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Abstract

We propose a novel approach to 3D hand geometry
based person authentication using projected light patterns.
Instead of explicitly computing a depth map of the palm for
recognition, we capture the depth information in the defor-
mations of a projected texture pattern, and use it directly for
recognition. The deformed pattern is characterized using
local texture measures, which can encode the certain depth
characteristics of the palm. An authentication system built
using the proposed technique achieves an equal error rate
of 0.84% on a dataset of 1341 samples collected from 149
users, as opposed to 4.03% using traditional 2D features
on an identical dataset. The approach is robust as well as
computationally efficient and could be applied to other 3D
object recognition problems as well.

1. Introduction
Recognition of 3D objects from their images is a chal-

lenging problem as the depth information of the scene is
lost during image acquisition. The loss of depth informa-
tion is critical for certain applications such as 3D hand-
geometry based authentication, where subtle variations in
the 3D shape provide important clues about the identity
of the subject. The traditional approach to overcome this
problem for any 3D biometric authentication has been to
explicitly compute the depth information using dedicated
range scanners or computationally intensive algorithms us-
ing multi-view geometry. A shape descriptor is then com-
puted from the recovered 3D shape, which is used for clas-
sification. The process of computing depth is often sen-
sitive to accurate determination of point correspondences,
which could be challenging when prominent features are
not present in the object. This will in turn affect the relia-
bility of the shape descriptors for classification.

The approaches to object recognition can be classified
into two categories based on the nature of features that are
extracted from the image. The first class of approaches uses
object-related features such as 3D or 2D shape for recogni-
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Figure 1. Deformations in projected texture.

tion. This involves segmentation of the object and inferring
properties of the object that were lost during imaging. The
second class of approaches uses properties of images of ob-
jects such as intensity variations, color, texture, etc. Specif-
ically the use of texture has proven to be extremely reliable
and accurate for the purpose of classification and has hence
been used for biometric modalities such as iris, fingerprints,
palm prints, etc.

In this light, we propose to derive features of the ob-
ject that are dependent on the depth, thus characterizing the
3D shape of the object well; while avoiding explicit depth
computation. The primary idea is to use structured lighting
to illuminate the object during the acquisition phase. The
deformations in the projected pattern are dependent on the
depth variations in the scene, and hence the deformed pat-
tern can be thought of as encoding the depth information
within it. By this process, we have transformed the ill-posed
and computationally intensive problem of deriving object
shape based features, into the well understood and efficient
domain of characterizing the intensity variations within the
image. Figure 1 shows two hand images whose depth maps
are very similar. However, the variations in the depth intro-
duce significant changes in the deformation of the projected
texture, which can be readily used for recognition.

Textures, which are deterministically or stochastically
repeating patterns of intensities in an image, have been
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studied extensively for computer vision applications. Tex-
tures on object surfaces have traditionally been used for
tasks such as segmentation, image retrieval, and biomet-
ric authentication, among others. In the context of recog-
nition, certain objects with distinguishable shape character-
istics might not have prominent or discriminative textures
that can tell similar classes apart. This shortcoming can be
overcome by projecting structured illumination onto them.
The deformations in the projected texture/pattern, treated as
another texture, not only give us an estimate of the 2-D ge-
ometry of the object but also of the depth variations along its
surface. Wavelet methods of texture analysis, such as Ga-
bor filter banks, capture these deformations without having
to compute point correspondences and handling occlusions.

1.1. Hand Geometry based Authentication

Measurements of the human palm, such as the length and
width of fingers and the 3D palm profile are known to con-
tain some amount of identity information. Sildauskas [10]
patented the first electronic hand geometry based iden-
tity verification apparatus, and several commercial systems
have been developed since then. Jain et al [6] outlined the
challenges in such an authentication system and proposes a
simple set of hand measurements, inspired by the previous
work. Even the most recent hand geometry algorithms [4]
use extentions of the set of features outlined in [6]. The re-
search in 2D hand geometry based authentication has pro-
gressed primarily in three different directions:

The first set of algorithms tried to include additional
measurements of palms such as area, perimeter, distances
between specific feature points on the palm, etc. [4] to im-
prove the verification accuracy. Even though the results
showed improvements on the prior art, the comparisons are
limited. A second direction was to integrate hand geometry
along with other biometric traits to achieve high recogni-
tion performance. Fingerprints [11] and Palm prints [7, 12]
are ideal candidates for this due to their ease of acquisi-
tion along with the hand geometry. A third set of algo-
rithms look at generic techniques to improve the classifica-
tion process used for verification, such as feature discretiza-
tion [8], use of error correcting codes and more powerful
classifiers [4], etc.

