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Abstract

Accurate registration of images is essential for many
computer vision algorithms for medical image analysis,
super-resolution, and image mosaicing. Performance of
traditional correspondence-based approaches is restricted
by the reliability of the feature detector. Popular fre-
quency domain approaches use the magnitude of global
frequencies for registration, and are limited in the class
of transformations that can be estimated. We propose the
use of local phase information for accurate image regis-
tration as it is robust to noise and illumination conditions
and the estimates are obtained at sub-pixel accuracy with-
out any correspondence computation. We form an over-
determined system of equations from the phase differ-
ences to estimate the parameters of image registration. We
demonstrate the effectiveness of the approach for affine
transformation under Gaussian white noise and varying il-
lumination conditions.

1. Introduction

Image Registration is a process of geometrically
aligning two or more images obtained from different
views [11]. In many computer vision and image process-
ing applications, we need highly accurate image regis-
tration under differing noise and illumination conditions.
Such applications include generation of super-resolution
images from multiple images, where the output quality de-
pends mostly on the registration accuracy. In large scale
mosaicing, a small error in registration of two images can
lead to large errors at later stage. In medical image anal-
ysis, registration accuracy is required to predict diseases
based on the image comparison. Image understanding
algorithms such as 3D reconstruction from videos also
needs accurate registration.

Errors in image registration primarily result from the
presence of noise and variations in illumination. Spa-
tial domain techniques require robust estimation of cer-
tain primitives for correspondence. The registration ac-
curacy is limited to the accuracy of the primitive detec-
tion algorithms and is also affected by noise and illumina-

tion changes. However, in the transform domain, there are
methods that are robust to noise and illumination changes.
Reddy and Chatterji [9] proposed an algorithm for im-
age registration to recover the translation, rotation and
scale parameters. Rotation and scale factors are estimated
from the magnitude of the Fourier transform of the images
in polar and logarithmic coordinates. Phase correlation
is used for estimation of translation parameters. Fourier
Mellin Transformation [5] could also be used for com-
puting rotation, scale and translation parameters between
image pairs. The FMT approach takes advantage of the
fact that the changes in scale in spatial domain is equiv-
alent to a phase change in the Mellin domain. Kumar et
al. [8] has used the line patterns in texture to estimate up
to affine transformation. Fourier based techniques for es-
timating projective and general image transformations are
still missing.

In this paper, we make use of local phase computed
from a finite impulse response (FIR) band pass filter to
achieve registration with high accuracy. A phase-based
approach has been chosen over the magnitude of the re-
sponse of the filter because of its inherent stability [2].
Phase does not depend on the intensity levels of the im-
age and hence the measurements are invariant to smooth
shading and lighting variations. Explicit signal construc-
tion and feature detection are not required and yet the re-
sults are obtained at sub-pixel accuracy. Local phase in-
formation has been effectively used to solve similar prob-
lems such as stereo disparity computation [10] and optical
flow [4] with high accuracy under noise conditions. The
contributions of this work are summarized as:
• Accurate image registration algorithm with an order

of magnitude better results compared to the conven-
tional schemes.

• Correspondenceless approach with robustness to il-
lumination variations and band-limited noise.

• Deviating from the popular use of magnitude, local
phase is shown to be useful for accurate registration.

• A method for estimating local translation compo-
nents and estimation of image registration parame-
ters from these estimates. The results are shown for
affine transformation, although it can be extended to
any class of image transformations.



2. Computation of Local Phase Difference

Local phase information has been demonstrated to be
useful in problems such as computation of stereo dispar-
ity [10] and optical flow field estimation [4]. To compute
the depth of a scene point from an image pair, Sanger [10]
uses the information that disparity is proportional to the
difference in local phase. For optical flow field computa-
tion, Gautama and Hulle [4] tracked constant phase over
time and showed it to be robust to Gaussian white noise.
We extend the one-dimensional translation estimation in
phase-based stereo [10] to two dimensions, and combine
the translation components computed from phase to align
the images iteratively.
Local Phase: Any bandpass filter, with a finite support,
can be used for extracting the local phase in an image.
Gabor filters [3] are commonly used as band pass filters as
they achieve the theoretical minimum of product of spatial
width and bandwidth for any complex valued linear filter.
A smaller bandwidth allows accurate computation of local
phase and smaller width is desirable for localization.

