
end of the path is due to the approximations used in the formulation.
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Figure 3. Image based visual servoing (Left-Right): (a) Image error decreases exponentially. (b)
Observe how the corrections in rotation and translation lead to the path of the robot being curved in
(c).

Figure 2 shows the visual servoing trajectory after plug-
ging in the decoupling solution, above the normal visual
servoing trajectory. Note how the decoupling results in a
straight path in Cartesian coordinates when normal IBVS
would result in a curved trajectory.

The main drawback of this method is the Taylor approx-
imation that needs to be leads to small errors in the initial
rotation error minimization. However, we observe that the
minimization process converges even for huge perspective
distortions (Figure 1), and hence believe this to be a promis-
ing result in spite of the minute error.

4.2 Path Following
Figure 4 shows the results of the path following ap-

proach. Figure 4(a) shows the camera trajectory during nor-
mal visual servoing, while Figure 4(b) the desired camera
trajectory. Notice how, even with the linear approximation,
the actual camera trajectory 4(c) closely mimics the desired
trajectory. This suggests that the Fourier-pose space curves
slowly around the desired pose, and thus the linearization
approximates Fourier error for a large region around the de-
sired pose.

The path following approach is particularly useful for
tasks like local minima avoidance in IBVS and for keep-
ing features in field of view. However, since explicit rela-
tionships between each of the Fourier components and the
elements of camera pose (rotation, translation) is difficult to
analyze, only approximate relationships for both the tasks

can be devised. However, the concept of weights allow for
a smooth camera trajectory that can satisfy more than one
constraint. This is a useful contribution considering joint
and velocity limits of robots.

4.3 Correspondence-less Servoing

The results for correspondence-less visual servoing are
shown in Figure 5. In this experiment, we have considered
two contours in initial and desired views with 100 points
sampled in each view. The correspondence misalignment
is around 20 pixels. As expected, the actual shift has little
consequence on the minimization procedure. The increas-
ing accuracy in correspondence results in many artifacts in
the minimization procedure, where the correspondence be-
tween the current and desired views shifts by a particular
number. For example, at the start of the IBVS iteration, the
correspondence is estimated as a 15 pixel shift, which gets
refined to 20 over time.

5 Conclusions

In this paper, we have presented several reasons to set
visual servoing algorithms in a Fourier based framework,
like correspondence-less servoing, straight Cartesian path
servoing and path following. Fourier based approaches are
particularly attractive since recent results in geometric vi-
sion [12] could be easily leveraged to advance visual servo-
ing.
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Figure 4. Path following (Left-Right): (a) Image based visual servoing (IBVS). (b) Specified path to
be followed, and (c) Path of the end-effector following trajectory. Observe how closely the specified
trajectory is followed.
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Figure 5. Correspondence-less visual servoing (Left-Right):(a) Velocity screw in the servoing pro-
cess. Notice the slight bumps in the screw (magnified in (b)). (c) Corresponding camera trajectory
that is slightly more skewed than traditional visual servoing.
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