The use of 3D information in hand-geometry based au-
thentication is limited to adding partial depth information
computed from the profile view, usually captured using a
slanting mirror. The use of depth information of the hand
has the potential to improve the recognition and verification
performance of hand geometry based systems. The most
promising approach for use with hand geometry based au-
thentication is the use of structured lighting [13, 9], due to
its robustness and the availability of a controlled environ-
ment during imaging. Cofer and Hamza [1] proposed the
use of dot patterns to compute correspondences, and hence

the depth, at specific points on the palm. The recovered
depth is used along with silhouette features for recognition.
Faulkner [3] proposed the use of light stripes instead of dot
pattern to compute the correspondences. However, both of
the above approaches aim to recover partial depth informa-
tion, which in turn is used along with 2D object features for
authentication.

In this paper, we propose the use of a projection pattern
on the palm, which gets deformed according to the depth
variations of the palm. The texture measure computed from
local sub-windows of the captured image can be used to
characterize the hand geometry. Texture measures inherent
in a biometric traits such as palm prints [7], fingerprints [5]
and iris patterns [2] have been used extensively for identity
verification. We propose a similar approach for hand geom-
etry based authentication on projected texture. The primary
contribution of the present work is that we are able to map
the problem of computation of 3D features for recognition
into that of object recognition using a texture description.
To the best of our knowledge, this is the first attempt at char-
acterizing the shape of an object using deformed projected
textures for the purpose of recognition.

2. Projected Texture for Recognition
The key idea of the approach, as described before, is to

encode the depth variations in an object as deformations of
a projected texture. There are primarily two categories of
objects that we might want to characterize. The first class
of objects, such as manufactured parts and human palm,
are characterized by their exact 3D shape, while the second
class of objects are characterized by the stochastic varia-
tions in depth such as 3D textured surfaces. Although the
proposed approach can be adapted for use in either scenario,
we concentrate on the first class of objects in this work.
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Figure 2. Shift in captured pattern due to object height.

The object to be recognized is placed under controlled
pose and a specific texture pattern is projected on it. The
projected pattern (or the original texture), falling on the sur-
face containing the object, gets modified according to the
depth map of the object. These transformations can be pri-
marily classified into two categories:

• Pattern Shift: The position where a particular projected
pattern is imaged by the camera depends on the abso-
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Figure 3. Computation of the proposed projected texture based features.

lute height from which the pattern in reflected by the
object. Figure 2 illustrates this with a cross section of a
projection setup. Note that the amount of shift depends
on the height difference between the objects as well as
the angle between the projector axis and the plane of
the palm.

• Pattern Deformation: Any pattern that is projected on
an uneven surface gets deformed in the captured image
depending on the change in depth of the surface (see
Figure 1). These deformations depend on the absolute
angle between the projector axis and the normal to the
surface at a point as well as its derivative.

We claimed that the deformations of the projected tex-
ture contain sufficient information to characterize the ob-
ject. To understand the process, we inspect a specific win-
dow of the image with a particular pattern in the middle.
When the height of the object within the window changes,
the pattern either shifts away from the window or the lines
in the pattern changes direction, as we noted above. In both
cases, the local frequency characteristics of the window
changes considerably. We capture this by the responses of a
bank of Gabor wavelets in the window. To encode the shape
of the object, we partition the captured image into smaller
windows, which are then represented using the mean fil-
ter responses of Gabor wavelets in various directions and
scales.

One should note that the amount and nature of deforma-
tions depend on the relative positions of the projector, the
camera and the object being imaged, as well as the nature
of pattern being projected. That is, even minor variations
in the height of an object can cause large variations in the
texture pattern. However, the pattern to be projected should

be carefully chosen for an application, so that the variations
within the sub-windows are significant.

2.1. Designing a Projection Pattern

The choice of an appropriate projection pattern is impor-
tant due to a variety of factors:

• For the deformation to be visible at any point in the
captured image, the gradient of the texture at that point
should not be zero in the direction of gradient of the
object depth.

• The location and direction of the texture pattern should
induce a discernable response in the filter set used to
characterize the texture.