Mathematically, a Gabor filter is a multiplication of a
complex harmonic function with a Gaussian envelope. In
two dimensions, a normalized Gabor filter function [7] has
an analytical form:
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We compute the local phase difference using the Ga-
bor waveletg(x, y). Let i1(x, y) andi2(x, y) be two par-
tially overlapping images. These images are convolved
with g(x, y) having central frequency(f1, f2), as:

sm(x, y, f1, f2) = im(x, y) ∗ g(x, y), (2)

wherem ∈ {1, 2}. The response has both real and imag-
inary components. The phase at location(x, y) corre-
sponding toim is computed as:

φm(x, y, f1, f2) = arg[sm(x, y, f1, f2)], (3)

where arg[ ] is the complex argument in(−π, π]. There-
fore, the phase difference at the spatial location(x, y) as a
function of(f1, f2) can be written as

∆φ(x, y, f1, f2) = [φ2 − φ1]2π (4)

Confidence of the Phase Difference: Errors could be
introduced in phase difference computation due to noise
and the absence of the local frequencies with which the
images are convolved. Sanger [10] has described the de-
gree of match in the amplitude values as a confidence mea-
sure. The value of confidence is high if the amplitudes of

the Gabor filter response at(x, y) in both the images are
close. Let|s1| and |s2| be the amplitudes of the Gabor
filter responses for the central frequency,(f1, f2). The
confidence value is computed as:

r = min

[ |s1|
|s2|

,
|s2|
|s1|

]

(5)

In addition, if the amplitude falls below a particular thresh-
old, the confidence value is set to zero.

3. Registration from Local Phase

In our approach, the partially overlapping images are
convolved with Gabor Filters to calculate the local phase
differences. This is done at multiple frequencies so that
if some of the local frequencies are absent they can be
detected and removed from further consideration. We
compute the local translational components at each spatial
location from the phase difference estimated at least at
two different frequencies. An overdetermined system of
equations is formed from the local translation estimates,
which is solved to estimate the image registration param-
eters, iteratively. For our algorithm, we define partially
overlapping images as the image pair where in any small
2D window at location(x, y) the corresponding point lie
within the cycle of the signal. This condition should hold
true at most of the locations in the image for the algorithm
to converge. In this Section we describe the computation
of local translation parameters and suggest a mechanism
for computing the registration parameters.

3.1. Local Translation Estimation

The translation between two 1D sinusoids can be accu-
rately computed by measuring the phase difference at the
same location of the sinusoid and then dividing it by the
frequency of the signal (see Figure 1). The same concept
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Figure 1. Computation of shift from two 1D signals as
(phase difference/frequency) of the signal

is used to compute the translation components from two
2D sinusoidal signals. To estimate two parameters, we
need the phase difference at least at two different frequen-
cies. The computation of translation components can also



be formulated on the basis of Fourier Shift theorem, ac-
cording to which, a shift of(∆x, ∆y) in the spatial domain
would produce a phase difference of2π×(∆xfx +∆yfy)
at (f1, f2). i.e., if

i2(x, y) = i1(x + ∆x, y + ∆y), (6)

then in Fourier domain at(f1, f2) the relationship is given
by:

I2(fx, fy) = I1(fx, fy)e2πj(fx∆x+fy∆y) (7)

We compute the phase difference at multiple frequen-
cies, (f1, f2), by using Gabor filters and form on over-
determined system of equations in∆x and∆y. We choose
only those estimates, where the confidence value is more
than a given threshold. The usage of Gabor filters is based
on the assumption that the phase output of the Gabor filter
is linear as a function of spatial position [2]

3.2. Computing Registration Parameters

Given a set of point correspondences, the image trans-
formation parameters can be estimated by solving an over-
determined system of equations. Similarly, local transla-
tion components computed at various spatial locations can
be thought as point correspondences with high accuracy.
Given many accurate estimation of such pairs the image
registration parameters can be computed accurately.

In this paper, we limit the class of registration algo-
rithms to that of planar views related by affine transfor-
mation. We concentrate on affine transformation because
most of the partial overlap can be approximated by affine
transformations. Projective transformation is the most
general form which relates the two views. It is repre-
sented by a 3× 3 matrix M such thatx′ = Mx where
x andx′ are the homogeneous coordinates of the two im-
ages. An affine transformation is a linear transformation
in in-homogeneous coordinates followed by a translation
and captures translation ,rotation, scaling and shearing in
a plane. Similarity transformation is a subgroup of affine
transformation, which captures only translation, rotation
and scaling. Mathematically, under affine transformation
two views of an object are related by

x = ax′ + by′ + c; y = dx′ + ey′ + f

At each location, we estimate the translation parameters,
which is related to the correspondence of a point(x, y) in
one image with(x′, y′) in the other. We form an overde-
termined system of equations to solve fora, b, c, d, e and
f .