• The density of the projected pattern or its spatial fre-
quency should correspond to the frequency of height
variations to be captured. Hence, analyzing the geom-
etry of an object with a high level of detail will require
a finer texture, whereas in the case of an object with
smooth structural variations, a sparse one will serve
the purpose.

• Factors such as the color, and reflectance of the object
surface should be considered in selecting the color, in-
tensity and contrast of the texture so that one can iden-
tify the deformations in the captured image.

For the purpose of hand geometry based authentication,
we have selected a repetitive star patten that has gradients
in four different directions. This will allow us to capture
depth variations in different directions within a window.
The width of the lines and the density of patterns in the
texture were selected experimentally so that it captures the



height variations between the palms at the angle of projec-
tion selected.

2.2. Characterizing Hand Geometry

Once the pattern is selected, we need to characterize the
deformations induced by the height variations of the object.
For hand-geometry based verification, we divided the im-
age into 64 sub-windows (a 8 × 8 grid). Each sub-window
is then characterized by the responses of Gabor filters that
captures the local frequencies and their orientations.

A Gabor function is a Gaussian function, modulated by
a complex sinusoid. A simplified form of the filter, G(x, y),
may be written as:

Gσ,φ,θ(x, y) = gσ(x, y) · e2πjφ(x cos θ+y sin θ)

gσ(x, y) =
1

√
(2π)σ

e−(x2+y2)/2σ2

,

where θ is the orientation of the sinusoid with frequency
φ, and gσ(x, y) is a Gaussian with scale parameter σ. In
our experiments, we use a bank of 24 filters with 8 ori-
entations (θ = 0, π/8, 2π/8, · · · , 7π/8) and 3 radial fre-
quencies, controlled by the frequency of the sinusoid. The
feature vector representing a sample image is computed as
follows (see Figure 3).

The image is converted to gray scale and the area of the
image that contains the palm is cropped. The pixel values
are then normalized to have a specific mean and variance for
the image. The resultant image is then convolved with each
of the 24 Gabor filters and the mean of the filter responses
are computed for each sub-window. In our experiments, we
divided each response image into 64 sub-windows (8 × 8).
This resulted in a feature vector of dimension 1536.

3. Experimental Results and Analysis
To analyze the discriminative power of the projected tex-

ture based features, we check the verification performance
on a dataset of 1341 hand images collected from 149 sub-
jects. Each subject provided 9 images with the projected
texture and 9 with uniform illumination to serve as a com-
parison dataset for traditional 2D approaches.

The image capturing setup is similar to that discussed in
Jain et al [6], where pegs are used to guide the placement of
the palm. However, unlike the popular peg-based datasets,
where the placement of the hand is controlled, we encour-
aged the users to vary the hand pose within the peg limits
to make the dataset more realistic as in unsupervised sce-
narios. The surface of placement of the palm was darkened
to facilitate the segmentation process for 2D image analy-
sis. The illumination over the area of the palm could be
either uniform or from a projector that is placed at an angle
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Figure 4. Imaging setup.

Figure 5. The hand under structured illumination as well as normal
lighting. The mirror to the left enables us to compute height of
palm at specific points.

to the palm (see Figure 4). The images are captured by a
camera located directly above the palm with its optical axis
perpendicular to the palm surface. A reflecting mirror fixed
by the side of the imaging surface helps to capture a side
view of the palm, and thus to include thickness of fingers
as described in [6]. Each user provided 9 hand images with
uniform illumination, as well as with projected texture (see
Figure 5). The users were asked to remove their hand and
replace it for each image captured, with limited variations
in hand pose.

Due to the variations in hand pose, our dataset is much
more challenging than popular ones using peg based ap-
proach (see Figure 6). Note that users introduced consider-
able variations in the pose, even when limited by the pegs.
Similar variations were introduced for the projected texture
dataset also. Due to these variations in pose, traditional ap-
proaches for 2D feature extraction that assumes peg-based
imaging will fail in many samples. Hence we have tracked
the finger locations and computed the features appropri-
ately. We also verified and manually corrected any of the 2D
features that were incorrectly computed due to pose varia-
tions.

3.1. Feature Extraction and Matching

For computing the 3D features, the images are cropped,
converted to gray scale, and the pixel values are normalized
to reduce lighting variations during imaging. For the pur-
pose of comparison, we compute two different 2D feature
sets from the samples with uniform illumination, in addi-
tion to those from the projected texture. The feature sets
used are:



Figure 6. Samples from 3 users in our dataset: Note that the pose varies considerably, even with the use of pegs.