3.3. Iterative Parameter Estimation

The local translation parameters, calculated at each spa-
tial location, are approximately correct. This is because in

a small window points need not be related by pure trans-
lation. Moreover, the two points need not lie within the
cycle of the signal. However, over iterations, as the cor-
responding points will be closer, the effect due to these
assumptions would be negligible. We iteratively update
the transformation parameters till convergence.

Algorithm 1 Accurate Image Registration
Input: An image pair,i1 andi2.
Output: Parameter describing the geomet-
ric relationship between two images accu-
rately.

1: Compute the approximate registration parameters.
2: repeat
3: Obtain the overlapping image pair using the current

registration parameters.
4: Convolve both the images with a bank of Gabor fil-

ters and calculate the phase difference values.
5: Calculate the translation parameters at each loca-

tion by solving for∆x and∆y from phase differ-
ences with sufficient confidence.

6: Form an over-determined system of equations us-
ing the translation estimates and solve it to update
the registration parameters.

7: until convergence

We now explore the robustness of the phase information
with respect to noise and illumination conditions.

3.4. Robustness of the Proposed Algo-
rithm

Noise Tolerance:For band-limited noise, the error in
the estimation is reduced by considering the phase output
of those filters that do not allow the frequencies to pass
through. This is done by assigning low scores to those
phase difference estimates where the same signal is not
present at the same location in the two images. A simple
way of doing so is by comparing the amount of mismatch
between the amplitude values.

Illumination Invariance: Illumination change in a
small window at the same location in the two images can
be modeled as the multiplication of the pixel values by a
constant. The phase information computed at these two
locations will remain unchanged as compared to the mag-
nitude of the signal, which will be scaled by the illumina-
tion constant. This fact follows from equation 2 and 3.

4. Experimental Results

We perform experiments on synthetic and real images.
On real images, we test and compare the performance
of our algorithm under Gaussian white noise and vary-
ing illumination conditions with RANSAC [1] (RNSC),
Fourier-Mellin Transform (FMT) [5] and an algorithm
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Figure 2. (a) and (b) are the images to be registered.
(c) shows the absolute image difference after using our
algorithm.

based on iterative minimization of sum of squared differ-
ences of the intensity values [6] using gradient descent
(GD). RANSAC is robust in estimating the transforma-
tion parameters in the presence of outliers. Fourier-Mellin
Transform is robust to noise and varying illumination con-
ditions, though it can estimate only up to similarity trans-
formation. In the absence of illumination variations in the
images, an image registration algorithm based on mini-
mization of the intensity value differences can register the
images accurately.

To compare the performance of the algorithms, we gen-
erate the image pairs having known transformation param-
eters from synthetic and real images. We define the mean
shift error,e, as the average distance between correspond-
ing points after registration. Mathematically it can be ex-
pressed as:

e =
1

N

∑

(x,y)

d(M ′[x y 1]T , M [x y 1]T ), (8)

where[x y 1] is the homogeneous representation of the im-
age coordinate ofi1, M andM ′ are3 × 3 transformation
matrices representing the known and estimated image reg-
istration parameters,N is the total number of points and
d(, ) is the Euclidean distance between two points. The
mean shift error indicates how close the overlay is.
• Sinusoidal Image: First row of Figure 2 shows two

synthetic 2D sinusoidal image pairs that are to be reg-
istered. We use four Gabor filters having central fre-
quencies in the range 0.06 and 0.12. The algorithm
converged in 4 iterations with a final mean shift error

of 0.08 per pixel. Figure 2 (c)shows the absolute im-
age difference after using our algorithm between the
reference and the registered images.

• Pentagon and Apple Chip Image:The second and
third rows of Figure 2 shows the pentagon and ap-
ple chip image pairs. Experimental steps are same as
mentioned for sinusoidal image pairs. The algorithm
converged in 7 steps and the mean of shift error after
using our algorithm was 0.108.
Gaussian White Noise: We add Gaussian white noise
with zero mean and standard deviation varying from
0 to 6 in both the images. For image pairs related by
an affine transformation, we compared our proposed
approach with RANSAC and the gradient descent
based image registration algorithm [6](GD). For im-
ages related by similarity transformation we com-
pare the performance of our algorithm with Fourier
Mellin Transformation (FMT). Table 1 summarizes
the mean of shift error values computed.

Affine Similarity
σ Proposed RANSAC GD Proposed FMT
0 0.10 0.18 0.068 0.06 1.19
1 0.18 0.35 0.070 0.11 1.19
2 0.31 0.41 0.071 0.18 1.19
4 0.52 0.76 0.073 0.33 1.19
6 0.65 1.05 0.078 0.45 1.19

(a) Errors on Pentagon Image Pair
Affine Similarity

σ Proposed RNSC GD Proposed FMT
0 0.15 0.22 0.121 0.09 1.19
1 0.21 0.35 0.123 0.14 1.19
2 0.27 0.46 0.123 0.18 1.19
4 0.45 0.80 0.129 0.29 1.19
6 0.59 0.97 0.132 0.41 1.19

(b) Errors on Apple Chip Image Pair

Table 1. Comparison of the proposed scheme with other
image registration algorithms under Gaussian white noise.

Illumination Conditions: Varying illumination
change in the whole image can be modeled by the
multiplication of grey values by a constant, in a small
window. Figure 3 shows the image pair with one of
the images having smooth lighting in radially out-
ward direction from the center. Table 2 summarizes
the errors.

4.1. Discussions

For the images related by affine transformation, our
algorithm performs better than RANSAC in presence of
Gaussian white noise and varying illumination changes.



Image Affine Similarity
Prop. RNSC GD Prop. FMT

Pentagon 0.245 1.284 5.357 0.170 1.190
Apple 0.421 0.910 3.165 0.318 1.190

Table 2. Performance comparison under varying illumi-
nation conditions.

(a) (b)

Figure 3. Registration under smooth lighting condi-
tions: (a) has radially decreasing illumination.

It performs better than GD in presence of illumination
changes. However, in presence of Gaussian white noise,
GD registered the images more accurately. Note that vari-
ations in pixel values at the center is more than any other
location in the image under varying illumination condi-
tions, while Gaussian white noise has zero mean and
hence does not affect the minimum of mean squared error.
For the images related by similarity transformation, our
algorithm performs far better than FMT within the given
noise limits and illumination conditions. FMT is very ro-
bust to noise and illumination conditions, but the accuracy
is limited because of the detection of impulse response at
non-integer locations and the factors involving coordinate
transformations.

In short, we note that the proposed algorithm can handle
differing noise and illumination changes simultaneously
whereas existing approaches fails to perform well. Trans-
form domain techniques are robust to these variations, but
the class of image transformation that can be calculated
are very limited. The proposed algorithm can estimate the
local translation parameters as long as there are sufficient
locations, where the corresponding points lie within a cy-
cle of the signal. In real life scenarios this might mean that
the corresponding pixel should be at the most 8-10 pixels
apart. We can overcome this limitation by having a quick
approximation of the registration parameters by using any
existing image registration algorithm. The phase differ-
ence and translation parameters at different locations can
be computed in parallel and hence the algorithm is well
suited for parallel architectures.

5. Conclusions

We present a novel approach for accurate image
registration by using the local phase information. Our
approach does not use point correspondences and com-
putes the registration parameters for partially overlapping
images. It is robust to band-limited noise and illumination
changes that are present in real world scenarios. Images
can be registered accurately within a few iterations of
the algorithm. Moreover, the proposed algorithm can
run on parallel architectures. We have shown the results
up to affine transformation, although the formulation
can be extended to any class of image transformations.
Experiments indicate that the registration can be achieved
with sub-pixel accuracy, under noise and illumination
changes.
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[7] J.-K. Kämäräinen.Feature Extraction Using Gabor Fil-
ters. PhD thesis, Lappeenranta University of Technology,
2003.

[8] M. P. Kumar, S. Kuthirumunal, C. V. Jawahar, and P. J.
Narayanan. Planar homography from fourier domain rep-
resentation. InProceedings of SPCOM, pages 560–564,
Dec 2004.

[9] B. S. Reddy and B. N. Chatterji. An FFT-based technique
for translation, rotation, and scale-invariant image registra-
tion. IEEE Transactions on Image Processing, 5(8):1266–
1271, 1996.

[10] T. D. Sanger. Stereo disparity computation using Gabor
filters. Biological Cybernetics, 59:405–418, 1988.

[11] B. Zitova and J. Flusser. Image registration methods: a
survey. Image and Vision Computing, 21(11):977–1000,
October 2003.