• Feat-1: The set of 17 feature proposed by Jain et al [6],
computed from the width and length of fingers and
palm as well as the height of the index finger computed
from the image reflected on the mirror.

• Feat-2: A set of 10 features proposed by Faundez-
Zanuy et al [4], including 5 finger lengths, area of the
palm, the contour length and distance between specific
points on the palm contour.

• Feat-3: The proposed projected texture based features,
computed from filter responses from 64 sub-windows.

Comparisons with 3D hand geometry approaches such as
Cofer and Hamza [1] and Faulkner [3] could not be carried
out as the patents does not provide sufficient information
about the exact nature of feature extraction. Moreover, as
we mentioned before, our approach does not require depth
computation or even segmentation of the palm, and hence
is comparable to the image based approaches in spirit and
complexity.

The primary aim of the experiments is to compare the
proposed feature set to the traditional image based features.
For this reason, we have avoided complex classifiers or
post processing techniques as proposed in Faundez-Zanuy
et al [4]. One of the best indicators of the discriminating
power of a feature set is the ROC curve induced by distances
computed in the corresponding feature space. The ROC
curve indicates the level of separation between the genuine
and imposter distance distributions. We used a simple Eu-
clidean distance to compute the distance between feature
vectors in all three cases. Note that the performance of the
classifiers in each case could be improved by more complex

classifiers or post processing techniques. Hence the accu-
racies reported here should be used only for comparison of
the feature spaces, and not as an indicator of the absolute
discrimination power of any of the feature sets.
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Figure 7. ROC curves for two 2D feature based, and the proposed
projected texture based approaches.

Figure 7 gives the ROC curves obtained from the three
feature sets mentioned above. The Equal Error Rate (EER),
or the rate at which false rejects equals false acceptance rate,
is a single indicator that can be computed from the ROC
curve. The EERs for the Feat-1 and Feat-2 were 4.06% and
4.03% respectively, while the proposed feature set achieved
and EER of 1.91%. Clearly the projected patterns induce
a large amount of discriminating information into the com-
puted features. In addition to the equal error rate, we note



that the genuine acceptance rate continues to be above 80%,
even at false acceptance rates of 0.001% for the proposed
features, while the performance of the 2D image based fea-
tures degrade considerably at this point.

We also conducted an experiment in feature selection to
choose a subset of the 1536 features that would help us in
reducing the computations required. We note that even with
just 57 features out of 1536, the ROC curve is similar to
that of the complete feature set. Moreover, the equal error
rate improves to 0.84% with the reduced feature set. This is
possible as the selection process avoids those sub-windows,
where the intra-class variations in pose are high.

Figure 8. Selected feature windows

Figure 8 shows the windows corresponding to the most
discriminative 12 features. Note that the features belong to
windows that are at the edges of the fingers as well as on the
palm surface, which indicates that the depth information of
the palm is also used for authentication, in addition to the
shape of the fingers. The presence of a window outside the
palm region could be because it encodes the relative bright-
ness of projected pattern, which in turn encodes the skin
color.

Another interesting observation is that a weighted com-
bination of the distance scores from 2D and texute-based
features did not improve the performance. Evidently, the
projected texture encodes most of the information that is
contained in the 2D features, in addition to the 3D informa-
tion of the hand surface.

4. Conclusions and Future Work
We have proposed a new approach to hand-geometry

based authentication using the projection of a structured
light pattern during image acquisition. We note that the
computation of textural features from specific local win-
dows can yield a feature vector that is far more discrimi-
native than traditional 2D object features used for hand ge-
ometry based authentication. The approach is computation-
ally efficient and the time taken is comparable to that of the
2D image based authentication. Moreover, the approach is
robust to occlusions and noise as opposed to 3D hand geom-

etry systems that need to explicitly compute a depth map of
the hand.

However, a several issues still remain unaddressed in ap-
plying the recognition approach to generic objects. The
method is sensitive to the relative positioning of the cam-
era, the projector, and the object. Object reflectance and
transparency might be another interesting area to explore.
Our approach is extensible to 3D textures as well. Temporal
variations in dynamic texture deformations could also give
us a cue towards designing optimal classifiers for recogni-
tion.
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